首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 908 毫秒
1.
本文以焦家断裂带为研究目标,综合利用地质、重力、磁法、大地电磁等资料,总结了区域物性、重磁场特征,并选择典型剖面,利用实测MT数据,开展了2.5D重磁电联合精细反演,推断了控矿断裂构造的深部变化特征.A-A′剖面重磁电特征显示,焦家断裂带上盘呈现低阻-中磁特征,而下盘呈现高阻-高磁特征,焦家断裂带和三山岛断裂带的视电阻率异常梯度带在4 km以浅非常清晰,分界线走势基本沿焦家断裂带深部延伸,呈现"漏斗"形状.本文根据建立的地质-地球物理找矿预测模型推断,焦家断裂带剖面上低磁异常向高磁异常的过渡带、布格重力异常梯级带的转弯部位和视电阻率等值线同步向下弯曲、间距变大及由陡变缓部位都是成矿的有利部位,为今后该地区金矿勘查提供重要技术指导.  相似文献   

2.
目的:将电阻率层析成像应用于探测潜伏断层的研究中,本文发现了断层和地下水的一些基本电阻率分布特征,这对于工程物探意义重大,一般情况下,断层两侧具有不同的电阻率特征,但是,根据电阻率层析图像中的电阻率分布,通常难以区分断层和地下水层,这是因为两者不仅都具有低电阻率值,而且还具有非常相似的电阻率异常特征。资料和方法:运用电阻率层析图像的数据,电阻率层析图像中的断层会呈现如下特征:1)由于孔隙度的加大和地下水的存在,使得断层表现出高角度的低阻线性结构。它们既可以出现在浅部盖层中,也可以存在于深部基岩中,特别是在深部区域,它们尤为明显;2)它们还呈现出高角度的线性梯度带,在该梯度带两边的电阻率结构出现整体性的差异,通常情况下,正断层的上盘表现出低阻或/和班驳状的高阻和低阻扰动区,而下盘则为完整的高阻区,这与逆冲断层正好相反;3)与断层有关的电阻率异常区常常具有良好的大尺度水平连续性,并且可以追瞎异常区附近的精细电性结构。而地下水的电阻率特征为:1)如果没有裂隙,地表水所引起的低阻区非常浅,即使存在丰富的水源以及高孔隙度的砾岩和中粗砂。一般情况下,其底端深度不超过强风化区;2)地下水的电阻率值非常低,特别在高矿化度的地区。地下水,包括岩溶水和砂岩水,的电阻率总显示出局部水平延伸或/和面团状特征;3)地下水层的深度朝某个固定方向逐渐增加,并且其电阻率图像会随季节而变;4)一般情况下,在水下渗的地区,会出现降水漏斗,其上部为高阻,而下部为低阻,从而便形成了“Y”或“V”字型的典型结构。结果:利用上述的基本特征一般可以区分断层和地下水。结论:仅依靠电阻率层析图像,可能极难准确地区分断层和裂隙水,这是因为裂隙水不但可能具有高角度的低阻线性结构,而且在一定尺度上具有很好的水平连续性,还有,由于电阻率层析成像较差的垂直分辨率,难以精确确定断层的上端点位置,所以结合其它的物探手段如钻探和浅层地震勘探是非常必要的。  相似文献   

3.
纵向与横向剖面电阻率变化关系物理模拟实验研究   总被引:1,自引:0,他引:1  
通过低阻立板的物理模拟实验,研究纵、横向剖面电阻率的变化特征,实验结果表明横向剖面法在探测走滑断层中具有明显优越性.  相似文献   

4.
佳木斯地块及东缘岩石圈电性结构特征   总被引:6,自引:5,他引:6       下载免费PDF全文
佳木斯地块及东缘是中国东北地区的重要地质构造单元. 为探测该地区地壳深部结构与构造关系,沿桦南—饶河实施了240 km的大地电磁测深的探测研究. 采用光滑模型二维反演方法对桦南—饶河大地电磁剖面的探测数据进行了二维反演和综合地球物理解释. 研究结果揭示了研究区断面域的电性结构:(1)剖面西段具有稳定的高阻特征且具有稳定的岩石圈厚度(约90km),在十几公里深度范围存在壳内高导层,该区段对应佳木斯地块. (2)剖面中部具有明显的电性梯度带,该梯度带反映了佳木斯地块的东界位置及其深部的结构形态. (3)剖面东段电性特征揭示了佳木斯地块以东区段浅部为逆冲推覆体,深部为多个高阻块体和低阻条带相间的电性结构,这些高阻块体可能为早期俯冲的岩石圈残片.  相似文献   

5.
云南南部地区深部电性结构特征研究   总被引:14,自引:6,他引:8       下载免费PDF全文
在云南南部地区布设了一条孟连-罗平的北东向大地电磁测深剖面,以开展该地区的深部电性结构探测和孕震环境探查.沿该剖面进行了114个大地电磁测深点的观测,经过对观测资料的远参考Robust处理、定性分析和二维反演,得到了沿该剖面地壳、上地幔电性结构模型,从模型的电性结构特征进一步探讨了剖面穿过的3个地震区的深部地震孕育环境.研究结果表明:沿剖面的地壳上地幔电性结构反映出与区域地质构造资料基本一致的构造特征;该区的三个强震带地球深部都存在壳内低阻体,地震发生在电阻率梯度带上;断裂带的两侧块体介质的电阻率差异是强震活动带重要的深部背景.  相似文献   

6.
高密度电阻率成像法(ERT)结合了电剖面法和电测深法的优点,在断裂构造探测方面有其独到的优势.但在ERT实际应用时尚存在电极装置有效性和电极距优化等问题.在西北干旱区还存在接地电阻高而导致无法供电的问题.本文即是针对这三方面问题,选取西北地区一条典型断裂—信泉断裂,开展了实验研究.在垂直于该断裂方向上布设了四条测量剖面,开展了接地电阻降阻、电极装置和电极距实验.实验结果表明:(1)浇入自来水和Na Cl溶液,并使电极与周围介质紧密接触,可以很好的解决新疆干旱地区接地不良的问题(2)ERT不同装置形式和电极距可从不同侧面反应剖面特征,在实际应用中应综合分析不同装置和不同电极距探测结果,以获得丰富的剖面信息(3)信泉断裂的电性特征为:在反演电阻率剖面上有明显的错断,破碎带为低阻板状体异常;断裂上盘低阻层厚度小,下盘低阻层厚度大;断裂西段覆盖层变薄甚至局部地段基岩裸露,断裂中部覆盖层厚度较厚.  相似文献   

7.
基于含油污水管道渗漏形成土壤污染区的物性改变,利用高密度电阻率法、自然电位法、探地雷达的方法对污染区进行了探测,试图通过污染区的分布特征确定渗漏点的存在.基于异常区布设的钻孔取样分析资料显示,含油污水的侵入会引起地下粘土层的电阻率增高,随着侵入量的增大电阻率越大,相应的探测电剖面异常区表现为高阻特征;相应位置的自然电位曲线显示低电位特征,探地雷达图像则表现为低频,高幅的特征.基于异常区的分布特征可以确定渗漏点的分布位置.研究结果证实了地球物理方法对此类工业污水污染区探测的可行性.  相似文献   

8.
利用对称四极横向剖面法探测走滑断层的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
从走滑断层难以探测的实际出发,讨论了其物性特征;通过对低阻板模型的物理模拟、数值模拟以及对实地观测资料的分析,研究了对称四极纵、横向剖面法视电阻率曲线的变化特征和差异. 结果表明,横向剖面法相对纵向剖面法异常幅度明显增加,可对地震活动断层进行更为有效的探测和定位. 这一研究为走滑断层探测提供了新的思路. 同时,利用对称四极横向剖面法可以解决走滑断层难以探测这一技术难题.   相似文献   

9.
在城市活断层调查中,利用电阻率二维层析成像测量方法,对郯庐断裂带山东潍坊段的地震活断层进行了探测试验,取得了较理想的勘探效果。沂水-汤头断裂、刘家庄断裂的二维电阻率反演结果表明,断裂带两侧的电性结构呈现出整体性的差异,正断层的上盘为低阻区和局部高、低阻扰动区;而断层下盘多为均匀的高阻区;断层为高角度断层。试验探测表明:在城市活断层调查中,选用合适的电极装置类型,电阻率层析成像是一种有效的勘探方法  相似文献   

10.
南海琼东南盆地是天然气水合物重要远景区之一.由于盆地大部分地区海底地形平缓、地层近于水平,增加了利用地震反射剖面识别似海底反射(BSR,bottom simulating reflector)的难度,从而影响了对水合物的评价.为了进一步开展琼东南盆地水合物调查研究,本文在研究海域进行了海洋可控源电磁探测试验,将自主研发的10台接收机以500 m的间距,投放至水深约为1360 m的海底,完成了一条4.5 km剖面的电磁数据采集.通过对采集的数据进行处理与二维(2D)反演,获得了研究剖面海底的电阻率断面图.反演结果显示,研究区海底60~330 mbsf(meter bottom of seafloor)的地层中,存在多个横向不连续分布的高阻异常体,电阻率介于2~10 Ωm之间;在海底330 mbsf之下,横向上发育了电阻率为2~4 Ωm的3个高阻体.根据研究区热力学条件,本文估算了生物成因气与热成因天然气的水合物稳定带(GHSZ,gas hydrate stability zone)厚度,结合高阻体的分布特征推断了地震剖面上BSR的位置.在此基础上,对反演的电阻率断面进行解释,推断了研究区水合物的分布及游离气运移通道.研究表明,勘探区具有形成天然气水合物矿藏的地质与地球物理条件,其成藏模式可能属于"断层、裂隙输导的下生上储型",水合物的气源为生物成因气.  相似文献   

11.
The Yishu fault zone is one of the branch faults of the Tanlu fault zone in its central part. Moderate and strong earthquakes occurred in the Yishu fault zone repeatedly. Due to its complex structure, the Yishu fault zone attracts much attention from earthquake researches. The Anqiu and Juxian electromagnetic stations in Shandong Province locate near the Anqiu-Juxian Fault and Changyi-Dadian Fault, which are branches of the Yishu fault zone, respectively. Geoelectric field and geomagnetic field observation were carried out in these two stations. The Wudi electromagnetic station is in the west of Tanlu fault zone in the Jidong-Bohai block and 230km from Anqiu electromagnetic station. This paper firstly describes the crustal structure near the electromagnetic stations by using magnetotelluric(MT)method. By processing the data carefully, we obtain the MT data in good quality near the stations. The MT data of each electromagnetic station and its nearby area suggests that the electrical structure and geological structure of the station are comparable. This paper applied 1-D and 2-D inversion for MT data and obtained the crustal electrical structure model beneath the Anqiu and Juxian seismic station. The shallow electrical structure from the MT method was compared with the results of symmetrical quadrupole electrical sounding. The model suggests that the electrical structure beneath the Anqiu and Juxian electromagnetic stations is complex and shows the feature of block boundary. The Wudi electromagnetic station is located inside a basin, the crustal structure shows layered feature typical for the stable blocks. Beneath the Anqiu electromagnetic station, there is a 1km-thick relative low resistivity layer in the shallow crust and a high resistivity body beneath it with a depth of 13km. There is a high resistivity structure in the crust beneath the Juxian electromagnetic station. The crustal structures are divided into two different parts by Anqiu-Juxian Fault and Changyi-Dadian Fault, respectively. More conductive layers appear to the west of the two faults. Plenty of fluid possibly exists within the conductive body to the west of Changyi-Dadian Fault, which plays important role in the earthquake generation. There is a relative low resistivity layer in the crust within 1~2km beneath the Wudi electromagnetic station. Beneath the relatively low resistivity layer, a relatively high resistivity layer extends to a depth of around 15km, and the resistivity value decreases with the increase of depth. The electrical resistivity model suggests the seismic activity of the Yishu fault zone around the Anqiu and Juxian electromagnetic stations should be taken into account seriously, and monitoring and research on it need to be strengthened. The results of this paper provide a certain reference value for the crustal structure research to similar stations.  相似文献   

12.
The East Kunlun Fault is a giant fault in northern Tibetan, extending eastward and a boundary between the Songpan-Ganzi block and the West Qinling orogenic zone. The East Kunlun Fault branches out into a horsetail structure which is formed by several branch faults. The 2017 Jiuzhaigou MS7.0 earthquake occurred in the horsetail structure of the East Kunlun Fault and caused huge casualties. As one of several major faults that regulate the expansion of the Tibetan plateau, the complexity of the deep extension geometry of the East Kunlun Fault has also attracted a large number of geophysical exploration studies in this area, but only a few are across the Jiuzhaigou earthquake region. Changes in pressure or slip caused by the fluid can cause changes in fault activity. The presence of fluid can cause the conductivity of the rock mass inside the fault zone to increase significantly. MT method is the most sensitive geophysical method to reflect the conductivity of the rock mass. Thus MT is often used to study the segmented structure of active fault zones. In recent years MT exploration has been carried out in several earthquake regions and the results suggest that the location of main shock and aftershocks are controlled by the resistivity structure. In order to study the deep extension characteristics of the East Kunlun Fault and the distribution of the medium properties within the fault zone, we carried out a MT exploration study across the Tazang section of the East Kunlun Fault in 2016. The profile in this study crosses the Jiuzhaigou earthquake region. Other two MT profiles that cross the Maqu section of East Kunlun Fault performed by previous researches are also collected. Phase tensor decomposition is used in this paper to analyze the dimensionality and the change in resistivity with depth. The structure of Songpan-Ganzi block is simple from deep to shallow. The structure of West Qinlin orogenic zone is complex in the east and simple in the west. The structure near the East Kunlun Fault is complex. We use 3D inversion to image the three MT profiles and obtained 3D electrical structure along three profiles. The root-mean-square misfit of inversions is 2.60 and 2.70. Our results reveal that in the tightened northwest part of the horsetail structure, the East Kunlun Fault, the Bailongjiang Fault, and the Guanggaishan-Dieshan Fault are electrical boundaries that dip to the southwest. The three faults combine in the mid-lower crust to form a "flower structure" that expands from south to north. In the southeastward spreading part of the horsetail structure, the north section of the Huya Fault is an electrical boundary that extends deep. The Tazang Fault has obvious smaller scale than the Huya Fault. The Minjiang Fault is an electrical boundary in the upper crust. The Huya Fault and the Tazang Fault form a one-side flower structure. The Bailongjiang and the Guanggaishan-Dieshan Fault form a "flower structure" that expands from south to north too. The two "flower structures" combine in the high conductivity layer of mid-lower crust. In Songpan-Ganzi block, there is a three-layer structure where the second layer is a high conductivity layer. In the West Qinling orogenic zone, there is a similar structure with the Songpan-Ganzi block, but the high conductivity layer in the West Qinling orogenic zone is shallower than the high conductivity layer in the Songpan-Ganzi block. The hypocenter of 2017 MS7.0 Jiuzhaigou earthquake is between the high and low resistivity bodies at the shallow northeastern boundary of the high conductivity layer. The low resistivity body is prone to move and deform. The high resistivity body blocked the movement of low resistivity body. Such a structure and the movement mode cause the uplift near the East Kunlun Fault. The electrical structure and rheological structure of Jiuzhaigou earthquake region suggest that the focal depth of the earthquake is less than 11km. The Huya Fault extends deeper than the Tazang Fault. The seismogenic fault of the 2017 Jiuzhaigou earthquake is the Huya Fault. The high conductivity layer is deep in the southwest and shallow in the northeast, which indicates that the northeast movement of Tibetan plateau is the cause of the 2017 Jiuzhaigou earthquake.  相似文献   

13.
The effectiveness of the electrical resistivity method has been studied using various configurations with different spacings over the Southern Boundary Fault in the northwestern part, and across a dolerite dyke named “Salma dyke” in the central part, of the Raniganj Coalfield, India. It has been observed that the delineation of the fault and the dyke was made possible under differential tropical weathering conditions. Geoelectric sections across the fault and the dyke have been prepared on the basis of Schlumberger sounding results. In profiling, Wenner, two-electrode, half-Schlumberger and part of Al-Chalabi's configurations were applied over the Southern Boundary Fault. Across the dyke, alpha-, beta-, and gamma-Wenner, Schlumberger, half-Schlumberger and two-electrode configurations were employed. Azi-muthal two-electrode sounding was also studied over the fault. The interpretation of the results of apparent resistivity profiles across the Southern Boundary Fault suggests that the Wenner and two-electrode configurations possess certain diagnostic features which help in mapping a single lithological contact, provided sufficient resistivity contrast exists. Although Schlumberger configuration seems to be quite suitable, other configurations may also be usefully employed over the dyke.  相似文献   

14.
Resistivity structure of a seismic gap along the Atotsugawa Fault, Japan   总被引:1,自引:0,他引:1  
Seismicity along the Atotsugawa Fault, located in central Japan, shows a clear heterogeneity. The central segment of the fault with low-seismicity is recognized as a seismic gap, although a lot of micro-earthquakes occur along this fault. In order to elucidate the cause of the heterogeneity in seismicity, the electrical resistivity structure was investigated around the Atotsugawa Fault by using the magnetotelluric (MT) method. The regional geoelectrical strikes are approximately parallel to the fault in a low-frequency range. We constructed two-dimensional resistivity models across the fault using TM-mode MT responses to minimize three-dimensional effects on the modeling process. A smooth inversion algorithm was used, and the static-shifts on the apparent resistivity were corrected in the inversion process.A shallow, low resistivity zone along the fault is found from the surface to a depth of 1-2 km in the best-fit model across the high-seismicity segment of the fault. On the other hand, the corresponding low resistivity zone along the low-seismicity segment is limited to a shallower depth less than 1 km. The low resistivity zone along the Atotsugawa Fault is possibly due to fluid in the fracture zone; the segment with higher levels of seismicity may have higher fluid content in the fault zone compared with the lower seismicity segment. On a view of the crustal structure, a lateral resistivity variation in a depth range of 3-12 km is found below the fault trace in the high-seismicity segment, while a resistive layer of wide extent is found at a depth of about 5 km below the fault trace in the low-seismicity segment. The resistive layer is explained by less fluid condition and possibly characterized as high rigidity. Differences in the resistivity structures between low and high-seismicity segments of the fault suggest that the seismic gap in the central part of the Atotsugawa Fault may be interpreted as a locked segment. Thus, MT is an effective method in evaluating a cause and future activity of seismic gaps along active faults.The lower crust appears as a conductive zone beneath the low-seismicity segment, less conductive beneath the high-seismicity segment. Fluid is inferred as a preferable cause of the conductive zone in this study. It is suggested that the conductive lower crust beneath the low-seismicity segment is recognized where fluid is trapped by an impermeable layer in the upper crust. On the other hand, fluid in the lower crust may upwell to the surface along the high-seismicity segment of the fault.  相似文献   

15.
Takeshi Hashimoto 《Island Arc》2001,10(3-4):306-317
Abstract A resistivity survey method using artificial telluric noise was examined and applied to a field of a fault zone. The electric earth current was measured at 50 sites in the Nojima Fault zone, which is in the northwestern part of Awaji Island, southwestern Japan. The dominant component of the observed electric field is supposed to be leakage currents from DC electric railways running outside the island. Amplitude and polarization of the stray current were systematically investigated and were revealed to represent the subsurface electrical structure of the study area. Some features on the fault zone's electrical structure have been pointed out, including: (i) an electrical boundary that corresponds to a geological one between granite (resistive) and sediments (conductive); and (ii) a low resistivity spot on the surface rupture of the earthquake fault. The structure estimated in the present study is both qualitatively and quantitatively consistent with previous resistivity surveys done using other methods pursued in the same area. It shows the validity of the 'stray current method' as one that is easy and uses low-cost resistivity exploration tools in a region where the effect of artificial noise caused mainly by leakage currents from electrical railways cannot be ignored.  相似文献   

16.
Soil gas emission is closely related to tectonic and seismic activity and has been widely used to track active faults and monitor seismicity in the upper crust. Because active fault plays an important role as the channel of the earth's deep gas upward migration due to its high permeability and porosity, the geochemical characteristics of soil gas in fault zone is a good indicator of tectonic fracture and activity. In order to study the soil gas geochemical emission intensities and its correlation to fault activity, fluxes of Rn, Hg and CO2 in soil gas and the ground resistivity were surveyed across the Yuxian-Guangling Fault and Kouquan Fault which are both Quaternary active faults in the border area of Shanxi Province, Hebei Province and Inner Mongolia Autonomous Region. In 2017, soil gas fluxes were measured in 2 profiles consisting of 10 and 9 wells of depth of 3.0m across the fault scarps in Yuxian-Guangling Fault and Kouquan Fault, respectively. Resistivity tomography sections were attained by ground resistivity survey with electrode spacing of 5.0m along the profiles of soil gas measurement. The gas geochemical data show that there exist two abnormal flux peaks across the Yuxian-Guangling Fault and one in the Kouquan Fault. The high density resistivity measurement shows that fault breccia and fractured rocks zones are developed under the measured faults, where higher values of soil gas flux are also observed. Fractures with high gas permeability in the strata favor the transfer and migration upward of soil gases, which results in the anomalies of gas flux value. In addition, the anomalies of gas flux values are spatially identical with the occurrence of the fault scarps. The soil gas degassing rate of Yuxian-Guangling Fault is higher than that of Kouquan Fault. The research results of high density electrical prospecting and previous tectonic activity show that low-resistance bodies are more developed and the fault activity is stronger with higher slip rate, which leads to the more intense emission of soil gas in Yuxian-Guangling Fault. The conclusions can be made that soil gas geochemical characteristics and degassing rate in fault zone is closely correlated to the tectonic activity and fracture degree. Combination of geochemical and geophysical methods is an efficient way for the monitoring and study of fault activity to estimate the possible earthquake hazards.  相似文献   

17.
大别山北缘深部结构的高精度重磁电震解析   总被引:1,自引:1,他引:0       下载免费PDF全文
大别山北缘位于大别造山带与华北陆块会聚地带,其深部精细结构还存在一些争议问题.根据近年来在研究区域内采集的地球物理数据,通过OMEGA、OASIS和FUGRO-LCT等多个重磁电震软件处理,获得了深部信息丰富的多种地球物理属性图像.本文从中选取了2条平行的电法和地震剖面,辅以高精度重磁数据,揭示了大别山北缘深部地质结构总体呈现华北陆块南向俯冲、北淮阳构造带向北逆冲的特征,并可清楚地识别大别山北缘造山带、肥南山前坳陷带和肥北斜坡带.其特征分别如下:①大别山北缘造山带,地震反射杂乱,电性高阻大于2000Ωm,以磨子潭-晓天断裂为界分为北大别杂岩带和北淮阳构造带,主要由大别群、卢镇关杂岩和佛子岭群组成,沿舒城-信阳断裂逆冲于中、下侏罗统之上,浅部发育北倾的金寨-龙门冲滑覆断裂.②肥南山前坳陷带,上部为中、新生界,呈现中低阻特征,地震反射界面清楚,断面波明显;下部为华北型前中生界沉积岩(上部可能残存古生界),电性特征为低阻(5~50 Ωm),地震反射较连续,内部反射弱.以六安断裂为界分为舒城凹陷和肥中断裂带,其北侧边界为肥中断裂.③肥北斜坡带,上部主要为侏罗系,呈现中低阻、水平层状地震反射特征;下部主要为霍邱群,电性为高阻,地震反射杂乱;中间为华北型前中生界沉积岩,向北逐渐减薄、直至缺失.上述认识将为华北陆块南向俯冲、南北板块碰撞缝合线和油气资源勘查等研究提供深部地质约束.  相似文献   

18.
安徽霍山地震区深部电性结构和发震构造特征   总被引:2,自引:0,他引:2       下载免费PDF全文
霍山地震区位于大别造山带北缘华北板块与扬子板块接触带上,是大别造山带及周边地震活动最频繁、最集中的地区.83个大地电磁测点组成的大地电磁三维阵列覆盖了整个霍山地震区.用多重网格法、印模迭代重构法和非线性共轭梯度法对阵列数据进行三维带地形反演,获得了地震区深部三维电性结构.电性结构显示,北大别、北淮阳区的中上地壳为电阻率1000Ωm以上的高阻区,中下地壳为电阻率数十欧姆米的相对低阻区;六安盆地电阻率整体较低,中地壳存在显著的电阻率为几欧姆米的壳内高导层.北西向的晓天—磨子潭断裂分隔了北大别高阻层和北淮阳高阻层,在浅部向NE倾,深部向SW倾;北东向的落儿岭—土地岭断裂切穿北大别上地壳高阻层.小震双差定位结果表明,地震主要发生在NE向延伸的落儿岭—土地岭断裂附近的北大别、北淮阳中上地壳的高阻区,并集中于NW向的晓天—磨子潭断裂运动所造成的构造薄弱带中;2014年M S4.3霍山地震震源深度较深,位于北大别高阻区内部的电性梯度较大的区域.综合上述结果我们认为,霍山地震区的主要发震断裂为落儿岭—土地岭断裂,断裂的运动变形充分利用了晓天—磨子潭断裂早先活动所形成的构造薄弱带,断裂下方壳源高导体中的流体沿断层传播使断层强度弱化,使得这些薄弱带区易于发生小地震.由于北大别、北淮阳构造区显著高阻层的存在,我们认为霍山地震区存在发生6级以上中强震的深部孕震环境.  相似文献   

19.
Abstract Distinctive fault ruptures, the Nojima Fault and Ogura Fault, appeared along the northwestern coast of Awaji Island at the time of the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). In order to delineate the shallow resistivity structures around the faults just after they formed, Very Low Frequency Magnetotelluric (VLF-MT) surveys were made at five sites along the Nojima Fault and at one site along the Ogura Fault. Fourteen transects were made at the one site on the Ogura Fault, and another transect covers the area between the two faults. Changes in apparent resistivity or phase, or both, commonly occur when crossing the surface location of one of the faults, except for the northern transects at OGR-0 on the Ogura Fault. Apparent resistivity values of less than 100 Ωm were observed for Tertiary and Quaternary sediments and values larger than 200 Ωm for granitic rocks. The resistivity structures are related to the morphological characteristics of the fault ruptures. Remarkably conductive zones (less than 10 Ωm in apparent resistivity and 30–40 m in width) were found where the surface displacement is distinct and prominent along a single fault plane. If remarkably conductive zones were formed at the time of the 1995 Hyogo-ken Nanbu earthquake, the results provide a good constraint on the dimensions of a conductive zone near the surface that was made by one earthquake. Alternatively, if characteristic resistivity structures existed prior to the earthquake, the conductive zone was probably formed by some tens of earthquakes in relatively modern times. In this case, this phenomenon is inferred to be a concentration of fracturing in a narrow zone and is associated with the formation of clay minerals, which enhance rock conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号