首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

2.
神农架大九湖四万年以来的植被与气候变化   总被引:3,自引:0,他引:3  
通过对大九湖6 m长连续沉积岩芯剖面(DJH-1 孔) 7 个样品的AMS14C年龄测定和151 块孢粉样品的鉴定分析, 揭示了神农架区域4 万以年来植被和气候演变。末次冰期阶段大九湖附近发育森林草地或草地-草甸植被。MIS 3 晚期, ~42-39 cal ka BP之间, 气候相对干冷, 发育森林草地;~39-31 cal ka BP 之间, 气候较为湿润, 草甸扩张并伴随低海拔阔叶树种的发育。MIS 2 阶段, 草甸组分中蒿属显著增加, 高海拔可能分布有荒漠草地, 气候极端干冷;该时期植被带垂直下降达到1000 余m, 按垂直温度递减率推算, 冰盛期阶段该区域温度下降约7℃左右。从冰消期开始, 森林植被开始扩张, 北温带、暖温带和亚热带乔木组分依次增加。约在9.4-4 cal ka BP之间, 演变为亚热带常绿阔叶落叶林, 属全新世适宜期;从约4 cal ka BP以来, 北温带阔叶和针叶树开始增加, 气候趋于凉干。通过对比区域高分辨率的洞穴石笋及高纬冰芯氧同位素记录, 表明神农架区域植被环境变化对气候变化敏感, 并记录了H1, YD气候突变事件;进一步体现出该区域气候环境演变主要与北半球太阳辐射控制的东亚夏季风强度变化有关, 且与北半球高纬气候变化一致。  相似文献   

3.
Mid-Holocene changes in vegetation, palaeohydrology and climate were investigated from the sediments of Lake Vankavad in the northern taiga of the Usa Basin, NE European Russia, through the analysis of pollen, plant macrofossils, Cladocera and diatoms. Lake Vankavad was probably formed at ca. 5000 BP (ca. 5600 cal. BP) and initially it was shallow with a littoral cladoceran fauna. Macrofossil and pollen results suggest that dense Betula-Picea forests grew in the vicinity and the shore was close to the sampling point. At ca. 4600 BP (ca. 5400 cal. BP) the water level rose coincident with the decrease in the density and area of forests, probably caused by cooling climate and accelerated spread of mires. There was also a further rise in the water level at ca. 3500 BP (ca. 3800 cal. BP). The initiation of the lake, followed by two periods of rising water-level, as well as the increase in mire formation, was a consequence of a rise in groundwater level. This probably reflects lower evapotranspiration in a cooling mid-Holocene climate and/or higher precipitation in the lowland area. Also the decreased forest density and area may have contributed to the lower evapotranspiration. It is also possible that permafrost aggradation or changes in peat ecosystems might have affected the hydrological conditions in the area.  相似文献   

4.
A combination of pollen and macrofossil analyses from six lakes at altitudes between 370 and 999 m above sea level (a.s.l.) in the Torneträsk area reflect the Holocene vegetation history. The main field study area has been the Abisko valley at altitudes around 400 m a.s.l. The largest lake, Vuolep Njakajaure has annually laminated (varved) sediments. The chronology and sedimentation rates in the pollen-influx calculations are based on varve yrs in this lake and on radiocarbon dated terrestrial plant macrofossils in the other lakes. A strong increase of mountain birch (Betula pubescens ssp. tortuosa) during the early Holocene with a tree-line c. 300 m above the present, indicates that the summer temperature was c. 1.5 °C higher than today, assuming that the land uplift has been 100 m since then. Scattered stands of pine (Pinus sylvestris) may have been growing in the area immediately after the deglaciation but a forest consisting of pine and mountain birch expanded first at low elevations and reached the eastern parts of the Torneträsk area at c. 8300 cal BP and the western parts at c. 7600 cal BP. The highest pine-birch forest limit was not reached until 6300 cal BP (110 m above present pine limit). Warm and dry conditions during the pine forest maximum led to lowering of the water level documented in Lake Badsjön in the Abisko valley about 1-1.5 m lower than today. Pine and mountain birch were growing at the maximum altitude until c. 4500 cal BP. Assuming that land uplift has been in the range of 20-40 m since the mid-Holocene, this implies that the temperature was then c. 1.5-2 °C higher than today. Rising lake-levels and lowering limits of pine and mountain birch since c. 4500 cal BP indicate a more humid and cool climate during the late Holocene.  相似文献   

5.
Climatic and environmental changes since the last glacial period are important to our understanding of global environmental change. There are few records from Southern Tibet, one of the most climatically sensitive areas on earth. Here we present a study of the lake sediments (TC1 core) from Lake Chen Co, Southern Tibet. Two sediment cores were drilled using a hydraulic borer in Terrace 1 of Lake Chen Co. AMS 14C dating of the sediments showed that the sequence spanned >30,000 years. Analyses of present lake hydrology indicated that glacier melt water is very important to maintaining the lake level. Sediment variables such as grain size, TOC, TN, C/N, Fe/Mn, CaCO3, and pollen were analyzed. Warm and moderately humid conditions dominated during the interval 30,000–26,500 cal year BP. From 26,500 to 20,000 cal year BP, chemical variables and pollen assemblages indicate a cold/dry environment, and pollen amounts and assemblages suggest a decline in vegetation. From 20,000 to 18,000 cal year BP, the environment shifted from cold/dry to warm/humid and vegetation rebounded. The environment transitioned to cold/humid during 16,500–10,500 cal year BP, with a cold/dry event around 14,500 cal year BP. After 10,500 cal year BP, the environment in this region tended to be warm/dry, but exhibited three stages. From 10,500 to 9,000 cal year BP, there was a short warm/humid period, but a shift to cold/dry conditions occurred around 9,000 cal year BP. Thereafter, from 9,000 to 6,000 cal year BP, there was a change from cold/dry to warm/humid conditions, with the warmest period around 6,000 cal year BP. After 6,000 cal year BP, the environment cooled rapidly, but then displayed a warming trend. Chemical variables indicate that a relatively warm/dry event occurred around 5,500–5,000 cal year BP, which is supported by time-lagged pollen assemblages around 4,800 cal year BP. Our lake sediment sequence exhibits environmental changes since 30,000 cal year BP, and most features agree with records from the Greenland GISP2 ice core and with other sequences from the Tibetan Plateau. This indicates that environmental changes inferred from Lake Chen Co, Southern Tibet were globally significant.  相似文献   

6.
华北平原晚冰期以来气候环境演变研究对该地区社会发展、灾害风险评估和科学应对未来全球增温背景下极端降水和洪涝事件具有重要意义。本文以华北平原中部白洋淀地区高阳剖面(BG-2019)为研究对象,通过高精度AMS14C、OSL定年技术和高分辨率孢粉组合、粒度组分分析,恢复和重建了白洋淀地区晚冰期以来(距今13710 a—今)区域植被演替和气候环境变化历史。结果显示:BG-2019剖面在距今10270~13710 a和距今4630~5400 a发育湖相沉积,距今3470~3700 a发育沼泽相沉积;距今7130~8000 a发育河流—入湖三角洲相沉积,距今3700~4630 a和距今3230~3470 a发育河流相沉积;距今8000~10270 a和距今5400~7130 a存在明显的沉积间断/地层缺失;表明采样剖面所在位置缺乏连续的湖相地层。晚冰期白洋淀为局地小湖沼;中全新世湖沼较发育、范围广,但也不是连续广袤的湖相沉积;晚全新世湖泊范围收缩。晚冰期和全新世白洋淀流域植被景观存在显著差异;晚冰期气候寒冷干燥,平原发育以蒿属、藜亚科、禾本科和菊科等为主的草地,周围山地森林覆盖度低;中全新世气候温暖湿润,平原大部仍发育以蒿属、藜亚科和禾本科为主的草地,湖区水蕨和水生植物繁盛,周围山地生长松属、栎属为主的针阔混交林,森林覆盖度增高;晚全新世气候温和偏干,平原仍是以蒿属、藜亚科和禾本科等为主的草地,西部山地生长以松属为主的针阔混交林,森林覆盖度较高。  相似文献   

7.
Three lake sediment sequences (lakes Nero, Chashnitsy, Zaozer’e) from the Rostov-Jaroslavl’ region north of Moscow were studied to provide information on palaeoclimatic and palaeoenvironmental changes during the past 15,000 cal yr. The multi-proxy study (i.e., pollen, macrofossils, mineral magnetic measurements, total carbon, nitrogen and sulphur) is chronologically constrained by AMS 14C measurements. Lake Nero provided the longest sedimentary record back to ca. 15,000 cal yr BP, while sediment accumulation began around ca. 11,000 cal yr BP in the two other lakes, possibly due to melting of permafrost. Limnic plant macrofossil remains suggest increased lake productivity and higher mean summer temperatures after 14,500 cal yr BP. While the late glacial vegetation was dominated by Betula and Salix shrubs and various herbs, it appears that Betula sect. Albae became established as early as 14,000 cal yr BP. Major hydrological changes in the region led to distinctly lower lake levels, starting 13,000 cal yr BP in Lake Nero and ca. 9000 cal yr BP in lakes Chashnitsy and Zaozer’e, which are situated at higher elevations. These changes resulted in sedimentary hiatuses in all three lakes that lasted 3500–4500 cal yr. Mixed broad-leaved – coniferous forests were widespread in the area between 8200 and 6100 cal yr BP and developed into dense, species-rich forests between 6100 and 2500 cal yr BP, during what was likely the warmest interval of the studied sequences. Agricultural activity is documented since 500 cal yr BP, but probably began earlier, since Rostov was a major capital by 862 A.D. This apparent gap may be caused by additional sedimentary hiatuses around 2500 and 500 cal yr BP.  相似文献   

8.
Diatom-based inferences of post-glacial hydrological change from a sedimentary record from Felker Lake, British Columbia, show millennial-scale pacing of climate over the past approximately 11670 calendar years with change at ca. 8140 cal. year BP, ca. 6840 cal. year BP, ca. 5700 cal. year BP, and ca. 2230 cal. year BP. Early postglacial diatom assemblages are dominated by fragilaroid taxa, suggesting that cool and moist climate conditions and relatively high lake levels prevailed at this time. Early Holocene warming near ca. 8140 cal. year BP promoted Cyclotella bodanica var. lemanica, a fall bloomer competitive in limnological conditions associated with warmer water and stratified conditions. Short-lived peaks of Stephanodiscus parvus/minutulus between ca. 6340 cal. year BP and ca. 5860 cal. year BP indicate periodic increases in nutrient availability and prolonged mixing likely associated with long cool and moist spring seasons. The diatom-inferred depth of Felker Lake increased during the mid-Holocene to reach a record high-stand at ca. 5860 cal. year BP. Large changes in hydrological variability and terrestrial vegetation at Felker Lake occurred after ca. 2230 cal. year BP when high-amplitude centennial-scale fluctuations in diatom-inferred lake depth and salinity are observed. Change is first documented in terrestrial vegetation at this time by a shift from open Pinus parklands to a landscape that periodically supported populations of Cupressaceae. Three record low-stand high-salinity events are reconstructed between ca. 1910 cal. year BP and ca. 1800 cal. year BP, ca. 1030 cal. year BP and ca. 690 cal. year BP, and ca. 250 cal. year BP and ca. 140 cal. year BP. The low lake-level episode of ca. 1030 cal. year BP–ca. 690 cal. year BP is coeval with the Medieval Warm Period (ca. 1000 cal. year BP–ca. 600 cal. year BP), a period of intense drought in western North America. Post-glacial hydrological change at Felker Lake is coherent with regional, hemispherical, and global paleoclimate events, suggesting that millennial-and centennial-scale shifts in water availability are a persistent feature of the climate of western North America.  相似文献   

9.
Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.  相似文献   

10.
Paleoenvironmental studies have documented the late Pleistocene to Holocene evolution of the lakes in the central and southern parts of the basin of Mexico (Texcoco and Chalco). No information was available, however, for the lakes in the north-eastern part of this basin. The north-eastern and the central and southern areas represent, at present, different environmental conditions: an important gradient exists between the dry north and the moister south. To investigate the late Pleistocene to Holocene characteristics of the north-eastern lakes in the basin of Mexico two parallel cores (TA and TB) were drilled at the SE shore of Lake Tecocomulco. Stratigraphy, magnetic properties, granulometry, diatom and pollen analyses performed on these sediments indicate that the lake experienced a series of changes between ca. > 42,000 yr BP and present. Chronological control is given by five radiocarbon determinations. The base of the record is represented by a thick, rhyolitic air-fall tephra that could be older than ca. 50,000 yr BP. After this Plininan event, and until ca. 42,000 yr BP, Lake Tecocomulco was a moderately deep, freshwater lake surrounded by extended pine forests that suggest the presence of cooler and moister conditions than present. Between ca. 42,000 and 37,000 yr BP, the lake became shallower but with important fluctuations and pollen suggests slightly warmer conditions. Between ca. 37,000 and 30,000 yr BP the lake experienced two relatively deep phases separated by a dry interval. A second Plinian eruption, represented in the sequence by a dacitic an air-fall tephra layer dated at 31,000 yr BP, occurred in the area by the end of this dry episode. Between ca. 30,000 and 25,7000 yr BP Tecocomulco was a fresh to slightly alkaline lake with a trend towards lower level. After ca. 25,700 yr BP very low lake levels are inferred, and after ca. 16,000 yr BP the data indicate the presence of a very dry environment that was persistent until the middle Holocene. After 3,500 yr BP lacustrine conditions were re-established and the vegetation cover shows a change towards higher percentages of herbaceous taxa.  相似文献   

11.
Permafrost in peatlands of subarctic Sweden is presently thawing at accelerated rates, which raises questions about the destiny of stored carbon and nutrients and impacts on adjacent freshwater ecosystems. In this study we use peat and lake sediment records from the Stordalen palsa mire in northern Sweden to address the late Holocene (5,000 cal BP-present) development of the mire as well as related changes in carbon and nutrient cycling. Formation, sediment accumulation and biogeochemistry of two studied lakes are suggested to be largely controlled by the development of the mire and its permafrost dynamics. Peat inception took place at ca. 4,700 cal BP as a result of terrestrialisation. Onset of organic sedimentation in the adjacent lakes occurred at ca. 3,400 and 2,650 cal BP in response to mire expansion and permafrost aggradation, respectively. Mire erosion, possibly due to permafrost decay, led to re-deposition of peat into one of the lakes after ca. 2,100 cal BP, and stimulated primary productivity in the other lake at ca. 1,900–1,800 cal BP. Carbonate precipitation appears to have been suppressed when acidic poor fen and bog (palsa) communities dominated the catchment mire, and permafrost-induced changes in hydrology may further have affected the inflow of alkaline water from the catchment. Elevated contents of biogenic silica and diatom pigments in lake sediments during periods of poor fen and bog expansion further indicate that terrestrial vegetation influenced the amount of nutrients entering the lake. Increased productivity in the lake likely caused bottom-water anoxia in the downstream lake and led to recycling of sediment phosphorous, bringing the lake into a state of self-sustained eutrophication during two centuries preceding the onset of twentieth century permafrost thaw. Our results give insight into nutrient and permafrost dynamics in a subarctic wetland and imply that continued permafrost decay and related vegetation changes towards minerotrophy may increase carbon and nutrient storage of mire deposits and reduce nutrient fluxes in runoff. Rapid permafrost degradation may on the other hand lead to widespread mire erosion and to relatively short periods of significantly increased nutrient loading in adjacent lakes.  相似文献   

12.
Serpent River Bog lies north of North Channel, 10 m above Lake Huron and 15 m below the Nipissing Great Lake level. A 2.3 m Holocene sequence contains distinct alternating beds of inorganic clastic clay and organic peat that are interpreted as evidence of successive inundation and isolation by highstands and lowstands of the large Huron-Basin lake. Lowstand phases are confirmed by the presence of shallow-water pollen and plant macrofossil remains in peat units. Twelve 14C dates on peat, wood and plant macrofossils combined with previously published 14C ages of lake-level indicators confirm much of the known early Holocene lake-level history with one notable exception. A new Late Mattawa highstand (8,390 [9,400 cal]–8,220 [9,200 cal] BP) evidenced by a sticky blue-grey clay bed is tied to outburst floods of glacial Lake Minong during erosion of the Nadoway drift barrier in the eastern Lake Superior basin. A subsequent Late Mattawa highstand (8,110 [9,040 cal]–8,060 [8,970 cal] BP) is attributed to enhanced meltwater inflows that first had deposited thick varves throughout Superior Basin. Inundation by the Nadoway floods and possibly the last Mattawa flood were likely responsible for termination of the Olson Forest (southern Lake Michigan). A pollen diagram supports the recognized progression of Holocene vegetation, and defines a subzone implying a very dry, cool climate about 7.8–7.5 (8.6–8.3 cal) ka BP based on the Alnus crispa profile during the Late Stanley lowstand. A new date of 9,470 ± 25 (10,680–10,750 cal) BP on basal peat over lacustrine clay at Espanola West Bog supports the previous interpretation of the Early Mattawa highstand at ca. 9,500 (10,740 cal) BP. The organic and clastic sediment units at these two bogs are correlated with other records showing coherent evidence of Holocene repeated inundation and isolation around northern Lake Huron. Taken together the previous and new lake-level data suggest that the Huron and Georgian basin lakes were mainly closed lowstands throughout early Holocene time except for short-lived highstands. Three of the lowstands were exceptionally low, and likely caused three episodes of offshore sediment erosion which had been previously identified as seismo-stratigraphic sequence boundaries.  相似文献   

13.
Environmental changes of the last 9,300 years were reconstructed by geochemical and pollen analyses of a 14-m-long, laminated sediment core from Lago Aleixo, south-eastern Brazil. Fossil pollen assemblages indicate open savannah vegetation (campo cerrado) and gallery forests until approximately 6,900 cal. BP. During that time, siderite laminae were deposited under anoxic conditions at the lake bottom. Then, increased rainfall and a shorter annual dry period allowed gallery forests and semi-deciduous forests to expand, leading to more closed cerrado vegetation. High-intensity rainfall events during this period are recorded as peaks in K and Ti concentrations. The sediment facies during this period consists of alternating layers of diatoms and minerogenic matter. C/N ratios imply that algae and perhaps soils, too, were the main contributors to sediment organic matter. Biogenic silica and δ13Corg variations indicate increasing primary productivity, which was related to higher nutrient flux from intensified leaching of soils, as shown by rising K/Al ratios. Around 800 cal. BP, a closed, semi-deciduous forest developed under present-day climate conditions. Slope stabilization diminished erosion processes in the catchment and caused reduced input of minerogenic matter into the basin. Human impact is evident in the topmost homogeneous sediments, as removal of the stabilizing forest cover amplified soil erosion. The continuous trend to more humid conditions during the Holocene probably reflects increased influence of the Amazon Basin as a moisture source. We conclude that the Lago Aleixo sediment archive was a sensitive recorder of environmental dynamics in tropical South America, which were mainly controlled by changes in precipitation patterns.  相似文献   

14.
Exposures along the lower Kaministiquia River (near Thunder Bay, Ontario, Canada) provide insight into early Holocene lake level fluctuations and paleoenvironmental conditions in the northwestern Lake Superior basin. These exposures show at least two large paleochannels which were downcut into offshore sediments, and were later filled with >2 m of sand, ~3 m of rhythmically laminated silt and clay, and ~6 m of interbedded silt and sand. Buried by the rhythmically laminated silty clay unit is a well-preserved organic deposit with abundant plant macrofossils from terrestrial and emergent taxa, including several upright tree trunks. Three AMS radiocarbon ages were obtained on wood and conifer cones from this deposit: 8,135 ± 25 (9,130–9,010 cal), 8,010 ± 25 (9,010–8,780 cal), and 7,990 ± 20 (8,990–8,770 cal) BP. This sequence records an early postglacial high-water phase, followed by the Houghton lowstand, and reflooding of the lower Kaministiquia River Valley. The drop in lake level associated with the Houghton phase forced the ancestral Kaministiquia River to downcut. By ~9,100 cal (~8,100) BP, older channels eroded into subaqueous underflow fan deposits in the Thunder Bay area near Fort William Historical Park (FWHP) were abandoned and colonized by a Picea-Abies-Larix forest. Based on stratigraphic data corrected for differential isostatic rebound, the lake was below the Sault Ste. Marie bedrock sill between at least 9,100 cal (8,100) and 8,900 cal (8,000) BP. Shortly after 8,900 cal BP, the lake quickly rose and buried in situ lowland vegetation at FWHP with varved sediments. We argue that this transgression was due to overflow from glacial Lakes Agassiz or Ojibway associated with the retreat of the Laurentide Ice Sheet from the Nakina moraine and/or the Cochrane surge margins in the Hudson Bay Lowlands. A continued rise in lake level after 6,420 ± 20 (7,400 cal) BP at FWHP may record uplift of the North Bay outlet above the Sault Ste. Marie bedrock sill and the onset of the Nipissing transgression in the Lake Superior basin.  相似文献   

15.
净初级生产力(NPP)作为生态系统物质与能量循环的基础,是区域和全球尺度碳循环和碳收支研究的重要组成部分。研究区域和全球尺度的净初级生产力主要依靠模型手段实现,过程和遥感模型是目前广泛使用的两种模型形式。本文搜集并整理了基于过程模型和遥感模型对我国陆地生态系统净初级生产力的模拟结果,分析了中国陆地生态系统净初级生产力的时间变化及对未来气候变化的响应特征,旨在对其进行综合评价。结果表明,中国陆地生态系统NPP平均为(2.828±0.827)PgC.a-1。1982-1998年的年际变化特征上,NPP平均每年增加0.027 PgC,年增长率为1.07%,总体上呈现在波动中逐年上升的趋势。不同植被类型的单位面积NPP总体表现为常绿阔叶林显著高于其他植被类型,但不同研究结果间变化范围很大;落叶针叶林、常绿针叶林和落叶阔叶林相差较小;农作物低于阔叶林,但高于针叶林;草地和荒漠均位于低值区,但前者显著高于后者。不同植被类型的NPP总量总体表现为农作物和草地位居前两位,两者之和高达各植被类型NPP总量之和的58.34%;除灌丛和常绿针叶林外,其余植被类型均不足总量的10%。在未来气候情景下,中国陆地生态系统NPP总体上可能表现为先增加后减小的趋势。  相似文献   

16.
Lake Ohrid is considered to be of Pliocene origin and is the oldest extant lake in Europe. A 1,075-cm-long sediment core was recovered from the southeastern part of the lake, from a water depth of 105 m. The core was investigated using geophysical, granulometric, biogeochemical, diatom, ostracod, and pollen analyses. Tephrochronology and AMS radiocarbon dating of plant macrofossils reveals that the sediment sequence spans the past ca. 39,500 years and features a hiatus between ca. 14,600 and 9,400 cal. year BP. The Pleistocene sequence indicates relatively stable and cold conditions, with steppe vegetation in the catchment, at least partial winter ice-cover of the lake, and oxygenated bottom waters at the coring site. The Holocene sequence indicates that the catchment vegetation had changed to forest dominated by pine and summer-green oak. Several of the proxies suggest the impact of abrupt climate oscillations such as the 8.2 or 4.0 ka event. The observed changes, however, cannot be related clearly to a change in temperature or humidity. Human impact started about 5,000 cal. year BP and increased significantly during the past 2,400 years. Water column mixing conditions, inflow from subaquatic springs, and human impact are the most important parameters influencing internal lake processes, notably affecting the composition and characteristics of the sediments.  相似文献   

17.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   

18.
The Holocene environmental history and climate are reconstructed for Råtåsjøen, a low-alpine lake in south-central Norway. The reconstructions are based on chironomids, diatoms, pollen, plant macrofossils, and sediment characteristics. From plant macrofossil evidence, birch trees (Betula pubescens) immigrated ca. 10,000 cal BP. The chironomid-inferred mean July air temperature was high, but may be unreliable during the early stages of the lakes history due to the high abundance of Chironomus anthracinus type, a taxon that may include several species. From ca. 9000 cal BP the inferred mean July temperature was lower (ca. 9 °C). Temperatures increased towards 8000 cal BP and pine (Pinus sylvestris) reached its upper limit near the lake. July temperature may have become a significant factor controlling long-term pH in the lake, starting shortly after 8000 cal BP. High pH values were associated with periods of warm summers and lower pH values occurred during periods of colder summers. Alkalinity processes within the lake and/or the catchment are possible factors controlling this relationship. A temperature decline at ca. 5400 cal BP separated two 10.6 °C temperature maxima around 6400 and 4500 cal BP. The 1.5 °C decline in July air temperatures from ca. 4400 cal BP was paralleled by a decrease of pH from 7.2 to 6.8. Following the temperature drop, first pine and then birch trees declined and disappeared from the catchment and organic accumulation in the lake increased. The increased organic accumulation rate had a positive effect on diatom production. At ca. 2700 cal BP the temperature reached a minimum (ca. 9.2 °C) and correspondingly a second pH minimum was reached. Temperature decreased again slightly at ca. 400 cal BP during the Little Ice Age, before increasing by about 0.5 °C towards the present. Percentage organic carbon as estimated by loss-on-ignition appears to be better correlated with chironomid-inferred July temperatures than organic accumulation rates, at least for the last 9000 years. Accumulation rates of organic sediments are more coupled with catchment-related processes, such as erosion and major changes in vegetation, than is percentage organic carbon.  相似文献   

19.
This study used organic matter in oligotrophic Lake Constance (southern Germany) to reconstruct lake environment and to disentangle the multiple factors, such as climate change and human impacts, which influence sedimentation in large lakes. A sediment core from Upper Lake Constance, which represents 16,000 years of Late Glacial and Holocene lake history, was analysed for organic biomarkers, hydrogen index and elements calcium, strontium, and magnesium. Magnetic susceptibility was measured to establish a high-resolution stratigraphic framework for the core and to obtain further information about changes with respect to relative allochthonous versus autochthonous sedimentation. Dinosterol—a biomarker for dinoflagellates—and calcium have low concentrations in Younger Dryas sediments and consistently high concentrations between 10,500 and 7,000 cal. years BP. These variations are attributed to changes in lake productivity, but are not reflected in the proportion of total organic carbon within the sediment. During the Younger Dryas and between 6,000 and 2,800 cal. years BP, concentrations and accumulation rates of land-plant-derived C29-steroids (β-sitosterol, stigmastanol and stigmasterol), in combination with a relatively low HI, indicate periods of enhanced terrigenous input to the lake. For the Younger Dryas, higher runoff can be attributed to a cold climate, leading to decreased vegetation cover and increased erosion. After 6,000 cal. years BP, high terrestrial input may be explained by enhanced precipitation. Biomarker and HI results, in combination with archaeological studies, raise the question as to whether lakeshore settlements affected sedimentation in Upper Lake Constance between 6,000 and 2,800 cal. years BP.  相似文献   

20.
Water levels in the Lake Erie basin are inferred from glacial lake times to present. An era of early to middle Holocene lowstands is defined below outlets by a submerged paleo-beach, and truncated reflectors in glaciolacustrine sediment beneath a mud-covered wave-cut terrace. Also, the glacial clay surface above the paleo-shore level has elevated shear strength because of porewater drainage during subaerial exposure. Below the paleo-shore where exposure did not occur, clay strength remained normal. Sedimentation rates were reduced during the lowstands. The distortion of once-level shore zone indicators by differential glacial rebound was removed by computing original elevations of the indicators using an empirical model of rebound based on observations of upwarped former lake shorelines. Erie water-level history was inferred from a plot of the original elevations of lake-level constraints and outlets versus age. The lake history was validated by reference to ~83 water-level indicators, not used as constraints. During the deglaciation, lake-crossing moraines were likely eroded by fluvial drainage into low-level Lake Ypsilanti and a subsequent unnamed low lake to produce the Lorain Valley and Pennsylvania Channel. Once inflow from the upper Great Lakes basins was directed to Ottawa Valley about 10,400 (12,270 cal BP), Erie water levels descended in a dry, evaporative climate to a closed lowstand during which ostracode δ18O increased ~2‰ above present values. Lake level began to rise 6,000 to 7,000 (6,830 to 7,860 cal) BP in response to increased atmospheric moisture and later, to northern inflow as the Nipissing Transgression returned upper Great Lakes drainage to Lake Erie by about 5,200 (6,000 cal) BP. At that time, the lake overflowed the uplifted Lyell–Johnson Sill north (downstream) of the present Niagara Falls at higher-than-present levels. After recession of the Falls breached this sill about ~3,500 (~3,770 cal) BP, Lake Erie fell 3–4 m to its present Fort Erie–Buffalo Sill. The extended low-water phase with its isolated sub-basins could have restricted migration of aquatic fauna. The early to middle Holocene closed-basin response highlights the sensitivity of Lake Erie to climatic reductions in its water budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号