首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seth Rose 《水文研究》2009,23(8):1105-1118
An extensive dataset (230 precipitation gauges and 79 stream gauges) was used to analyse rainfall–runoff relationships in 10 subregions of a 482000 km2 area in the south‐eastern USA (Maryland, Virginia, North Carolina, South Carolina and Georgia). The average annual rainfall and runoff for this study area between 1938 and 2005 were 1201 and 439 mm, respectively. Average runoff/rainfall ratios during this period varied between 0·24 in the southernmost Coastal Plain subregion to 0·64 in the Blue Ridge Province. Watershed elevation and relief are the principal determinants governing the conversion of rainfall to runoff. Temporal rainfall variation throughout the south‐eastern USA ranges from ~40% above and below normal while the variation for runoff is higher, from ? 75% to + 100%. In any given year there can exist a ± 25–50% error in predicted runoff deviation using the annual rainfall–runoff regression. Fast Fourier Transform and autoregressive spectral analysis revealed dominant cyclicities for rainfall and runoff between 14 and 17 years. Secondary periodicities were typically between 6–7 and 10–12 years. The inferred cyclicity may be related to ENSO and/or Central North Pacific atmospheric phenomena. Mann–Kendall analyses indicate that there were no consistent statistically significant temporal trends with respect to south‐eastern US rainfall and runoff during the study period. The results of U‐tests similarly indicated that rainfall between 1996 and 2005 was not statistically higher or lower than during earlier in the study period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Increasing groundwater salinity and depletion of the aquifers are major concerns in the UAE. Isotopes of oxygen, hydrogen, and carbon concentrations in groundwater were used to estimate evaporation loss using the isotopes of oxygen and hydrogen, and using a carbon isotope to trace inorganic carbon cycling in two main aquifers in the eastern part of the United Arab Emirates. The δD‐δ18O of groundwater samples plotted on a line given by: δD = 4 δ18O + 4 ·4 (r2 = 0·4). In comparison, the local meteoric water line (LMWL) has been defined by the line: δD = 8 δ18O + 15. In order to better understand the system investigated, samples were separated into two groups based on the δD‐δ18O relationship. These are (1) samples that plot above the LMWL (δD = 6·1 δ18O + 12·4, r2 = 0·8) and which are located predominantly in the north of the study area, and (2) samples that plot below the LMWL (δD = 5·6 δ18O + 6·2, r2 = 0·8) and which are mostly distributed in the south. Slopes for both the groups are similar and lower than that for LMWL indicating potential evaporation of recharging water. However, the y‐intercept, which differs between the two groups, suggests evaporation of return flow and evapotranspiration in the unsaturated zone to be more significant in the south. This is attributed to intense agricultural activities in the region. Samples from the eastern Gravel Plain aquifer have δ13C and dissolved inorganic carbon (DIC) values in the range from ? 10 to 17‰, and 12–100 mg C/l, respectively, while the range for those from the Ophiolite aquifer is from ? 11 to ? 16.4‰, and 16–114 mg C/l respectively. This suggests the control of C‐3 and C‐4 plants on DIC formation, an observation supported by the range δ13C of soil organic matter (from ? 18·5 to ? 22·1‰.) Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Estimation of aquifer hydraulic properties is essential for predicting the response of an aquifer to extractions and hence estimating the availability of the groundwater resources. Aquifer tests are commonly used for the estimation of aquifer properties; however, they can be expensive and often only characterize the short‐term response of the aquifer. This paper presents a time series modelling approach to estimating aquifer hydraulic properties. It is applied to 42 bores monitoring an unconfined aquifer within an irrigation region of south‐eastern Australia, and the resulting probabilistic estimate of hydraulic properties are evaluated against pumping test estimates. It is demonstrated that the time series modelling can provide a reliable estimate of the hydraulic properties that are typical of a very long‐term pumping test. Furthermore, the application of the time series modelling to 42 bores provided novel insights into the aquifer heterogeneity. We encourage others to further test the approach and the source code is available from: http://www.mathworks.com/matlabcentral/fileexchange/48546‐peterson‐tim‐j‐groundwater‐statistics‐toolbox Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

A resistivity survey in Wenner arrangement has been conducted in the water-table aquifer in the eastern part of the Coastal Area of Belgium. Bore holes have been drilled to test the geoelectrical data and also to collect water samples. The chemical characteristics and the distribution of different water types explain the hydrochemistry of the water-table aquifer. The fresh-/brackish-water boundary as determined by the resistivity survey has been expressed in terms of total dissolved-solids content.  相似文献   

6.
The volume of groundwater stored in the subsurface in the United States decreased by almost 1000 km3 during 1900–2008. The aquifer systems with the three largest volumes of storage depletion include the High Plains aquifer, the Mississippi Embayment section of the Gulf Coastal Plain aquifer system, and the Central Valley of California. Depletion rates accelerated during 1945–1960, averaging 13.6 km3/year during the last half of the century, and after 2000 increased again to about 24 km3/year. Depletion intensity is a new parameter, introduced here, to provide a more consistent basis for comparing storage depletion problems among various aquifers by factoring in time and areal extent of the aquifer. During 2001–2008, the Central Valley of California had the largest depletion intensity. Groundwater depletion in the United States can explain 1.4% of observed sea‐level rise during the 108‐year study period and 2.1% during 2001–2008. Groundwater depletion must be confronted on local and regional scales to help reduce demand (primarily in irrigated agriculture) and/or increase supply.  相似文献   

7.
The Sole Source Aquifer Program has helped prevent contamination of many community drinking water supplies. If an aquifer supplies the sole or principal source of a community's drinking water, a local ground water user may petition the Environmental Protection Agency (EPA) under the Safe Drinking Water Act for its designation and protection as a "sole source aquifer." Since 1974, residents and officials of 65 communities and multi-community areas have petitioned and received assistance from the EPA to prevent contamination of their local ground water source of drinking water. This designation means that EPA may review federal financially assisted projects to determine if they would contaminate the aquifer and cause a public health hazard. If they could cause contamination, EPA can request that the project be modified or stopped. The significance of this program in terms of population served and funds affected has been substantial, indicating the Sole Source Aquifer Program has been an important local tool for protecting ground water used as a source of drinking water. Information is given on three different examples of sole source aquifer designations protected under this program: the New Jersey Coastal Plain Aquifer System, the Great Miami River Buried Valley Aquifer System (Ohio), and the Eastern Snake River Plain Aquifer (Idaho), serving populations of 543,000, 921,000, and 275,000, respectively. In all three examples, preventing ground water contamination through the Sole Source Aquifer Program has protected the community drinking water supply.  相似文献   

8.
The Chesapeake terrane of the U.S. mid-Atlantic Coastal Plain basement is bounded on the northwest by the Salisbury positive gravity and magnetic anomaly and extends to the southeast as far as the Atlantic coast. It underlies the Coastal Plain of Virginia, Maryland, Delaware and southern New Jersey. Rubidium/ Strontium dating of the Chesapeake terrane basement yields an age of 1.025±0.036 Ga. This age is typical of Grenville province rocks of the Middle to Late Proterozoic Laurentian continent. The basement lithologies are similar to some exposed Grenville-age rocks of the Appalachians. The TiO2 and Zr/P2O5 composition of the metagabbro from the Chesapeake terrane basement is overlapped by those of the Proterozoic mafic dikes in the New Jersey Highlands. These new findings support the interpretation that Laurentian basement extends southeast as far as the continental shelf in the U.S. mid-Atlantic region. The subcrop of Laurentian crust under the mid-Atlantic Coastal Plain implies unroofing by erosion of the younger Carolina (Avalon) supracrustal terrane. Dextral-transpression fault duplexes may have caused excessive uplift in the Salisbury Embayment area during the Alleghanian orogeny. This extra uplift in the Salisbury area may have caused the subsequent greater subsidence of the Coastal Plain basement in the embayment. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

9.
SUMMARY

The Coastal Plain aquifer of Israel, of Plio-Pleistocene Age, stretches from Binyamina in the North to the Gaza Strip in the South-a distance of about 112 km and has an average width of about 15 Km. The allowed withdrawal is estimated at about 200 MCM/year.

As a result of an average yearly withdrawal of 426 MCM/year during the last 10 years the water levels dropped to a dangerously low position (-2)-(-4) m below sea level at distances of 3–5 Km from the coast, causing sea water intrusion which, in Tel Aviv and Emek Hefer, endangered water supply wells.

As a counter-measure, artificial groundwater recharge through wells was practiced in Emek Hefer since 1959. Recharge was practiced in 7 wells at a rate of 6 MCM/year, the water coming from adjacent Cretaceous limestone aquifers.

In Tel Aviv a fresh water barrier was established in 1964 by injecting Lake Kinereth water into 17 wells during winter at a rate of 6 MCM/winter. In the rest of the Coastal Plain water was injected to the aquifer through about 40–45 wells at a total yearly rate of about 10–12 MCM.

Recharge by spreading is practiced in Yavneh at a rate of about 10–13 MCM per winter, also recharge by spreading is practiced with flood water of Nahal Shikma at a rate of up to 8 MCM/winter.  相似文献   

10.
Radon-222 Concentration and Aquifer Lithology in North Carolina   总被引:1,自引:0,他引:1  
The presence of the radioactive gas radon (Rn-222) in many ground water supplies is a potentially significant source of public exposure to ionizing radiation. A wide range of radon concentrations has been measured in ground water in North Carolina, including some far in excess of national average concentrations. North Carolina is, however, geologically complex and ground water radon concentrations vary considerably among the state's aquifers. The highest average radon concentrations occur in areas underlain by granites (geometric mean 5910 pCi/l), and the lowest occur in the Atlantic Coastal Plain region (48 pCi/l). Average radon levels intermediate between these extremes are characteristic of the large areas of North Carolina underlain by gneisses, schists and metavolcanic rocks. Relative average radon concentrations in ground water from the rock types surveyed are consistent with relative abundances of uranium, the parent element of radon, in these rocks. Although other geologic and hydrologic factors also have an effect, aquifer lithology is a useful predictor of the concentration of radon in ground water. The occurrence of high radon concentrations in certain aquifer types; such as granites, shows that geologic factors should be considered in estimates of population exposure to radon, and that knowledge of aquifer geology can help to predict ground water radon concentrations in areas where field sampling has not been done.  相似文献   

11.
台湾地区地壳形变的弹性块体位错模型   总被引:3,自引:1,他引:2       下载免费PDF全文
在经典的非震形变位错模型中,地壳形变被认为是活动块体刚性运动和上部断层锁定影响的叠加,本文对此模型进行了改进: (1) 用活动块体整体运动和内部线性应变、旋转的贡献代替活动块体刚性运动的贡献;(2) 用分层介质地壳模型代替半无限介质模型计算断层锁定的影响. 利用改进后的非震形变位错模型,拟合了台湾地区1990~1995年间GPS观测资料. 结果显示,在东部海岸山脉区,约有30 mm·a-1的汇聚率被奇美断层消耗掉,运动速度从奇美断层向北迅速衰减. 在西部平原地区,南部断层是岛内锁定最为强烈的断层,该地区相应的也是史上灾害性地震多发的地区. 根据反演结果计算出的应变率与旋转率分布与前人结果在大部分地区一致,主应变率场显示台湾大部分地区存在近NW-SE方向的主压应变,主压应变方向呈扇形分布. 旋转率场显示台湾东部和南部地区存在着逆时针旋转率,而西部和北部地区则为顺时针旋转率.  相似文献   

12.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

13.
The salinization process of the Israeli Coastal aquifer has led to an average concentration of about 200 mgCl/l with a significant number of discrete salinity plumes in the middle and southern regions. The salinity of these plumes is high (500–1000 mgCl/l) and is increasing rapidly. Geochemical evidence has suggested that the salinity source in the Be'er Tuvia plume (in the south part of the aquifer) is at the bottom of the aquifer. This paper describes a solution of the source inverse problem and its application in the Be'er Tuvia plume. A transient two-dimensional finite element model was solved and the source terms were computed at each node in a 14×14 km2 area. An error analysis has shown that when no errors are introduced in the input data the reconstruction is perfect. The results of a sensitivity analysis are presented and the actual reconstruction errors are estimated. Applying the model in the Be'er Tuvia region indicates that a salinity source exists about 1 km to the west and 1.5 km to the north of the center of the salinity plume. This source is believed to be the plume source.  相似文献   

14.
A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129–218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as “Avalonia”, which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne Falls and Chester domes and Chain Lakes-Pelham dome-Bronson Hill structural trends, and the synformal Connecticut Valley-Gaspe structural trend can be traced southwest into the New Jersey Coastal Plain basement. A Mesozoic rift basin, the “Sandy Hook basin”, and associated eastern boundary fault is identified, based upon gravity modeling, in the vicinity of Sandy Hook, New Jersey. The thickness of the rift-basin sedimentary rocks contained within the “Sandy Hook basin” is approximately 4.7 km, with the basin extending offshore to the east of the New Jersey coast. Gravity modeling indicates a deep rift basin and the magnetic data indicates a shallow magnetic basement caused by magnetic diabase sills and/or basalt flows contained within the rift-basin sedimentary rocks. The igneous sills and/or flows may be the eastward continuation of the Watchung and Palisades bodies.  相似文献   

15.
A. Issar 《Journal of Hydrology》1983,60(1-4):175-183
The chemical and isotopical (18O-deuterium) composition of the thermomineral water emerging around Lake Kinneret is shown to be similar to that of the saline water found in deep oil-exploration wells in the Coastal Plain of Israel, and different from the water found near the Dead Sea.

It is suggested that an ancient brine which is filling the deep non-flushed aquifers is driven from the south towards the Rift Valley by a piston action and is mixed with paleo and contemporaneous meteoric water before emerging as thermomineral springs.  相似文献   


16.
A field study of surface water and groundwater interactions during baseflow and stormflow conditions was performed at the Reedy Creek watershed in the Virginia Coastal Plain. Three estimates of the average saturated hydraulic conductivity (Ks) of the unconfined aquifer were in reasonable agreement (ranging from 0.0033 to 0.010 cm/s), indicating that baseflow in the creek is entirely from the drainage of shallow groundwater from the relatively thin (1–6 m thick) unconfined aquifer. This relatively permeable surficial aquifer was found to be underlain by dark, olive grey, clay-silt and diatomaceous Miocene deposits of low permeability known as the Calvert Formation, which is believed to function as a confining bed in the area. A chemical hydrograph separation technique was used to resolve the contributions of [old] (pre-event) and [new] (event) water to stormflow. Results from a major rainstorm indicated that old water dominated the stormflow response of the watershed, although the new water contribution approached 40% at the hydrograph peak. Stormflow at Reedy Creek appears to result from saturation overland flow from variable source areas which include the stream channels and a significant part of the riparian wetland area. This response appears to be attributable to the transient dynamics of the shallow groundwater flow system and to the formation of localized groundwater mounds which raise the water-table to the wetland surface.  相似文献   

17.
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO‐DTS) observations and the phase shift of the diurnal temperature signal between two vertically co‐located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO‐DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO‐DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high‐spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates.  相似文献   

18.
The relative contributions to total actual evapotranspiration (AET) from pond and riparian areas in a pond‐wetland complex in the Western Boreal Plain (WBP) of northern Alberta are measured using the Bowen ratio energy balance technique. Measurements show that a pond typical of the WBP evaporates at a rate more than twice that of the adjacent riparian peatland. Relating the actual to potential evapotranspiration over both surfaces yields Priestley–Taylor α coefficients of 0·69 and 1·11 for the peatland and pond respectively. Further results demonstrate that the sheltering and turbulent influences of the adjacent forested areas must be considered in the processes governing the permanence of WBP ponds. That is, forestry practices may inadvertently enhance the evaporative losses from the ponds, over and above the controls exerted by the regional climate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The time domain electromagnetic method (TDEM) is applied to monitor, to delineate and to map the saltwater intrusion zones in the Mediterranean Plio‐Quaternary aquifer. Forty‐two TDEM soundings were carried out in the coastal plain of Nabeul–Hammamet region (NE Tunisia). TDEM resistivity data were correlated with the existing borehole logging data to assign them to a particular lithology and to provide information about the position of the freshwater–seawater transition zone. The geoelectric sections showing the vertical configuration of seawater intrusion, with the brackish‐salty‐saturated zones, have a resistivity ranging from ~0.1 to 5 Ω?m and are detected at a depth lower than 1.5 m. The salinized zones are located at Nabeul (Sidi Moussa, Sidi El Mahrsi, Al Gasba and Mrazgua) and at Hammamet (Touristic zone of Hammamet north and south, Baraket Essahel) and reached a distance of 4 km from the coastline, indicating a severe state for the aquifer in these zones. These TDEM results are confirmed by the increase of chloride concentration content in the analysed water samples of monitoring wells. Moreover, in the northeastern part, the presence of a saltwater front located far from the coast and along the NW–SE major surface fault can be explained by two hypothesis: (i) this fault seems to provide a conduit for seawater to move readily towards the water wells and (ii) the clay and gypsum infiltration of marine Messinian deposits through the fault plane leads to low resistivities. Finally, it comes out from this study that TDEM survey has successfully depicted salinized zones of this coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The potential discharge of groundwater contaminated by oil sands process‐affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For “pond‐site” samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, “non‐pond” samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond‐site and non‐pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na‐Cl ratio, were noted between a small subset of samples from two pond‐site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator‐based screening suggests that OSPW‐affected groundwater may be reaching Athabasca River sediments at a few locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号