首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of simulating global ocean circulation and its interannual variability in 1948–2007 using INM RAS ocean general circulation model INMOM (Institute of Numerical Mathematics Ocean Model) are presented. One of the INMOM versions is also used for the Black Sea dynamics simulation. The CORE datasets were used to set realistic atmospheric forcing. Sea ice area decrease by 2007 was reproduced in the Arctic Ocean that is in good agreement with observations. The interdecadal climatic variability was revealed with significant decrease of Atlantic thermohaline circulation (ATHC) and meridional heat transport (MHT) in North Atlantic (NA) since the late 1990’s. MHT presents decrease of heat transport from NA to the atmosphere since the mid-1990’s. Therefore the negative feedback is revealed in the Earth climate system that leads to reducing of climate warming caused primarily by anthropogenic factor for the last decades. Long-term variability (60 years) of ATHC is revealed as well which influences NA thermal state with 10 year delay. The assumption is argued that this mechanism can make a contribution in the ATHC own long-term variability.  相似文献   

2.
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air–sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air–sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).  相似文献   

3.
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989–2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997–1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.  相似文献   

4.
Gravity current entrainment is essential in determining the properties of the interior ocean water masses that result from marginal sea overflows. Although the individual entraining billows will be unresolvable in large-scale ocean models for the foreseeable future, some large-scale simulations are now being carried out that do resolve the intermediate scale environment which may control the rate of entrainment. Hallberg [Mon. Wea. Rev. 128 (2000) 1402] has recently developed an implicit diapycnal mixing scheme for isopycnic coordinate ocean models that includes the Richardson number dependent entrainment parameterization of Turner [J. Fluid Mech. 173 (1986) 431], and which may be capable of representing the gravity current evolution in large-scale ocean models. The present work uses realistic regional simulations with the Miami Isopycnic Coordinate Ocean Model (MICOM) to evaluate ability of this scheme to simulate the entrainment that is observed to occur in the bottom boundary currents downstream of the Mediterranean outflow. These simulations are strikingly similar to the observations, indicating that this scheme does produce realistic mixing between the Mediterranean outflow and the North Atlantic Central Water. Sensitivity studies identify the critical Richardson number below which vigorous entrainment occurs as a particularly important parameter. Some of these experiments also show meddies detaching from the Mediterranean undercurrent at locations that appear to be highly influenced by topographic features.  相似文献   

5.
Coordinated Ocean-ice Reference Experiments (COREs) are presented as a tool to explore the behaviour of global ocean-ice models under forcing from a common atmospheric dataset. We highlight issues arising when designing coupled global ocean and sea ice experiments, such as difficulties formulating a consistent forcing methodology and experimental protocol. Particular focus is given to the hydrological forcing, the details of which are key to realizing simulations with stable meridional overturning circulations.The atmospheric forcing from [Large, W., Yeager, S., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research] was developed for coupled-ocean and sea ice models. We found it to be suitable for our purposes, even though its evaluation originally focussed more on the ocean than on the sea-ice. Simulations with this atmospheric forcing are presented from seven global ocean-ice models using the CORE-I design (repeating annual cycle of atmospheric forcing for 500 years). These simulations test the hypothesis that global ocean-ice models run under the same atmospheric state produce qualitatively similar simulations. The validity of this hypothesis is shown to depend on the chosen diagnostic. The CORE simulations provide feedback to the fidelity of the atmospheric forcing and model configuration, with identification of biases promoting avenues for forcing dataset and/or model development.  相似文献   

6.
A new three-dimensional numerical model is derived through a wave average on the primitive N-S equations, in which both the"Coriolis-Stokes forcing" and the"Stokes-Vortex force" are considered. Three ideal experiments are run using the new model applied to the Princeton ocean model (POM). Numerical results show that surface waves play an important role on the mixing of the upper ocean. The mixed layer is enhanced when wave effect is considered in conjunction with small Langmuir numbers. Both surface wave breaking and Stokes production can strengthen the turbulent mixing near the surface. However, the influence of wave breaking is limited to a thin layer, but Stokes drift can affect the whole mixed layer. Furthermore, the vertical mixing coefficients clearly rise in the mixed layer, and the upper ocean mixed layer is deepened especially in the Antarctic Circumpolar Current when the model is applied to global simulations. It indicates that the surface gravity waves are indispensable in enhancing the mixing in the upper ocean, and should be accounted for in ocean general circulation models.  相似文献   

7.
Both the level 2.5 Mellor-Yamada turbulence closure scheme(MY) and K-profile parameterization(KPP) are popularly used by the ocean modeling community.The MY and the KPP are improved through including the non-breaking surface wave-induced vertical mixing(Bv),and the improved schemes were tested by using continuous data at the Papa ocean weather station(OWS) during 1961–1965.The numerical results showed that the Bv can make the temperature simulations fit much better with the continuous data from Papa Station.The two improved schemes overcame the shortcomings of predicting too shallow upper mixed layer depth and consequently overheated sea surface temperature during summertime,which are in fact common problems for all turbulence closure models.Statistical analysis showed that the Bv effectively reduced the mean absolute error and root mean square error of the upper layer temperature and increased the correlation coefficient between simulation and the observation.Furthermore,the performance of vertical mixing induced by shear instability and the Bv is also compared.Both the temperature structure and its seasonal cycle significantly improved by including the Bv,regardless of whether shear instability was included or not,especially for the KPP mixing scheme,which suggested that Bv played a dominant role in the upper ocean where the mean current was relatively weak,such as at Papa Station.These results may provide a clue to improve ocean circulation models.  相似文献   

8.
《Ocean Modelling》2000,2(3-4):123-192
This paper presents some research developments in primitive equation ocean models which could impact the ocean component of realistic global coupled climate models aimed at large-scale, low frequency climate simulations and predictions. It is written primarily to an audience of modellers concerned with the ocean component of climate models, although not necessarily experts in the design and implementation of ocean model algorithms.  相似文献   

9.
Izvestiya, Atmospheric and Oceanic Physics - In this work, results of modeling the intra-annual variability of water and ice circulation in the Arctic Ocean by means of the INMIO4.1...  相似文献   

10.
利用927工程海岛绝对重力测量数据,研究了海潮负荷改正计算软件、海潮模型以及地球模型三因素对绝对重力海潮负荷改正的影响。根据计算结果,观测期间由不同海潮负荷计算软件造成的海潮重力值差异可达5.985 7μGal,不同海潮模型的差异可达2.532 7μGal,不同地球模型的差异可达5.928 3μGal。结论认为,在海岛绝对重力测量数据处理中,必须充分考虑以上因素造成的海潮负荷改正差异。  相似文献   

11.
A new version of the Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS), climate model (CM) has been developed using an ocean general circulation model instead of the statistical-dynamical ocean model applied in the previous version. The spatial resolution of the new ocean model is 3° in latitude and 5° in longitude, with 25 unevenly spaced vertical levels. In the previous version of the oceanic model, as in the atmospheric model, the horizontal resolution was 4.5° in latitude and 6° in longitude, with four vertical levels (the upper quasi-homogeneous layer, seasonal thermocline, abyssal ocean, and bottom friction layer). There is no correction for the heat and momentum fluxes between the atmosphere and ocean in the new version of the IAP RAS CM. Numerical experiments with the IAP RAS CM have been performed under current initial and boundary conditions, as well as with an increasing concentration of atmospheric carbon dioxide. The main simulated atmospheric and oceanic fields agree quite well with observational data. The new version’s equilibrium temperature sensitivity to atmospheric CO2 doubling was found to be 2.9 K. This value lies in the mid-range of estimates (2–4.5 K) obtained from simulations with state-of-the-art models of different complexities.  相似文献   

12.
A modified and improved primitive equation numerical model with p-sigma incorporated vertical coordinates is used to simulate the effects of different sea surface temperature distributions over the western Pacific on the summer monsoon properties. The different sea surface temperature (SST) distributions are automatically generated in the time integrations by using two different SST models, one of which is called the deep ocean model (DOM) and the other the shallow ocean model (SOM). The SST generated by the DOM has the distribution pattern of the initial SST which is similar to the pattern in the cold water years over the western Pacific, while the SST generated by the SOM has the pattern similar to that in the warm water years. The differences between the experimental results by using DOM and SOM are analyzed in detail. The analyses indicate that the most basic and important characteristics of the summer monsoon climate can be simulated successfully in both experiments, that means the climatic propert  相似文献   

13.
海洋湍流模型研究自二十世纪 70年代中发展至今 ,在海洋动力学研究中 ,特别是关于混合 /层化研究中广泛应用 ,近年来由于认识到湍流对海洋生物过程的重要影响 ,对海洋湍流的客观描述更加关注。文中详细介绍了几个主要海洋动力学模型中的湍流封闭模式 ,如 HAMSOM中的Prandtl混合长模型、Johns模式中的 k-方程模型、POM中的 k- kl模型、水动力学中常用的 k-ε模型等等 ,介绍了海洋湍流模型的应用。对于湍流模型的使用提出针对具体问题选择的原则 ,复杂的并非最优的。  相似文献   

14.
The results of simulations of the World Ocean sea surface hight (SSH) in by various versions of the Climate Model of the Institute of Numerical Mathematics, Russian Academy of Sciences, are compared with the CNES-CLS09 fields of the mean dynamic topography (deviation of the ocean level from the geoid). Three models with different ocean blocks are considered which slightly differ in numerical schemes and have various horizontal spatial resolution, i.e., the INMCM4 model, which participated in the Climate Model Intercomparison Project (CMIP Phase 5, resolution of 1° × 1/2°); the INMCM5 model, which participates in the next project, CMIP6 (resolution of 1/2° × 1/4°); and the advanced INMCM-ER eddy-resolving model (resolution of 1/6° × 1/8°). It is shown that an increase in the spatial resolution improves the reproduction of ocean currents (with Agulhas and Kuroshio currents as examples) and their variability. A probable cause of relatively high errors in the reproduction of the SSH of Southern and Indian oceans is discussed.  相似文献   

15.
The effects of spatial variations of the thickness diffusivity (K) appropriate to the parameterisation of [Gent, P.R. and McWilliams, J.C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.] are assessed in a coarse resolution global ocean general circulation model. Simulations using three closures yielding different lateral and/or vertical variations in K are compared with a simulation using a constant value. Although the effects of changing K are in general small and all simulations remain biased compared to observations, we find systematic local sensitivities of the simulated circulation on K. In particular, increasing K near the surface in the tropical ocean lifts the depth of the equatorial thermocline, the strength of the Antarctic Circumpolar Current decreases while the subpolar and subtropical gyre transports in the North Atlantic increase by increasing K locally. We also find that the lateral and vertical structure of K given by a recently proposed closure reduces the negative temperature biases in the western North Atlantic by adjusting the pathways of the Gulf Stream and the North Atlantic Current to a more realistic position.  相似文献   

16.
《Ocean Modelling》2004,6(3-4):285-334
We have developed a general 1-D multi-component ecosystem model that incorporates a skillful upper ocean mixed layer model based on second moment closure of turbulence. The model is intended for eventual incorporation into coupled 3-D physical–biogeochemical ocean models with potential applications to modeling and studying primary productivity and carbon cycling in the global oceans as well as to promote the use of chlorophyll concentrations, in concert with satellite-sensed ocean color, as a diagnostic tool to delineate circulation features in numerical circulation models. The model is nitrogen-based and the design is deliberately general enough and modular to enable many of the existing ecosystem model formulations to be simulated and hence model-to-model comparisons rendered feasible. In its more general form (GEM10), the model solves for nitrate, ammonium, dissolved nitrogen, bacteria and two size categories of phytoplankton, zooplankton and detritus, in addition to solving for dissolved inorganic carbon and total alkalinity to enable estimation of the carbon dioxide flux at the air–sea interface. Dissolved oxygen is another prognostic variable enabling air–sea exchange of oxygen to be calculated. For potential applications to HNLC regions where productivity is constrained by the availability of a trace constituent such as iron, the model carries the trace constituent as an additional prognostic variable. Here we present 1-D model simulations for the Black Sea, Station PAPA and the BATS site. The Black Sea simulations assimilate seasonal monthly SST, SSS and surface chlorophyll, and the seasonal modulations compare favorably with earlier work. Station PAPA simulations for 1975–1977 with GEM5 assimilating observed SST and a plausible seasonal modulation of surface chlorophyll concentration also compare favorably with earlier work and with the limited observations on nitrate and pCO2 available. Finally, GEM5 simulations at BATS for 1985–1997 are consistent with the available time series. The simulations suggest that while it is generally desirable to employ a comprehensive ecosystem model with a large number of components when accurate depiction of the entire ecosystem is desirable, as is the prevailing practice, a simpler formulation such as GEM5 (N2PZD model) combined with assimilation of remotely sensed SST and chlorophyll concentrations may suffice for incorporation into 3-D prediction models of primary productivity, upper ocean optical clarity and carbon cycling.  相似文献   

17.
《Ocean Modelling》2002,4(3-4):249-267
During the course of developing new numerical algorithms for a terrain-following ocean modeling system (TOMS), different numerical aspects have been evaluated through a comparison between two widely used community ocean models, the Princeton ocean model (POM) and the regional ocean modeling system (ROMS). While both models aim at modeling coastal to basin-scale problems using similar grids, their numerical algorithms, code structure, and parameterization options are very different. Sensitivity studies with an idealized channel flow and a steep seamount configuration demonstrate how different algorithms in the two models may affect numerical errors, the stability of the code and the computational efficiency. For example, new pressure gradient schemes using polynomial fits and new time stepping algorithms may reduce numerical errors and allow using longer time steps than standard schemes do. However, the new schemes may require more careful choices of time steps and the use of higher order advection schemes to maintain numerical stability.  相似文献   

18.
In light of the pressing need for development and testing of reliable parameterizations of gravity current entrainment in ocean general circulation models, two existing entrainment parameterization schemes, K-profile parameterization (KPP) and one based on Turner’s work (TP), are compared using idealized experiments of dense water flow over a constant-slope wedge using the HYbrid Coordinate Ocean Model (HYCOM). It is found that the gravity current entrainment resulting from KPP and TP differ significantly from one another. Parameters of KPP and TP are then calibrated using results from the high-order nonhydrostatic spectral element model Nek5000. It is shown that a very good agreement can be reached between the HYCOM simulations with KPP and TP, even though these schemes are quite different from each other.  相似文献   

19.
A hybrid coordinate ocean model for shelf sea simulation   总被引:1,自引:0,他引:1  
The general circulation in the North Sea and Skagerrak is simulated using the hybrid coordinate ocean model (HYCOM). Although HYCOM was originally developed for simulations of the open ocean, it has a design which should make it applicable also for coastal and shallow shelf seas. Thus, the objective of this study has been to examine the skills of the present version of HYCOM in a coastal shelf application, and to identify the areas where HYCOM needs to be further developed. To demonstrate the capability of the vertical coordinate in HYCOM, three experiments with different configurations of the vertical coordinate were carried out. In general, the results from these experiments compares quite well with in situ and satellite data, and the water masses and the general circulation in the North Sea and Skagerrak is reproduced in the simulations. Differences between the three experiments are small compared to other errors, which are related to a combined effect of model setup and properties of the vertical mixing scheme. Hence, it is difficult to quantify which vertical coordinate configuration works best for the coastal region. It is concluded that HYCOM can be used for simulations of coastal and shelf seas, and further suggestions for improving the model results are given. Since HYCOM also works well in open ocean and basin scale simulations, it may allow for a realistic modelling of the transition region between the open ocean and coastal shelf seas.  相似文献   

20.
Internal waves generated by a baroclinic internal wave impinging on an oceanic ridge are studied. Two stratification models are considered: a two-layer ocean model (with a density jump) and a continuously stratified ocean model (model pycnocline). The results yielded by different stratification models are compared analytically. The analysis makes possible the application of a piecewise-constant approximation of the fluid stratification to study topographically-generated baroclinic tides. Translated by V. Puchkin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号