首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This paper presents three new approaches for solving eigenvalue problems of non‐classically damped linear dynamics systems with fewer calculations than the conventional state vector approach. In the latter, the second‐order differential equation of motion is converted into a first‐order system by doubling the size of the matrices. The new approaches simplify the approach and reduce the number of calculations. The mathematical formulations for the proposed approaches are presented and the numerical results compared with the existing method by solving a sample problem with different damping properties. Of the three proposed approaches, the expansion approach was found to be the simplest and fastest to compute. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Investigated is the accuracy in estimating the response of asymmetric one‐storey systems with non‐linear viscoelastic (VE) dampers by analysing the corresponding linear viscous system wherein all non‐linear VE dampers are replaced by their energy‐equivalent linear viscous dampers. The response of the corresponding linear viscous system is determined by response history analysis (RHA) and by response spectrum analysis (RSA) extended for non‐classically damped systems. The flexible and stiff edge deformations and plan rotation of the corresponding linear viscous system determined by the extended RSA procedure is shown to be sufficiently accurate for design applications with errors generally between 10 and 20%. Although similar accuracy is also shown for the ‘pseudo‐velocity’ of non‐linear VE dampers, the peak force of the non‐linear VE damper cannot be estimated directly from the peak damper force of the corresponding linear viscous system. A simple correction for damper force is proposed and shown to be accurate (with errors not exceeding 15%). For practical applications, an iterative linear analysis procedure is developed for determining the amplitude‐ and frequency‐dependent supplemental damping properties of the corresponding linear viscous system and for estimating the response of asymmetric one‐storey systems with non‐linear VE dampers from the earthquake design (or response) spectrum. Finally, a procedure is developed for designing non‐linear supplemental damping systems that satisfy given design criteria for a given design spectrum. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
A step‐by‐step approximate procedure taking into consideration high‐frequency modes, usually neglected in the modal analysis of both classically and non‐classically damped structures, is presented. This procedure can be considered as an extension of traditional modal correction methods, like the mode‐acceleration method and the dynamic correction method, which are very effective for structural systems subjected to forcing functions described by analytical laws. The proposed procedure, herein called improved dynamic correction method, requires two steps. In the first step, the number of differential equations of motion are reduced and consequently solved by using the first few undamped mode‐shapes. In the second step, the errors due to modal truncation are reduced by correcting the dynamic response and solving a new set of differential equations, formally similar to the original differential equations of motion. The difference between the two groups of differential equations lies in the forcing vector, which is evaluated in such a way as to correct the effects of modal truncation on applied loads. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
This paper analyzes the dynamic behaviour of continuous bridges with transverse abutment restraint. These are a particular class of multi‐span bridges whose transverse motion is restrained at the abutments. The transverse dynamic behaviour of these partially‐restrained bridges is described by a model consisting of a two‐dimensional simply‐supported beam with intermediate visco‐elastic restraints. A minimal set of characteristic problem parameters that completely describe the dynamic response is initially identified and an analytical solution is developed for particular configurations. The influence of these characteristic parameters on the properties of the dynamic systems are analyzed by considering the undamped and the damped free vibrations separately. Successively, in order to cover more general and complex configurations of realistic bridges, an extension of the definition of the characteristic parameters is proposed. The results obtained considering selected case studies are finally presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A critical, textbook-like review of the generalized modal superposition method of evaluating the dynamic response of nonclassically damped linear systems is presented, which it is hoped will increase the attractiveness of the method to structural engineers and its application in structural engineering practice and research. Special attention is given to identifying the physical significance of the various elements of the solution and to simplifying its implementation. It is shown that the displacements of a non-classically damped n-degree-of-freedom system may be expressed as a linear combination of the displacements and velocities of n similarly excited single-degree-of-freedom systems, and that once the natural frequencies of vibration of the system have been determined, its response to an arbitrary excitation may be computed with only minimal computational effort beyond that required for the analysis of a classically damped system of the same size. The concepts involved are illustrated by a series of examples, and comprehensive numerical data for a three-degree-of-freedom system are presented which elucidate the effects of several important parameters. The exact solutions for the system are also compared over a wide range of conditions with those computed approximately considering the system to be classically damped, and the interrelationship of two sets of solutions is discussed.  相似文献   

7.
This paper investigates the stability of MDOF optimal direct output feedback control systems through analysis of system modal properties after the application of time-delayed control force. Explicit formula and numerical solution are obtained to determine the maximum delay time and critical delay time which cause system instability and control ineffectiveness, respectively. The results indicate that direct velocity feedback has longer maximum and critical delay times than state feedback. The feedback of non-collocated measurements will reduce maximum delay time. The ratios of maximum and critical delay times to structural natural period decrease as the active damping increases. For a given damped structure, a critical control weighting factor exists. When a larger control weighting factor is used, the control system will remain stable even with longer delay time. A formula is also developed to determine the critical control weighting factor so as to make the stability of MDOF control systems dominated by lower modes. Hence, the maximum delay time and critical delay time can be significantly lengthened by selecting an appropriate control weighting factor and/or adding higher modal dampings.  相似文献   

8.
A series of large‐scale real‐time hybrid simulations (RTHSs) are conducted on a 0.6‐scale 3‐story steel frame building with magneto‐rheological (MR) dampers. The lateral force resisting system of the prototype building for the study consists of moment resisting frames and damped brace frames (DBFs). The experimental substructure for the RTHS is the DBF with the MR dampers, whereas the remaining structural components of the building including the moment resisting frame and gravity frames are modeled via a nonlinear analytical substructure. Performing RTHS with an experimental substructure that consists of the complete DBF enables the effects of member and connection component deformations on system and damper performance to be accurately accounted for. Data from these tests enable numerical simulation models to be calibrated, provide an understanding and validation of the in‐situ performance of MR dampers, and a means of experimentally validating performance‐based seismic design procedures for real structures. The details of the RTHS procedure are given, including the test setup, the integration algorithm, and actuator control. The results from a series of RTHS are presented that includes actuator control, damper behavior, and the structural response for different MR control laws. The use of the MR dampers is experimentally demonstrated to reduce the response of the structure to strong ground motions. Comparisons of the RTHS results are made with numerical simulations. Based on the results of the study, it is concluded that RTHS can be conducted on realistic structural systems with dampers to enable advancements in resilient earthquake resistant design to be achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The paper deals with the proposal and the experimental validation of a novel dissipative bracing system for the seismic protection of structures; compared with other similar systems, it is characterized by smaller size and weight, which makes it easier to move and to install, as well as particularly suitable to be inserted in light‐framed structures (e.g. steel structures of industrial plants). The proposed system consists of an articulated quadrilateral with steel dissipaters inserted, to be connected by tendons to frame joints; the prototypes have been designed and realized for the seismic protection of a two‐storey, large‐scale, steel frame, specially designed for shaking‐table tests. The paper, after an illustration of the system, and of its design and behaviour, presents the shaking‐table tests carried out. The experimental results have fully validated the proposed system, showing its good performance in controlling the seismic response of framed structures. A numerical non‐linear model, set up and validated on the basis of the physical tests, has been used to help interpreting the experimental results, but also to perform parametrical studies for investigating the influence of the design parameters on the performance of the control system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
非比例阻尼线性体系地震反应计算的振型分解反应谱法   总被引:2,自引:0,他引:2  
以非比例阻尼线性体系地震反应计算实数形式的一般解答为基础,推导得到了非比例阻尼线性体系水平地震作用计算的多种形式,建立了非比例阻尼线性体系地震反应计算振型分解反应谱法的基本过程与步骤。最后,以一个五层剪切型结构为例,通过与各种常用直接积分方法计算结果的比较,证实了本文非比例阻尼线性体系地震反应计算实数形式的一般解答的高精度与可靠性。通过对多种形式地震作用所得地震效应的比较,证实了非比例阻尼线性体系地震反应振型分解反应谱方法的可靠性及可行性。  相似文献   

11.
This paper proposes a non‐iterative time integration (NITI) scheme for non‐linear dynamic FEM analysis. The NITI scheme is constructed by combining explicit and implicit schemes, taking advantage of their merits, and enables stable computation without an iteration process for convergence even when used for non‐linear dynamic problems. Formulation of the NITI scheme is presented and its stability is studied. Although the NITI scheme is not unconditionally stable when applied to non‐linear problems, it is stable in most cases unless stiffness hardening occurs or the problem has a large velocity‐dependent term. The NITI scheme is applied to dynamic analysis of the non‐linear soil–structure system and computation results are compared with those by the central difference method (CDM). Comparison shows that the stability of the NITI scheme is superior to that of the CDM. Accuracy of the NITI scheme is verified because its results are identical with those by the CDM in which the time step is set as 1/10 of that for the NITI scheme. The application of the NITI scheme to the mesh‐partitioned FEM is also proposed. It is applied to dynamic analysis of the linear soil–structure system. It yields the same results as a conventional single‐domain FEM analysis using the Newmark β method. This result verifies the usability of mesh‐partitioned FEM analysis using the NITI scheme. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

12.
There are many traditional methods to find the optimum parameters of a tuned mass damper (TMD) subject to stationary base excitations. It is very difficult to obtain the optimum parameters of a TMD subject to non‐stationary base excitations using these traditional optimization techniques. In this paper, by applying particle swarm optimization (PSO) algorithm as a novel evolutionary algorithm, the optimum parameters including the optimum mass ratio, damper damping and tuning frequency of the TMD system attached to a viscously damped single‐degree‐of‐freedom main system subject to non‐stationary excitation can be obtained when taking either the displacement or the acceleration mean square response, as well as their combination, as the cost function. For simplicity of presentation, the non‐stationary excitation is modeled by an evolutionary stationary process in the paper. By means of three numerical examples for different types of non‐stationary ground acceleration models, the results indicate that PSO can be used to find the optimum mass ratio, damper damping and tuning frequency of the non‐stationary TMD system, and it is quite easy to be programmed for practical engineering applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Real‐time hybrid simulation (RTHS) is increasingly being recognized as a powerful cyber‐physical technique that offers the opportunity for system evaluation of civil structures subject to extreme dynamic loading. Advances in this field are enabling researchers to evaluate new structural components/systems in cost‐effective and efficient ways, under more realistic conditions. For RTHS, performance metric clearly needs to be developed to predict and evaluate the accuracy of various partitioning choices while incorporating the dynamics of the transfer system, and computational/communication delays. In addition, because of the dynamics of the transfer system, communication delays, and computation delays, the RTHS equilibrium force at the interface between numerical and physical substructures is subject to phase discrepancy. Thus, the transfer system dynamics must be accommodated by appropriate actuator controllers. In this paper, a new performance indicator, predictive performance indicator (PPI), is proposed to assess the sensitivity of an RTHS configuration to any phase discrepancy resulting from transfer system dynamics and computational/communication delays. The predictive performance indicator provides a structural engineer with two sets of information as follows: (i) in the absence of a reference response, what is the level of fidelity of the RTHS response? and (ii) if needed, what partitioning adjustments can be made to effectively enhance the fidelity of the response? Moreover, along with the RTHS stability switch criterion, this performance metric may be used as an acceptance criteria for conducting single‐degree‐of‐freedom RTHS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
It is often infeasible to carry out coupled analyses of multiply‐supported secondary systems for earthquake excitations. ‘Approximate’ decoupled analyses are then resorted to, unless the response errors due to those are significantly high. This study proposes a decoupling criterion to identify such cases where these errors are likely to be larger than an acceptable level. The proposed criterion is based on the errors in the primary system response due to decoupling and has been obtained by assuming (i) the input excitation to be an ideal white noise process, (ii) cross‐modal correlation to be negligible, and (iii) the combined system to be classically damped. It uses the modal properties of the undamped combined system, and therefore, a perturbation approach has been formulated to determine the combined system properties in case of light to moderately heavy secondary systems. A numerical study has been carried out to illustrate the accuracy achieved with the proposed perturbation formulation. The proposed decoupling criterion has been validated with the help of two example primary‐secondary systems and four example excitation processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A mode‐acceleration approach has been proposed for estimating the seismic response of a linear, classically‐damped, multiply‐supported secondary system within the framework of a power spectral density function (PSDF)‐based stochastic approach, while the primary system is linear and classically‐damped. Response transfer functions have been formulated in terms of chosen numbers of fixed‐base modes of the primary and secondary systems. The proposed approach does not involve the determination of combined system properties, and is applicable to the secondary systems with high mass ratios also. Through a few example primary–secondary systems and an example band‐limited white noise excitation, it has been shown that this approach leads to reasonably accurate results when only a few primary and secondary modes are to be considered. The proposed formulation has been used to obtain input data for a decoupled response spectrum analysis of secondary systems. This data accurately accounts for the effects of interaction between the primary and secondary systems. It is shown to lead to substantial reductions in the errors associated with the envelope spectrum method in the case of moderately heavy to heavy secondary systems and when the spatial coupling does not play a major role. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A semi‐active multi‐step predictive control (SAMPC) system with magnetorheological (MR) dampers is developed to reduce the seismic responses of structures. This system can predict the next multi‐step responses of structure according to the current state and has a function of self‐compensation for time delay that occurred in real application. To study the performance of the proposed control algorithm for addressing time delay and reducing the seismic responses, a numerical example of an 11‐story structure with MR dampers is presented. Comparison with the uncontrolled structure indicates that both the peak and the norm values of structural responses are all clearly reduced when the predictive length l?10 and the delayed time step d?20 are selected, and the SAMPC strategy can guarantee the stability of the controlled structure and reduce the effects of time delay on controlled responses to a certain extent. A performance comparison is also made between the SAMPC strategy and the passive‐off and passive‐on methods; results indicate that this SAMPC system is more effective than the two passive methods in reducing structural responses subjected to earthquakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A predictor‐multicorrector implementation of a Time Discontinuous Galerkin method for non‐linear dynamic analysis is described. This implementation is intended to limit the high computational expense typically required by implicit Time Discontinuous Galerkin methods, without degrading their accuracy and stability properties. The algorithm is analysed with reference to conservative Duffing oscillators for which closed‐form solutions are available. Therefore, insight into the accuracy and stability properties of the predictor‐multicorrector algorithm for different approximations of non‐linear internal forces is gained, showing that the properties of the underlying scheme can be substantially retained. Finally, the results of representative numerical simulations relevant to Duffing oscillators and to a stiff spring pendulum discretized with finite elements illustrate the performance of the numerical scheme and confirm the analytical estimates. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Real‐time hybrid simulation (RTHS) is a powerful cyber‐physical technique that is a relatively cost‐effective method to perform global/local system evaluation of structural systems. A major factor that determines the ability of an RTHS to represent true system‐level behavior is the fidelity of the numerical substructure. While the use of higher‐order models increases fidelity of the simulation, it also increases the demand for computational resources. Because RTHS is executed at real‐time, in a conventional RTHS configuration, this increase in computational resources may limit the achievable sampling frequencies and/or introduce delays that can degrade its stability and performance. In this study, the Adaptive Multi‐rate Interface rate‐transitioning and compensation technique is developed to enable the use of more complex numerical models. Such a multi‐rate RTHS is strictly executed at real‐time, although it employs different time steps in the numerical and the physical substructures while including rate‐transitioning to link the components appropriately. Typically, a higher‐order numerical substructure model is solved at larger time intervals, and is coupled with a physical substructure that is driven at smaller time intervals for actuator control purposes. Through a series of simulations, the performance of the AMRI and several existing approaches for multi‐rate RTHS is compared. It is noted that compared with existing methods, AMRI leads to a smaller error, especially at higher ratios of sampling frequency between the numerical and physical substructures and for input signals with high‐frequency content. Further, it does not induce signal chattering at the coupling frequency. The effectiveness of AMRI is also verified experimentally. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
After reviewing briefly a recently proposed procedure for evaluating the dynamic transient response of a classically damped linear system from its corresponding steady-state response, a modified procedure is presented which also appears to be highly efficient for non-classically damped systems of the type encountered in studies of soil-structure interaction. The concepts involved are developed by reference to viscously damped single-degree-of-freedom systems, and numerical solutions are included to illustrate the accuracy and efficiency of the proposed procedure and its superiority over the classical Discrete Fourier Transform approach.  相似文献   

20.
In this paper, an effective active predictive control algorithm is developed for the vibration control of non-linear hysteretic structural systems subjected to earthquake excitation. The non-linear characteristics of the structural behaviour and the effects of time delay in both the measurements and control action are included throughout the entire analysis (design and validation). This is very important since, in current design practice, structures are assumed to behave non-linearly, and time delays induced by sensors and actuator devices are not avoidable. The proposed algorithm focuses on the instantaneous optimal control approach for the development of a control methodology where the non-linearities are brought into the analysis through a non-linear state vector and a non-linear open-loop term. An autoregressive (AR) model is used to predict the earthquake excitation to be considered in the prediction of the structural response. A performance index that is quadratic in the control force and in the predicted non-linear states, with two additional energy related terms, and that is subjected to a non-linear constraint equation, is minimized at every time step. The effectiveness of the proposed closed-open loop non-linear instantaneous optimal prediction control (CONIOPC) strategy is presented by the results of numerical simulations. Since non-linearity and time-delay effects are incorporated in the mathematical model throughout the derivation of the control methodology, good performance and stability of the controlled structural system are guaranteed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号