首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater that bypasses the riparian zone by travelling along deep flow paths may deliver high concentrations of fertilizer‐derived NO3? to streams, or it may be impacted by the NO3? removal process of denitrification in streambed sediments. In a study of a small agricultural catchment on the Atlantic coastal plain of Virginia's eastern shore, we used seepage meters deployed in the streambed to measure specific discharge of groundwater and its solute concentrations for various locations and dates. We used values of Cl? concentration to discriminate between bypass water recharged distal to the stream and that contained high NO3? but low Cl? concentrations and riparian‐influenced water recharged proximal to the stream that contained low NO3? and high Cl? concentrations. The travel time required for bypass water to transit the 30‐cm‐thick, microbially active denitrifying zone in the streambed determined the extent of NO3? removal, and hydraulic conductivity determined travel time through the streambed sediments. At all travel times greater than 2 days, NO3? removal was virtually complete. Comparison of the timescales for reaction and transport through the streambed sediments in this system confirmed that the predominant control on nitrate flux was travel time rather than denitrification rate coefficients. We conclude that extensive denitrification can occur in groundwater that bypasses the riparian zone, but a residence time in biologically active streambed sediments sufficient to remove a large fraction of the NO3? is only achieved in relatively low‐conductivity porous media. Instead of viewing them as separate, the streambed and riparian zone should be considered an integrated NO3? removal unit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In many agricultural areas, hedgerows give rise to strong expectations of reducing the inputs of excess nitrate to the groundwater and rivers. This study aims to analyse the spatial and seasonal influences of a hedgerow on nitrate dynamics in the soil and groundwater. Nitrate (NO3?) and chloride (Cl?) concentrations were measured with spatially dense sampling in the unsaturated soil and in the groundwater along a transect intersecting a bottomland oak (Quercus rubor) hedgerow after the growing season and during the dormant season. We explain NO3? dynamics by using Cl? as an index of tree‐root extension and water transfer. At the end of the growing season, NO3? is entirely absorbed by the trees over a large and deep volume corresponding to the rooting zone, where, in contrast Cl? is highly concentrated due to root exclusion. However, these observed patterns in the soil have no influence on the deep groundwater composition at this season. During the dormant season, water transfer processes feeding the shallow groundwater layer are different upslope and downslope from the hedgerow in relation to the thickness of the unsaturated zone. Upslope, the shallow groundwater is fed by rainwater infiltration through the soil which favours Cl? dilution. Right under the hedge and downslope, the rapid ascent of the groundwater near the ground surface prevents rainwater input and Cl? dilution. Under the hedgerow the highest concentrations of Cl? coincide with the absence of NO3? in the shallow groundwater layer and with high concentrations of dissolved organic carbon. The absence of NO3? during the dormant season seems to be due to denitrification in the hedgerow rooting zone when it is rapidly saturated by groundwater. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
For 2 years, water flow‐patterns in the Garonne floodplain of south‐western France were studied in the field and through hydrodynamic modelling (MARTHE Hydrodynamic Software developed by BRGM). Water flow‐paths and the transport of dissolved elements between river and aquifer have been investigated and modelled. In order to quantify the buffer function of the alluvial floodplain, we focused our work on the effect of a major flood on the water flow‐direction, and on nitrate transport. Thus, we showed that the effect of a large flood in the river was rapidly lost with increasing distance from the river. During the observation period, a hydrologically active strip only 300 m wide on either side of the riverbed played a buffering role in absorbing the flood crest. It was also found that meanders favour the exchange between river and alluvial aquifer, shown by the creation of bypasses between the upstream and downstream parts of meanders. This, in turn, contributes to a dilution of nitrates in the phreatic aquifer, which here has higher nitrate content than the surface water; such dilution may result in an overestimation of the denitrification process in the wooded riverbanks. The coupling of chemical measurements—especially of chlorides and nitrate—with modelling of the dissolved‐element transport allows us to establish the water balance for the riparian wetland, and to separate the effect of dilution and denitrification on nitrate concentration. This indicated the existence of areas in the riparian wetlands where denitrification is particularly strong, leading to reductions in nitrate concentrations of 10 to 30 mg/l NO3? during the flood. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The hydrology and nitrogen biogeochemistry of a riparian zone were compared before and after the construction of beaver dams along an agricultural stream in southern Ontario, Canada. The beaver dams increased surface flooding and raised the riparian water table by up to 1·0 m. Increased hydraulic gradients inland from the stream limited the entry of oxic nitrate‐rich subsurface water from adjacent cropland. Permeable riparian sediments overlying dense till remained saturated during the summer and autumn months, whereas before dam construction a large area of the riparian zone was unsaturated in these seasons each year. Beaver dam construction produced significant changes in riparian groundwater chemistry. Median dissolved oxygen concentrations were lower in riparian groundwater after dam construction (0·9–2·1 mg L?1) than in the pre‐dam period (2·3–3·9 mg L?1). Median NO3‐N concentrations in autumn and spring were also lower in the post‐dam (0·03–0·07 mg L?1) versus the pre‐dam period (0·1–0·3 mg L?1). In contrast, median NH4‐N concentrations in autumn and spring months were higher after dam construction (0·3–0·4 mg L?1) than before construction (0·13–0·14 mg L?1). Results suggest that beaver dams can increase stream inflow to riparian areas that limit water table declines and increase depths of saturated riparian soils which become more anaerobic. These changes in subsurface hydrology and chemistry have the potential to affect the transport and transformation of nitrate fluxes from adjacent cropland in agricultural landscapes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Karst spring measurements assess biogeochemical processes occurring within groundwater contributing areas to springs (springsheds) but can only provide aggregated information. To better understand spatially distributed processes that comprise these aggregated measures, we investigated aquifer denitrification evidence in groundwater wells (n = 16) distributed throughout a springshed in the Upper Floridan aquifer in northern Florida. Aquifer geochemistry, nitrate isotopes, and dissolved gases were compared against similar measurements at the spring outlet to evaluate spatial heterogeneity of denitrification evidence in relation to land surface–aquifer connectivity. Sample locations spanned spatial variation in recharge processes (i.e., diffuse vs. focused recharge) and proximity to sources of denitrification reactants (e.g., wetlands). Although no distinct spatial pattern in denitrification was uncovered, excess dissolved N2 gas measurements were only above detection in the unconfined springshed, with some evidence of a wetland proximity effect. Measured oxidation–reduction potential and dissolved oxygen poorly predicted denitrification, indicating that measured denitrification may be occurring upgradient from sampled wells. Despite dramatic spatial chemical heterogeneity across wells, mean values for recharge nitrate concentrations (0.02 to 5.56 mg N L?1) and excess N2 from aquifer denitrification (below detection to 1.37 mg N L?1) corresponded reasonably with mean spring outlet measurements for initial nitrate (0.78 to 1.36 mg N L?1) and excess N2 (0.15 to 1.04 mg N L?1). Congruence between groundwater and spring measurements indicates that combining sampling at the spring outlet and across the springshed is useful for understanding spatial aquifer denitrification. However, this approach would be improved with a high‐density sampling network with transects of wells along distinct groundwater flow paths.  相似文献   

9.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt–clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near‐saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day?1 and peak rate is 5·6 mm day?1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt–clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3–N ha?1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above‐ground vegetation is high—8·56 t dry matter ha?1 year?1 and 103 kg N ha?1 year?1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha?1year?1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above‐ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A two‐dimensional variable‐density groundwater flow and transport model was developed to provide a conceptual understanding of past and future conditions of nitrate (NO3) transport and estimate groundwater nitrate flux to the Gulf of Mexico. Simulation results show that contaminant discharge to the coast decreases as the extent of saltwater intrusion increases. Other natural and/or artificial surface waters such as navigation channels may serve as major sinks for contaminant loading and act to alter expected transport pathways discharging contaminants to other areas. Concentrations of NO3 in the saturated zone were estimated to range between 30 and 160 mg?L?1 as NO3. Relatively high hydraulic vertical gradients and mixing likely play a significant role in the transport processes, enhancing dilution and contaminant migration to depth. Residence times of NO3 in the deeper aquifers vary from 100 (locally) to about 300 years through the investigated aquifer system. NO3 mass fluxes from the shallow aquifers (0 to 5.7 × 104 mg?m?2?day?1) were primarily directed towards the navigation channel, which intersects and captures a portion of the shallow groundwater flow/discharge. Direct NO3 discharge to the sea (i.e. Gulf of Mexico) from the shallow aquifer was very low (0 to 9.0 × 101 mg · m?2?day?1) compared with discharge from the deeper aquifer system (0 to 8.2 × 103 mg?m?2?day?1). Both model‐calibrated and radiocarbon tracer‐determined contaminant flux estimates reveal similar discharge trends, validating the use of the model for density‐dependent flow conditions. The modelling approach shows promise to evaluate contaminant and nutrient loading for similar coastal regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Surface water–groundwater interaction in the hyporheic zone may enhance biogeochemical cycling in streams, and it has been hypothesized that streams exchanging more water with the hyporheic zone should have more rapid nitrate utilization. We used simultaneous conservative solute and nitrate addition tracer tests to measure transient storage (which includes hyporheic exchange and in‐stream storage) and the rate of nitrate uptake along three reaches within the Red Canyon Creek watershed, Wyoming. We calibrated a one‐dimensional transport model, incorporating transient storage (OTIS‐P), to the conservative solute breakthrough curves and used the results to determine the degree of transient storage in each reach. The nitrate uptake length was quantified from the exponential decrease in nitrate concentration with distance during the tracer tests. Nitrate uptake along the most downstream reach of Red Canyon Creek was rapid (turnover time K?1c = 32 min), compared with nitrate uptake reported in other studies (K?1c = 12 to 551 min), but other sites within the watershed showed little nitrate retention or loss. The uptake length Sw‐NO?3 for the most downstream reach was 500 m and the mass transfer coefficient Vf‐NO?3 was 6·3 m min?1. Results from 15 other nitrate‐addition tracer tests were used to create a regression model relating transient storage and measures of stream flow to nitrate uptake length. The model, which includes specific discharge and transient storage area, explains almost half the variability in nitrate uptake length (adjusted R2 = 0·44) and is most effective for comparing sites with very different stream characteristics. Although large differences in specific discharge and storage zone area explain inter‐site differences in nitrate uptake, other unmeasured variables, such as available organic carbon and microbial community composition, are likely important for predicting differences in nitrate uptake between sites with similar specific discharge rates and storage zone areas, such as when making intra‐site comparisons. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A variety of multivariate statistical procedures were applied to three separate sets of quantitative analytical data from a coastal aquifer located in Malia, Crete (Greece), in order to identify the major hydrochemical processes affecting the groundwater quality and to investigate the evolution of groundwater composition in three different sampling periods. Two of them were carried out on October 2001 and September 2002 at the end of the dry season and the third on April 2002 at the end of the wet period. Two factors were found that explained major hydrochemical processes in the aquifer. These factors reveal the existence of an intensive intrusion of seawater and mechanisms of nitrate contamination of groundwater. Bivariate plots of the scores of the two main factors showed that the seawater intrusion and nitrate pollution processes are maintained through three surveys and that the process of nitrate pollution increases from the first to the second dry survey. Q‐mode factor analysis and discriminant analysis of the three sampling periods clearly showed a seasonal variation of the whole chemistry of groundwater samples. This seasonal variation can be attributed to the freshwater recharge and seawater intrusion that affect the groundwater quality of the Malia aquifer. The results of trend surface analysis are in agreement with those of factor analysis. Moreover, the fourth‐order trend surfaces of EC, Cl? and NO3? showed that the salinization process is more intensive during the first dry period and the spatial variation of NO3? maxima plumes are strongly affected by the flow regime of the Malia aquifer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Mean transit times were estimated for a small headwater catchment in Japan (the Fukuroyamasawa Experimental Watershed) using the step shift in input chloride (Cl?) concentrations that occurred immediately after an episode of forest clear‐cutting. Measured Cl? concentrations in stream water began to decrease immediately after clear‐cutting, and this trend continued for 6 years. Before clear‐cutting, the input Cl? concentrations were controlled by wet and dry deposition processes, and most of the dry Cl? deposition was collected by the forest canopy and reached the ground as throughfall and stemflow. After clear‐cutting, dry deposition was no longer collected by the canopy in this way, thus causing a sharp decrease in input Cl? concentrations. By comparing measured Cl? concentrations in stream water with estimates based on the input and evaporative Cl? concentrations, it was shown that the decrease in stream water Cl? concentrations was caused mainly by this step shift in the Cl? input. It was proposed that the change in Cl? concentrations after forest cutting could be used to represent the replacement of ‘old’ water that existed before cutting by ‘new’ water that was supplied after cutting. The breakthrough curve for the new water fraction gave an approximately exponential distribution of transit times in flow‐corrected time. The mean flow‐corrected transit time was estimated as 1068 days (runoff: 3497 mm). It was therefore concluded that the step change in input Cl? concentrations immediately following forest clear‐cutting could be successfully used to estimate transit times for the entire catchment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The Dakar region is a mega city with multiple contaminant sources from urban expansion as well as industrial and agricultural activities. The major part of the region is underlain by unconfined sandy aquifer, which is vulnerable to contaminants derived from human land use. At present, the contaminated groundwater which extends over a large area in the suburban zone of Thiaroye poses a threat to the future of this valuable resource, and more specifically, a health threat. This study focuses on nitrate pollution occurrences and associated processes using nitrate isotope data (15NNO3, 18ONO3) combined with environmental isotopic tracers (18O, 2H, and 3H). Samples from 36 wells were collected to determine the level, distribution, and sources of contamination in relation to land use. Results indicate that shallow groundwater in the urbanized area of Thiaroye shows distinct evidence of surface contamination with nitrate as much as 300 mg/l NO3?. In rural area not serviced by water supply distribution network, much higher NO3? contents were found in few wells due to household and livestock feedlots. In most groundwater samples δ15N values ranged from + 10 to + 22‰, indicative of predominantly human and animal wastes. This was confirmed by environmental isotope data which suggest a mixture of polluted recharge waters. By using the dual δ15N vs δ18O as well as δ15N vs NO3? approach, denitrification may occur to some extent but it is blurred by mixing with new infiltrated nitrates and cycling derived from continuous leaky septic system. Results suggest that nitrate contamination of the aquifer is a consequence of unregulated urbanisation (homemade latrines), continuing contaminant transfer in shallow water depth where aerobic conditions prevail. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Nutrient dynamics in karst agroecosystems remain poorly understood, in part due to limited long‐term nested datasets that can discriminate upland and in‐stream processes. We present a 10‐year dataset from a karst watershed in the Inner‐Bluegrass Region of central Kentucky, consisting of nitrate (nitrate‐N [NO3?]), dissolved reactive phosphorus (DRP), total organic carbon (TOC), and total ammoniacal‐N (TAN) measurements at nested spring and stream sites as well as flowrate at the watershed outlet. Hydrograph separation techniques were coupled with multiple linear regression and Empirical Mode Decomposition time‐series analysis to determine significance of seasonal processes and to generate continuous estimates of nutrient pathway loadings. Further, we used model results of benthic algae growth and decomposition dynamics from a nearby watershed to assess if transient storage in algal biomass could explain differences in spring and downstream watershed nutrient loading. Results highlight statistically significant seasonality for all nutrients at stream sites, but only for NO3? at springs with longitudinal variability showing significant decreases occurring from spring to stream sites for NO3? and DRP, and significant increases for TOC and TAN. Pathway loading analysis highlighted the importance of slow flow pathways to source approximately 70% of DRP and 80% of NO3?. Results for in‐stream dynamics suggest that benthic autotroph dynamics can explain summer deviations for TOC, TAN, and DRP but not NO3?. Regarding upland dynamics, our findings agree well with existing perceptions in karst for N pathways and upland source seasonality but deviate from perceptions that karst conduits are retentive of P, reflecting the limited buffering capacity of the soil profile and conduit sediments in the Inner‐Bluegrass. Regarding in‐stream fate, our findings highlighted the significance of seasonally driven nutrient processing in the bedrock‐controlled streambed to influence nutrient fluxes at the watershed outlet. Contrary to existing perceptions, we found high N attenuation and an unexplained NO3? sink in the bedrock stream, leading us to postulate that floating macrophytes facilitate high rates of denitrification.  相似文献   

20.
Understanding the influence of storm events on nitrate (NO3?) dynamics is important for efficiently managing NO3? pollution. In this study, five sites representing a downstream progression of forested uplands underlain by resistant sandstone to karst lowlands with agricultural, urban and mixed land‐use were established in Spring Creek, a 201 km2 mixed land‐use watershed in central Pennsylvania, USA. At each site, stream water was monitored during six storm events in 2005 to assess changes in stable isotopes of NO3?15N‐NO3? and δ18O‐NO3?) and water (δ18O‐H2O) from baseflow to peakflow. Peakflow fractions of event NO3? and event water were then computed using two‐component mixing models to elucidate NO3? flow pathway differences among the five sites. For the forested upland site, storm size appeared to affect NO3? sources and flow pathways. During small storms (<35 mm rainfall), greater event NO3? fractions than event water fractions indicated the prevalence of atmospheric NO3? source contributions at peakflow. During larger storms (>35 mm rainfall), event NO3? fractions were less than event water fractions at peakflow suggesting that NO3? was flushed from stored sources via shallow subsurface flow pathways. For the urbanized site, wash‐off of atmospheric NO3? was an important NO3? source at peakflow, especially during short‐duration storms where event water contributions indicated the prevalence of overland flow. In the karst lowlands, very low fractions of event water and even lower fractions of event NO3? at peakflow suggested the dominance of ground water flow pathways during storms. These ground water flow pathways likely flushed stored NO3? sources into the stream, while deep soils in the karst lowlands also may have promoted NO3? assimilation. The results of this study illustrated how NO3? isotopes and δ18O‐H2O could be combined to show key differences in water and NO3? delivery between forested uplands, karst valleys and fully urbanized watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号