首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Pounding between adjacent superstructures has been a major cause of highway bridge damage in the past several earthquakes. This paper presents an experimental and analytical study on pounding reduction of highway bridges subjected to earthquake ground motions by using magnetorheological (MR) dampers. An analytical model, which incorporates structural pounding and MR dampers, is developed. A series of shaking table tests on a 1:20 scaled base‐isolated bridge model are performed to investigate the effects of pounding between adjacent superstructures on the dynamics of the structures. Based on the test results, the parameters of the linear and the nonlinear viscoelastic impact models are identified. Performance of the semiactive system for reducing structural pounding is also investigated experimentally, in which the MR dampers are used in conjunction with the proposed control strategy, to verify the effectiveness of the MR dampers. Structural responses are also simulated by using the established analytical model and compared with the shaking table test results. The results show that pounding between adjacent superstructures of the highway bridge significantly increases the structural acceleration responses. For the base‐isolated bridge model considered here, the semiactive control system with MR dampers effectively precludes pounding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A methodology for probabilistic hazard assessment of permanent displacement across faults caused by earthquake rupture is presented, compatible with region specific models for ground shaking hazard in California, developed earlier by the authors and coworkers. Assessment of permanent dislocations across faults is important for the design and retrofit of highway bridges and tunnels crossing faults, as well as for other lifelines crossing faults, such as aqueducts, water and gas lines, etc. The methodology is illustrated for two strike-slip faults (prototypes of Class A and Class B faults in California), for 50 years exposure. The illustrations show that, for given seismic moment rate, the hazard estimates are quite sensitive to how the seismic moment is distributed over earthquake magnitudes. They also show that the hazard is small even for very small levels of displacement, in contrast to ground shaking hazard, which is due to the fact that only one fault contributes to the hazard and not every event on that fault necessarily affects the site.  相似文献   

4.
This paper evaluates the seismic vulnerability of different classes of typical bridges in California when subjected to seismic shaking or liquefaction-induced lateral spreading. The detailed structural configurations in terms of superstructure type, connection, continuity at support and foundation type, etc. render different damage resistant capability. Six classes of bridges are established based on their anticipated failure mechanisms under earthquake shaking. The numerical models that are capable of simulating the complex soil-structure interaction effects, nonlinear behavior of columns and connections are developed for each bridge class. The dynamic responses are obtained using nonlinear time history analyses for a suite of 250 earthquake motions with increasing intensity. An equivalent static analysis procedure is also implemented to evaluate the vulnerability of the bridges when subjected to liquefaction-induced lateral spreading. Fragility functions for each bridge class are derived and compared for both seismic shaking (based on nonlinear dynamic analyses) and lateral spreading (based on equivalent static analyses) for different performance states. The study finds that the fragility functions due to either ground shaking or lateral spreading show significant correlation with the structural characterizations, but differences emerge for ground shaking and lateral spreading conditions. Structural properties that will mostly affect the bridges' damage resistant capacity are also identified.  相似文献   

5.
The Federal Highway Administration (FHWA) sponsored a large, multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled “Seismic Vulnerability of New Highway Construction” (MCEER Project 112), which was completed in 1998. MCEER coordinated the work of many researchers, who performed studies on the seismic design and vulnerability analysis of highway bridges, tunnels, and retaining structures. Extensive research was conducted to provide revisions and improvements to current design and detailing approaches and national design specifications for highway bridges. The program included both analytical and experimental studies, and addressed seismic hazard exposure and ground motion input for the U.S. highway system; foundation design and soil behavior; structural importance, analysis, and response; structural design issues and details; and structural design criteria. Supported by: the Federal Highway Administration under contract number DTFH61-92-C-00112.  相似文献   

6.
Fragility curves are generally developed using a single parameter to relate the level of shaking to the expected structural damage. The main goal of this work is to use several parameters to characterize the earthquake ground motion. The fragility curves will, therefore, become surfaces when the ground motion is represented by two parameters. To this end, the roles of various strong‐motion parameters on the induced damage in the structure are compared through nonlinear time‐history numerical calculations. A robust structural model that can be used to perform numerous nonlinear dynamic calculations, with an acceptable cost, is adopted. The developed model is based on the use of structural elements with concentrated nonlinear damage mechanics and plasticity‐type behavior. The relations between numerous ground‐motion parameters, characterizing different aspects of the shaking, and the computed damage are analyzed and discussed. Natural and synthetic accelerograms were chosen/computed based on a consideration of the magnitude‐distance ranges of design earthquakes. A complete methodology for building fragility surfaces based on the damage calculation through nonlinear numerical analysis of multi‐degree‐of‐freedom systems is proposed. The fragility surfaces are built to represent the probability that a given damage level is reached (or exceeded) for any given level of ground motion characterized by the two chosen parameters. The results show that an increase from one to two ground‐motion parameters leads to a significant reduction in the scatter in the fragility analysis and allows the uncertainties related to the effect of the second ground‐motion parameter to be accounted for within risk assessments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Deteriorating highway bridges in the United States and worldwide have demonstrated susceptibility to damage in earthquake events, with considerable economic consequences due to repair or replacement. Current seismic loss assessment approaches for these critical elements of the transportation network neglect the effects of aging and degradation on the loss estimate. However, the continued aging and deterioration of bridge infrastructure could not only increase susceptibility to seismic damage, but also have a significant impact on these economic losses. Furthermore, the contribution of individual aging components to system‐level losses, correlations between these components, and uncertainty modeling in the risk assessment and repair modeling are all crucial considerations to enhance the accuracy and confidence in bridge loss estimates. In this paper, a new methodology for seismic loss assessment of aging bridges is introduced based on the non‐homogeneous Poisson process. Statistical moments of seismic losses can be efficiently estimated, such as the expected value and variance. The approach is unique in its account for time‐varying seismic vulnerability, uncertainty in component repair, and the contribution of multiple correlated aging components. A representative case study is presented with two fundamentally distinct highway bridges to demonstrate the effects of corrosion deterioration of different bridge components on the seismic losses. Using the proposed model, a sensitivity study is also conducted to assess the effect of parameter variations on the expected seismic losses. The results reveal that the seismic losses estimated by explicitly considering the effects of deterioration of bridge components is significantly higher than that found by assuming time‐invariant structural reliability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Seismic isolation or “aseismic base isolation” is an earthquake protection strategy that aims to uncouple the motion of a structure from the ground shaking and thereby reduce structural forces. A most effective and successful seismic protection technology, seismic isolation, is by now a mature and viable alternative to traditional capacity design and has been implemented in numerous bridges, buildings, and other special structures worldwide. This paper records the origins and early developments (up to the early 1990s) of seismic isolation.  相似文献   

9.
This study examines the effect of the angle of seismic incidence θ on the fragility curves of bridges. Although currently, fragility curves of bridges are usually expressed only as a function of intensity measure of ground motion (IM) such as peak ground acceleration, peak ground velocity, or Sa(ω1), in this study they are expressed as a function of IM with θ as a parameter. Lognormal distribution function is used for this purpose with fragility parameters, median cm and standard deviation ζ to be estimated for each value of θ chosen from 0 < θ < 360°. A nonlinear 3D finite element dynamic analysis is performed, and key response values are calculated as demand on the bridge under a set of acceleration time histories with different IM values representing the seismic hazard in Los Angeles area. This method is applied to typical straight reinforced concrete bridges located in California. The results are validated with existing empirical damage data from the 1994 Northridge earthquake. Even though the sample bridges are regular and symmetric with respect to the longitudinal axis, the results indicate that the weakest direction is neither longitudinal nor transverse. Therefore, if the angle of seismic incidence is not considered, the damageability of a bridge can be underestimated depending on the incidence angle of seismic wave. Because a regional highway transportation network is composed of hundreds or even thousands of bridges, its vulnerability can also be underestimated. Hence, it is prudent to use fragility curves taking the incident angle of seismic waves into consideration as developed here when the seismic performance of a highway network is to be analyzed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
形状记忆合金橡胶对高架桥梁碰撞减震效果的试验研究   总被引:2,自引:0,他引:2  
地震作用下,高架桥梁相邻主梁间的碰撞会引起结构位移和加速度响应增大、应力提高,导致混凝土开裂、脱落和伸缩缝被挤压破坏,甚至引发桥梁落梁和倒塌等,因此采取减轻或者避免桥梁结构在地震作用下碰撞的措施显得尤为必要。设计制备了具有变形自恢复能力的形状记忆合金橡胶碰撞缓冲器,通过桥梁地震碰撞的振动台试验,研究了形状记忆合金橡胶缓冲器对桥梁碰撞的控制效果,提出了碰撞缓冲器吸能效率和结构自身耗能控制率指标。研究表明,形状记忆合金橡胶碰撞缓冲器具有稳定的吸能效率,能够大幅度降低桥梁结构碰撞加速度和碰撞力,这对于提高城市交通网络的地震安全性能具有重要意义。  相似文献   

11.
While many cases of structural damage in past earthquakes have been attributed to strong vertical ground shaking, our understanding of vertical seismic load effects and their influence on collapse mechanisms of buildings is limited. This study quantifies ground motion parameters that are capable of predicting trends in building collapse because of vertical shaking, identifies the types of buildings that are most likely affected by strong vertical ground motions, and investigates the relationship between element level responses and structural collapse under multi‐directional shaking. To do so, two sets of incremental dynamic analyses (IDA) are run on five nonlinear building models of varying height, geometry, and design era. The first IDA is run using the horizontal component alone; the second IDA applies the vertical and horizontal motions simultaneously. When ground motion parameters are considered independently, acceleration‐based measures of the vertical shaking best predict trends in building collapse associated with vertical shaking. When multiple parameters are considered, Housner intensity (SI), computed as a ratio between vertical and horizontal components of a record (SIV/SIH), predicts the significance of vertical shaking for collapse. The building with extensive structural cantilevered members is the most influenced by vertical ground shaking, but all frame structures (with either flexural and shear critical columns) are impacted. In addition, the load effect from vertical ground motions is found to be significantly larger than the nominal value used in US building design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
规则桥梁抗震性能水准的定义及其量化描述   总被引:1,自引:0,他引:1  
基于性能的结构抗震设计是各国结构抗震设计规范未来的主要发展方向,虽然其理论框架已基本形成,然而其中至关重要的结构抗震性能水准的定义及其量化描述问题,目前仍处于研究探讨阶段.本文从公路梁式桥震害现象出发,采用极限状态设计概念,对规则桥梁在地震作用下的性能水准予以明确的定义;并以墩顶漂移率作为设计参数,通过对大量试验数据的...  相似文献   

13.
汶川大地震公路桥梁震害初步调查   总被引:17,自引:4,他引:13  
2008年5月12日我国四川省汶川县发生8级大地震,造成大量公路桥梁破坏。本文详细介绍了百花大桥、小鱼洞大桥、庙子坪大桥、龙尾大桥等9座典型公路桥梁的震害情况及原因。这个地区的桥梁主要为桥面连续简支梁桥,支座多为直接搁置的板式橡胶支座,地震中稳定性较差,主梁与桥墩连接较为薄弱,更多地发生横、纵向移位,乃至最终落梁。这种薄弱连接一定程度上降低了桥墩的地震荷载,总体上看桥墩震害较轻,但从破坏的桥墩、拱肋、盖梁来看,直接剪切或形成弯曲塑性铰后的剪切破坏较为多见。提出了公路桥梁抗震设计若干建议,涉及桥台抗震稳定性及强度校核、曲线梁桥和高墩桥梁设计、支座及防落梁措施设计、桥墩及构件延性设计、场地液化等多个方面。强调了抗震构造措施能够维持公路桥梁大震后应急通行功能的"最强设计原则"。  相似文献   

14.
Fragility curves express the probability of structural damage due to earthquakes as a function of ground motion indices, e.g., PGA, PGV. Based on the actual damage data of highway bridges from the 1995 Hyogoken‐Nanbu (Kobe) earthquake, a set of empirical fragility curves was constructed. However, the type of structure, structural performance (static and dynamic) and variation of input ground motion were not considered to construct the empirical fragility curves. In this study, an analytical approach was adopted to construct fragility curves for highway bridge piers of specific bridges. A typical bridge structure was considered and its piers were designed according to the seismic design codes in Japan. Using the strong motion records from Japan and the United States, non‐linear dynamic response analyses were performed, and the damage indices for the bridge piers were obtained. Using the damage indices and ground motion indices, fragility curves for the bridge piers were constructed assuming a lognormal distribution. The analytical fragility curves were compared with the empirical ones. The proposed approach may be used in constructing the fragility curves for highway bridge structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Rocking column-foundation system is a new design concept for bridges that can reduce overall seismic damage, minimize construction and repair time, and achieve lower cost in general. However, such system involves complex dynamic responses due to impacts and highly nonlinear rocking behavior. This study presents a dimensionless regression analysis to estimate the rocking and shaking responses of the flexible column-foundation system under near-fault ground motions. First, the transient drift and rocking responses of the system are solved numerically using previously established analytical models. Subsequently, the peak column drifts and uplift angles are derived as functions of ground motion characteristics and the geometric and dynamic parameters of column-foundation system in regressed dimensionless forms. The proposed response models are further examined by validating against the numerical simulations for several as-built bridge cases. It is shown that the proposed model not only physically quantifies the influences of prominent parameters, but also consistently reflects the complex dynamics of the system. The seismic demands of rocking column-foundation system can be realistically predicted directly from structural and ground motion characteristics. This can significantly benefit the design of bridges incorporating this new design concept.  相似文献   

16.
王德俊 《华南地震》2019,39(3):89-94
快速评估不规则公路桥梁的地震动参数为桥梁地震响应分析、桥梁安全性设计提供科学依据。研究一种快速、有效的不规则公路桥梁地震动参数评估技术,以C形不规则公路桥梁为原型设计振动台与公路桥梁模型,选取Imperial Valley波作为地震动输入,采用加速度传感器、位移传感器采集桥梁加速度与位移数据;结合已知地震动数据计算地震动持续时长参数,优化衰减模型获取精确的地表峰值加速度参数。分析地表峰值加速度与其他地震动参数关系可知,地表峰值加速度与损坏概率成正比,桥梁结构发生损坏的概率在50%以下;震级越大、震中距越小、地表峰值加速度越大。  相似文献   

17.
Fragility curves are found to be useful tools for predicting the extent of probable damage. They show the probability of highway structure damage as a function of strong motion parameters, and they allow the estimation of a level of damage probability for a known ground motion index. In this study, an analytical approach was adopted to develop the fragility curves for highway bridges based on numerical simulation. Four typical RC bridge piers and two RC bridge structures were considered, of which one was a non‐isolated system and the other was an isolated system, and they were designed according to the seismic design code in Japan. From a total of 250 strong motion records, selected from Japan, the United States, and Taiwan, non‐linear time history analyses were performed, and the damage indices for the bridge structures were obtained. Using the damage indices and ground motion parameters, fragility curves for the four bridge piers and the two bridge structures were constructed assuming a lognormal distribution. It was found that there was a significant effect on the fragility curves due to the variation of structural parameters. The relationship between the fragility curve parameters and the over‐strength ratio of the structures was also obtained by performing a linear regression analysis. It was observed that the fragility curve parameters showed a strong correlation with the over‐strength ratio of the structures. Based on the observed correlation between the fragility curve parameters and the over‐strength ratio of the structures, a simplified method was developed to construct the fragility curves for highway bridges using 30 non‐isolated bridge models. The simplified method may be a very useful tool to construct the fragility curves for non‐isolated highway bridges in Japan, which fall within the same group and have similar characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Measurements of ground motions during past earthquakes indicate that the vertical acceleration can reach values comparable to horizontal accelerations or may even exceed these accelerations. Furthermore, measurements of structural response show the possibility of significant amplification in the response of bridges in the vertical direction that can be attributed to the vertical component of ground motion. In this study, the relative importance of the vertical component of ground motion on the inelastic response of R/C highway bridges is investigated. Particular emphasis is placed on modelling of the deck and piers to account for complex loading histories under combined vertical and horizontal earthquake motions. Analyses of actual bridges indicate that, in general, the vertical motion will increase the level of response and the amount of damage sustained by a highway bridge. Vertical motion generates fluctuating axial forces in the columns, which cause unstability of the hysteresis loops and increase the ductility demand. Furthermore, vertical motion can generate forces of high magnitude in the abutments and foundations that are not accounted for by the current seismic design guidelines. Thus, it is important to consider this component of the ground motion in the design of highway bridges, especially for those located in regions near seismic faults.  相似文献   

19.
国内外延性抗震设计的比较   总被引:7,自引:0,他引:7  
1971年美国发生圣.费尔南多地震,许多新建的桥梁结构遭到严重破坏之后,延性抗震得到重视,抗震设计方法正在从传统的单一强度理论向延性抗震理论过渡。目前,大多数国家的桥梁抗震设计规范已经采纳了延性抗震理论。本文针对几个主要的抗震设计规范,包括EC8、Caltrans、AASHTO、日本和我国公路桥梁抗震设计规范中的延性抗震设计做一个概述。主要内容有延性指标的定义及其计算方法和延性构件钢筋锚固和搭接长度的规定,本文对我国公路桥梁的延性抗震设计有一定的参考价值。  相似文献   

20.
谭承业 《地震研究》1995,18(3):294-300
本文以1994年1月17日美国加州北岭地震对各类结构选成的破坏,分析了公路桥梁、建筑物,工业设施,水坝以及基底隔震结构等的不同抗震设计和加固措施的有效性及存在的问题,为今后改进抗震设防和加固措施提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号