首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Here we present the first data on He, Ne, Ar isotopic and elemental composition in fluid phases of tholeiitic chilled glasses from the Bouvet Triple Junction (BTJ). The chilled glasses from several dredging stations situated at different segments of BTJ have been investigated: Spiess Ridge, Mid Atlantic Ridge (MAR) and in a valley of the Southwest Indian Ridge (SWIR). The data allow to distinguish within BTJ three segments characterized by different geochemical behavior of He, Ne and Ar. MAR and Spiess samples contain MORB-like helium and neon while SWIR is characterized by addition of plume type He and Ne. The strong atmospheric contamination is typical of all segments, but for MAR it is less pronounced. The Ne-Ar isotope systematics suggests that the atmospheric component was most probably introduced into the mantle source of the fluids with fragments of oceanic crust/sediments.  相似文献   

2.
西南印度洋中脊(SWIR)平均扩张速率约为14 mm/yr,是全球洋中脊系统的重要组成端元,因其具有慢速-超慢速扩张特征,引起全球科学家的广泛关注。基于前人对SWIR的综合研究成果,从构造和岩浆作用两个角度出发,系统地回顾了SWIR的形成和演化历史,探讨了岩浆的分布特征和地幔不均一性成因。SWIR的形成始于冈瓦纳大陆的裂解,中段洋脊区域(26~42°E)是印度洋最早开启的窗口,历经多次洋脊跃迁和扩展作用形成了斜向扩张展布,多分段的构造格局。地幔热点在冈瓦纳大陆裂解过程中扮演了关键角色,并对SWIR的洋底地貌和岩浆作用具有显著影响,其中Bouvet和Marion热点在SWIR的西段和中段岩浆均留下了地球化学印迹。SWIR西段岩浆除却Bouvet热点影响之外表现出与大西洋-太平洋型玄武岩相似的同位素地球化学特征。在SWIR中段,39~41°E附近的岩浆具有显著的DUPAL异常特征,与冈瓦纳大陆的初始形成、裂解紧密相关。受俯冲改造的中—新元古代的造山带岩石圈地幔拆沉是造成SWIR中段地幔不均一性的重要根源。在SWIR东段,46~52°E区域内的局部岩浆组成异常,推测具有大陆地壳物质混染的成因。而在Melville转换断层以东,洋脊形成时间最晚,玄武岩的地幔源区受到了富集组分的交代作用,其同位素组成与相邻的中印度洋中脊(CIR)和东南印度洋中脊(SEIR)地幔源区具有亲缘性。  相似文献   

3.
This paper reports original data on the composition of volcanic rocks in the western part of the Andrew Bain Fault of the South-West Indian Ridge obtained in the 23rd voyage of R/V Akademik Nikolai Strakhov. In accordance with high La/Th and low Nb/U ratios, the basalt compositions of stations S2317, S2318, and S2330 could result from melting of the DM-type source with HIMU traces. Meanwhile, the enriched samples of station S2326 correspond to a mantle source with a considerable contribution of recycled sediments (EM). Sample S2326/35, which is composed of a melt almost completely depleted in EM material, corresponds to the volcanic rocks of the Marion and Prince Edward islands. The obtained and available data on the SWIR segment from Bouvet Island to Andrew Bain Fault are indicative of small mantle heterogeneities in this region. Two possible variants of their origin are considered: either preservation of the enriched material fragments in the depleted mantle during the split of Gondwana or “contamination” of the mantle with plume material with the formation of vein irregularities before opening of the ocean in this region. In the latter case, the plume material could cover a huge area not constrained by the young plume magmatism regions on Bouvet, Marion, and Prince Edward islands.  相似文献   

4.
The study provides new understanding of magmatism at extinct and modern spreading zones around the western margin of East Antarctica from Bransfield Strait to the Bouvet Triple Junction (BTJ) in the Atlantic Ocean and reveals causes of geochemical heterogeneity of mantle magmatism during the early opening of the Southern Ocean. The results indicate the involvement of an enriched source component in the generation of parental melts, which was formed in several tectonic stages. The enriched (metasomatized) mantle generated at rift zones has geochemical characteristics typical of the western Gondwana lithosphere (with isotopic compositions similar to those inferred for the enriched HIMU and EM-2 sources). This mantle source may have been produced by the thermal erosion of the continental mantle during the early stages of the Karoo–Maud–Ferrar superplume activity. This enriched mantle generated in the apical parts of the plume (sub-oceanic) began to melt during tectonic displacement and fragmentation of Gondwana. The Bouvet Triple Junction, located along modern spreading zones between the Antarctic and South American plate, is characterized by a greater depth of melting and a higher degree of enrichment of primary tholeiitic magmas. The highest enrichment of magmas in this region is controlled by a contribution from a pyroxenite-rich component, which was also identified in the extinct spreading center in Powell Basin.  相似文献   

5.
《International Geology Review》2012,54(13):1715-1734
This study examines the geochemistry of major and trace elements of abyssal peridotites from the Southwest Indian Ridge (SWIR) (53° E amagmatic segment), to determine the influence of mafic melts on mantle peridotites during melt extraction. The results show a great geochemical variability in the ~90 km-long ridge segment, with a degree of mantle melting ranging from 4% to 24%. An ancient melting event may explain the presence of highly depleted peridotites at the ultraslow-spreading ridge. The 53° E segment peridotites show enrichment of light rare earth elements (LREEs) (average LaN/SmN = 1.87) and significant positive anomaly of U and Pb normalized to primitive mantle (PM). The positive correlations between LREEs (La, Ce, Pr, Nd) and high field strength elements (HFSEs; e.g. Nb and Zr) suggest that the enrichment of LREEs is caused by melt refertilization, which is also supported by prevalent magmatic microstructures in the peridotites. The melt refertilization model shows that the addition of 0.02–2.7% basaltic melts to peridotites can be responsible for the LREE enrichment. We suggest that the positive anomaly of U is probably attributed to fluid alteration whereas the enrichment of Pb is probably attributed to both melt refertilization and fluid alteration. Melt refertilization in the 53° E segment peridotites may be a result of melt–rock reaction and crystallization of melts trapped in peridotites. These processes may be enhanced by increased melt permeability in the mantle owing to the refractory peridotites produced by ancient melting and the decreasing efficiency of melt extraction in the cold and thick lithosphere at the 53° E ridge segment. The presence of melt refertilization implies that melt extraction is incomplete in the ridge mantle, which may be one of the reasons for the extremely thin and irregular variation of the crustal thickness at ultraslow-spreading ridges.  相似文献   

6.
Results of electron microprobe and microthermometric studies of samples collected from the Bouvet Triple Junction Region (BTJR) during a joint Russian-Italian geological expedition on the R/V Academician Nikolaj Strakhov (1994) have revealed new data on the composition of basaltic magmas and oceanic hydrothermal fluids connected with magmatic processes. Detailed analysis of basaltic glasses shows that the modem Mid-Atlantic Ridge (MAR) rift valley is composed of normal mid-ocean ridge basalts with low concentrations of K2 O and TiOz (N-MORB), while its flanks are more enriched with these components approaching E-MORB. A marked influence of the Bouvet hot spot volcanism on magma generation on the South-West Indian Ridge (SWIR) near Bouvet Island is observed. Basaltic melts in this area belong to alkalic and transitional series and have maximum contents of K2O, TiO2, H2O.
Microthermometric analyses of fluid inclusions in the samples from the BTJR have revealed major differences in the oceanic hydrothermal fluid systems on the MAR and near SWIR, which depends on the peculiarities of magma. In the area of the MAR (with dry melts) only H2O solution inclusions in quartz were found; thus, seawater is probably the only primary source of hydrothermal fluids (NaCl + MgCl2+ H2O; T = 170–200°C). In the SWIR area (with the high content of water in melts) syngenetic liquid CO2 and H2O solution inclusions in quartz indicate the influence of the magmatic fluid component on the ore-forming water/carbon dioxide solutions (NaCl + CaC12+ H2O + CO2; T = 200–310 °C; P = 900–1700 bar).  相似文献   

7.
张利  杨经绥  刘飞  连东洋  黄健  赵慧  杨艳 《岩石学报》2016,32(12):3649-3672
西藏阿里地区的南公珠错蛇绿岩产在公珠错的南侧,空间上属于雅鲁藏布江缝合带西段之南亚带蛇绿岩。该蛇绿岩主要由地幔橄榄岩和辉长岩等基性岩类组成。地幔橄榄岩中约80%为方辉橄榄岩,20%为二辉橄榄岩,纯橄岩较少。南公珠错地幔橄榄岩矿物化学特征表现为橄榄石具有较低的Fo(89.3~91.4)值、辉石具有较高的Al_2O_3含量(1.89%~6.06%)、尖晶石具有较低的Cr~#(12.7~28.3)值。与原始地幔相比南公珠错地幔橄榄岩的全岩地球化学特征具有较高的MgO含量和较低的Al_2O_3、CaO和TiO_2等易熔元素含量;方辉橄榄岩和二辉橄榄岩的稀土元素总含量分别介于0.66×10-6~1.10×10-6和0.90×10~(-6)~3.78×10~(-6)之间,明显低于原始地幔值,其稀土元素配分模式为轻稀土元素轻微富集型;在原始地幔标准化微量元素蜘蛛图中,南公珠错地幔橄榄岩显示出强烈的U正异常、Nd轻微正异常和强不相容元素Zr的负异常;方辉橄榄岩和二辉橄榄岩的铂族元素总量分别介于15.26×10~(-9)~25.23×10~(-9)和18.74×10~(-9)~26.86×10~(-9)之间,二者含量的变化较小,南公珠错地幔橄榄岩PGEs球粒陨石标准化图解显示其为接近于原始地幔的"平坦型"。南公珠错地幔橄榄岩的矿物化学和全岩地球化学特征与深海橄榄岩相似,指示它们可能形成于大洋扩张脊环境。定量模拟估算表明,南公珠错地幔橄榄岩可能来源于地幔中的尖晶石相二辉橄榄岩源区,系经历了至多16%部分熔融的残余。LREE的微富集和较高的Pd/Ir、Rh/Ir比值指示它们还经历了岩石-熔体反应作用。初步结论认为南公珠错地幔橄榄岩形成于大洋脊环境,为尖晶石相二辉橄榄岩地幔源区较低程度部分熔融的残余,但经历了后期岩石-熔体反应作用。  相似文献   

8.
Two dives of the DSV Shinkai 6500 in the Mariana Trough back-arc basin in the western Pacific sampled back-arc basin mantle exposures. Reports of peridotite exposures in back-arc basin setting are very limited and the lack of samples has hindered our understanding of this important aspect of lithospheric evolution. The Mariana Trough is a slow-spreading ridge, and ultramafic exposures with associated gabbro dykes or sills are located within a segment boundary. Petrological data suggest that the Mariana Trough peridotites are moderately depleted residues after partial melting of the upper mantle. Although some peridotite samples are affected by small-scale metasomatism, there is no evidence of pervasive post-melting metasomatism or melt-mantle interaction. Spinel compositions plot in the field for abyssal peridotites. Clinopyroxenes show depletions in Ti, Zr, and REE that are intermediate between those documented for peridotites from the Vulcan and Bouvet fracture zones (the American-Antarctic and Southwest Indian ridges, respectively). The open-system melting model indicates that the Mariana Trough peridotite compositions roughly correspond to theoretical residual compositions after ~7% near-fractional melting of a depleted MORB-type upper mantle with only little melt or fluid/mantle interactions. The low degree of melting is consistent with a low magma budget, resulting in ultramafic exposure. We infer that the mantle flow beneath the Mariana Trough Central Graben is episodic, resulting in varying magma supply rate at spreading segments.  相似文献   

9.
Basalts dredged from the Bouvet triple junction (South Atlantic), from the Mid-Atlantic Ridge near the triple junction, and from a spreading center east of Bouvet Island differ from normal mid-ocean ridge tholeiites by having higher concentrations of K and other large-ion-lithophile elements, higher 87Sr:86Sr ratios, and rare earth element distributions which show relative enrichment in the lighter rare earths. The basalts are more fractionated than typical oceanic tholeiites, however, fractional crystallization does not fully account for their chemical characteristics, and it appears that they were derived from special source materials, contaminated perhaps by a mantle plume rising beneath Bouvet Island.  相似文献   

10.
ABSTRACT

This study examines the major and trace elements of peridotites from the Yap Trench in the western Pacific to investigate mantle evolution beneath a subduction zone. Major element results show that the peridotites are low in Al2O3 (0.31–0.65 wt.%) and CaO (0.04–0.07 wt.%) contents and high in Mg# (Mg/(Mg+Fe)) (0.91–0.92) and have spinels with Cr# (Cr/(Cr+Al)) higher than 0.6 (0.61–0.73). Trace element results show that the peridotites have extremely low heavy rare earth element (HREE) contents compared with abyssal peridotites but have U-shaped chondrite-normalized rare earth element (REE) patterns. The degree of mantle melting estimated based on the major elements, HREEs, and spinel Cr# range from 19% to 25%, indicating that the Yap Trench peridotites may be residues of melting associated with the presence of water in the mantle source. In addition to light rare earth element (LREE) enrichment, the peridotites are characterized by high contents of highly incompatible elements, positive U and Sr anomalies, negative Ti anomalies, and high Zr/Hf ratios. The correlations between these elements and both the degree of serpentinization and high field strength element (HFSE) contents suggest that fluid alteration alone cannot account for the enrichment of the peridotites and that at least the enrichment of LREEs was likely caused by melt–mantle interaction. Comparison between the peridotites and the depletion trend defined by the primitive mantle (PM) and the depleted mantle (DM) suggests that the Yap Trench mantle was modified by subduction-related melt characterized by high contents of incompatible elements, high Zr/Hf ratios, and low HFSE contents. Hydrous melting may have been enhanced by tectonic erosion of the subducting Caroline Plate with complex tectonic morphostructures at the earliest stages of subduction initiation.  相似文献   

11.
《Chemical Geology》2002,182(2-4):227-235
The ultraslow spreading Gakkel Ridge represents one of the most extreme spreading environments on the Earth. Full spreading rates there of 0.6–1.3 cm/year and Na8.0 in basalts of 3.3 imply an extremely low degree of mantle partial melting. For this reason, the complementary degree of melting registered by abyssal peridotite melting residues is highly interesting. In a single sample of serpentinized peridotite from Gakkel Ridge, we found spinels which, though locally altered, have otherwise unzoned and thus primary compositions in the cores of the grains. These reflect a somewhat higher degree of melting of the uppermost oceanic mantle than indicated by basalt compositions. Cr/(Cr+Al) ratios of these grains lie between 0.23 and 0.24, which is significantly higher than spinels from peridotites collected along the faster spreading Mid-Atlantic and Southwest Indian Ridges. Crustal thickness at Gakkel Ridge can be calculated from the peridotite spinel compositions, and is thicker than the crustal thickness of less than 4 km estimated from gravity data, or predicted from global correlations between spreading rate and seismically determined crustal thickness. The reason for this unexpected result may be local heterogeneity due to enhanced melt focussing at an ultraslow spreading ridge.  相似文献   

12.
The Song Ma region, which is located in the northwestern Vietnam represents the zone of amalgamation between Indochina and South China blocks. Numerous scattered ultramafic rocks occur in this region in association with Early to Middle Palaeozoic greenschists and paragneisses, and all these rocks were subjected to hydrous metamorphism and deformation. Here, we present new field data, mineral chemistry and geochemistry from a suite of hydrated peridotites within the Song Ma region and discuss the tectonic significances of the region. We also combine the available data within the Song Ma region and Indochina–South China blocks to discuss the tectonic evolution of the subduction zone. Based on the results, we suggest that the peridotites from the Song Ma are mantle residues that suffered a high degree of partial melting in a forearc tectonic setting. The present data together with the available data within the Song Ma region and the Indochina and South China blocks clearly represent a southward directed Middle Palaeozoic subduction system. The Middle Palaeozoic subduction and accretion events mark the evolutionary history along an active convergent margin between the Indochina and South China blocks, possibly related to the amalgamation of the Pangaea supercontinent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The compatibility of vanadium (V) during mantle melting is a function of oxygen fugacity (fO2): at high fO2’s, V becomes more incompatible. The prospects and limitations of using the V content of peridotites as a proxy for paleo-fO2 at the time of melt extraction were investigated here by assessing the uncertainties in V measurements and the sensitivity of V as a function of degree of melt extracted and fO2. V-MgO and V-Al2O3 systematics were found to be sensitive to fO2 variations, but consideration of the uncertainties in measurements and model parameters indicates that V is sensitive only to relative fO2 differences greater than ∼2 log units. Post-Archean oceanic mantle peridotites, as represented by abyssal peridotites and obducted massif peridotites, have V-MgO and -Al2O3 systematics that can be modeled by 1.5 GPa melting between FMQ − 3 and FMQ − 1. This is consistent with fO2’s of the mantle source for mid-ocean ridge basalts (MORBs) as determined by the Fe3+ activity of peridotitic minerals and basaltic glasses. Some arc-related peridotites have slightly lower V for a given degree of melting than oceanic mantle peridotites, and can be modeled by 1.5 GPa melting at fO2’s as high as FMQ. However, the majority of arc-related peridotites have V-MgO systematics overlapping that of oceanic mantle peridotites, suggesting that although some arc mantle may melt under slightly oxidizing conditions, most arc mantle does not. The fact that thermobarometrically determined fO2’s in arc peridotites and lavas can be significantly higher than that inferred from V systematics, suggests that V retains a record of the fO2 during partial melting, whereas the activity of Fe3+ in arc peridotitic minerals and lavas reflect subsequent metasomatic overprints and magmatic differentiation/emplacement processes, respectively.Peridotites associated with middle to late Archean cratonic mantle are characterized by highly variable V-MgO systematics. Tanzanian cratonic peridotites have V systematics indistinguishable from post-Archean oceanic mantle and can be modeled by 3 GPa partial melting at ∼FMQ − 3. In contrast, many South African and Siberian cratonic peridotites have much lower V contents for a given degree of melting, suggesting at first glance that partial melting occurred at high fO2’s. More likely, however, their unusually low V contents for a given degree of melting may be artifacts of excess orthopyroxene, a feature that pervades many South African and Siberian peridotites but not the Tanzanian peridotites. This is indicated by the fact that the V contents of South African and Siberian peridotites are correlated with increases in SiO2 content, generating data arrays that cannot be modeled by partial melting but can instead be generated by the addition of orthopyroxene through processes unrelated to primary melt depletion. Correction for orthopyroxene addition suggests that the South African and Siberian peridotites have V-MgO systematics similar to those of Tanzanian peridotites. Thus, if the Tanzanian peridotites represent the original partial melting residues, and if the South African and Siberian peridotites have been modified by orthopyroxene addition, then there is no indication that Archean cratonic mantle formed under fO2’s significantly greater than that of modern oceanic mantle. Instead, the fO2’s inferred from the V systematics in these three cratonic peridotite suites are within range of modern oceanic mantle. This also suggests that the transition from a highly reducing mantle in equilibrium with a metallic core to the present oxidized state must have occurred by late Archean times.  相似文献   

14.
A comparison of new and published geochemical characteristics of magmatism in the western and eastern Indian Ocean at the initial and recent stages of its evolution revealed several important differences between the mantle sources of basaltic melts from this ocean.
  1. The sources of basalts, from ancient rises and from flanks of the modern Central Indian Ridge within the western Indian Ocean contain an enriched component similar in composition to the source of the Réunion basalts (with radiogenic Pb and Sr and unradiogenic Nd), except for basalts from the Comores Islands, which exhibit a contribution from an enriched HIMU-like component.
  2. The modern rift lavas of spreading ridges display generally similar geochemical compositions. Several local isotopic anomalies are characterized by the presence of an EM2-like component. However, two anomalous areas with distinctly different enriched mantle sources were recognized in the westernmost part of the Southwestern Indian Ridge (SWIR). The enriched mantle source of the western SWIR tholeiites in the vicinity of the Bouvet Triple Junction has the isotopic ratios indicating a mixture of HIMU + EM2 in the source. The rift anomaly distinguished at 40° E displays the EM1 signature in the mantle source, which is characterized by relatively low 206Pb/204Pb (up to 17.0) and high 207Pb/204Pb, 208Pb/204Pb and 87Sr/86Sr. This source may be due to mixing with material from the continental lithosphere of the ancient continent Gondwana. The material from this source can be distinguished in magmas related to the Mesozoic plume activity in Antarctica, as well as in basalts from the eastern Indian Ocean rises, which were formed by the Kerguelen plume at 100–90 Ma.
  3. The geochemical heterogeneities identified in the ancient and present-day magmatic products from the western and eastern Indian Ocean are thought to reflect the geodynamic evolution of the region. In the eastern part of the ocean, the interaction of the evolving Kerguelen plume with the rift zones produced magmas with specific geochemical characteristics during the early opening of the ocean; such a dispersion of magma composition was not recognized in the western part of the ocean.
  相似文献   

15.
Major and trace elements and water contents were analyzed in 16 peridotite xenoliths embedded by the Cenozoic basalts in Pingnan (southeastern Guangxi Province), to constrain the chemical composition and evolution of the lithospheric mantle located in the central part of the South China Block (SCB). The peridotites are mainly moderately refractory harzburgites and lherzolites (Mg#-Ol?=?90.3–91.7) and minor fertile lherzolites (Mg#-Ol?=?88.9–89.9). Clinopyroxenes in the peridotites show LREE-depleted pattern, and commonly exhibit negative anomalies in Nb and Ti, suggesting the peridotites probably represent residues after 1–10% of partial melting without significant mantle metasomatism. Water contents range from 146 to 237 ppm wt. H2O in clinopyroxene, and from 65 to 112 ppm wt. H2O, in orthopyroxene but are below detection limit (2 ppm wt. H2O) in olivine. Calculated bulk water contents, based on the mineral modes and partition coefficient, range from 14 to 83 ppm wt. H2O (average 59 ppm wt. H2O). There is a correlation between melting indices (such as Mg#-Ol, Ybn in clinopyroxene) and water contents in clinopyroxene and orthopyroxene, but no correlation is observed between the whole-rock water contents and the redox state (Fe3+/∑Fe ratios in spinel), suggesting that water contents in the peridotites are mainly controlled by the degree of partial melting rather than by oxygen fugacity. The lithospheric mantle beneath the interior of the SCB may not be compositionally stratified; fertile and moderately refractory mantle coexist at the similar depths. Geochemical data and water contents of the studied peridotites are similar to the proposed MORB source and indicate that the ancient refractory lithospheric mantle was irregularly eroded or reacted by the upwelling asthenosphere, and eventually replaced by juvenile fertile accreted mantle through the cooling of the asthenosphere.  相似文献   

16.
 Mafic and ultramafic rocks sampled in the Garrett transform fault at 13°28′S on the East Pacific Rise (EPR) provide insight on magmatic processes occurring under a fast-spreading ridge system. Serpentinized harzburgite from Garrett have modal, mineral and bulk chemical compositions consistent with being mantle residue of a high degree of partial melting. Along with other EPR localities (Terevaka transform fault and Hess Deep), these harzburgites are among the most residual and depleted in magmatophile elements of the entire mid-ocean ridge system. Geothermometric calculations using olivine-spinel pairs indicate a mean temperature of 759 ± 25 °C for Garrett residual harzburgite similar to the average of 755 °C for tectonite peridotites from slow-spreading ridges. Results of this study show that mid-ocean ridge peridotites are subject to both fractional melting and metasomatic processes. Evidence for mantle metasomatism is ubiquitous in harzburgite and is likely widespread in the entire Garrett peridotite massif. Magma-harzburgite interactions are very well preserved as pyroxenite lenses, plagioclase dunite pockets or dunitic wall rock to intrusive gabbros. Abundant gabbroic rocks are found as intrusive pockets and dikes in harzburgite and have been injected in the following sequence: olivine-gabbro, gabbro, gabbronorite, and ferrogabbro. The wide variety of magmas that crystallized into gabbros contrast sharply with present-day intratransform basalts, which have a highly primitive composition. Ferrogabbro dikes have been intruded at the ridge-transform intersection and as they represent the last event of a succession of gabbros intrusive into the peridotite, they likely constrain the origin of the entire peridotite massif to the same location. In peridotite massifs from Pacific transform faults (Garrett and Terevaka), primitive to fractionated basaltic magmas have flowed and crystallized variable amounts of dunite (±plagioclase) and minor pyroxenite, followed by a succession of cumulate gabbroic dikes which have extensively intruded and modified the host harzburgitic rocks. The lithosphere and style of magmatic activity within a fast-slipping transform fault (outcrops of ultramafic massif, discontinuous gabbro pockets intrusive in peridotite, magnesian and phyric basalts) are more analogous to slow-spreading Mid-Atlantic Ridge type than the East Pacific Rise. Received: 13 October 1997 / Accepted: 5 February 1999  相似文献   

17.
The role of residual garnet during melting beneath mid-oceanridges has been the subject of many recent investigations. Toaddress this issue from the perspective of melting residues,we obtained major and trace element mineral chemistry of residualabyssal peridotites from the Central Indian Ridge. Many clinopyroxeneshave ratios of middle to heavy rare earth elements (MREE/HREE)that are too low to be explained by melting in the stabilityfield of spinel peridotite alone. Several percent of meltingmust have occurred at higher pressures in the garnet peridotitestability field. Application of new trace element partitioningmodels, which predict that HREE are compatible in high-pressureclinopyroxene, cannot fully explain the fractionation of theMREE from the HREE. Further, many samples show textural andchemical evidence for refertilization, such as relative enrichmentsof highly incompatible trace elements with respect to moderatelyincompatible trace elements. Therefore, highly incompatibleelements, which are decoupled from major and moderately incompatibletrace elements, are useful to assess late-stage processes, suchas melt entrapment, melt–rock reaction and veining. Moderatelyincompatible trace elements are less affected by such late-stageprocesses and thus useful to infer the melting history of abyssalperidotites. KEY WORDS: abyssal peridotites; mantle melting; garnet  相似文献   

18.
We acquired bulk-rock analyses of Mid-Atlantic Ridge (MAR) harzburgites in order to understand the influence of submarine igneous and metamorphic processes on the distribution of incompatible elements (especially rare Earth elements or REEs) in abyssal peridotites. The geochemical characteristics of these Logatchev Massif serpentinized and talc-altered harzburgites, and spatially associated metagabbros were then compared with a compilation of global abyssal peridotites. The Logatchev harzburgites show light rare earth element (LREE) enrichments (average La N /Yb N = 2.81), positive correlations between LREEs (e.g. La, Ce, Pr, and Nd) and high field strength elements (HFSEs; e.g. Nb and Zr), and positive correlations between HFSEs and Th. Most global abyssal peridotites show similar trends. We suggest that the systematic enrichment of incompatible elements probably reflects a post-partial fusion magmatic refertilization. The compositional scatter exhibited by some serpentinized peridotites in Nb-LREE diagrams is probably due to the elimination of diopside during partial melting and significant impregnation by a melt produced in the Opx–Ol–Sp melting field rather than to later hydrothermal alteration. The correlation between Pb and Nd observed for most global abyssal peridotites, including the Logatchev harzburgites, indicates magmatic generation. The scatter of Pb in some rocks suggests that lead is likely mobile during serpentinization or weathering. Low to moderate water/rock (W/R) ratios in the harzburgites calculated from Sr isotopic compositions (5.98–26.20 for a close system and 1.66–2.72 for an open system), and the low abundance of REEs in Logatchev hydrothermal fluids indicate that the REE contents of abyssal peridotites probably were little influenced by hydrothermal alteration. Compared to this later alteration, the presence of small proportions of gabbroic melt (from 1:30 to 1:3 in our sample) that crystallized in the residual harzburgites modified their REE patterns significantly by elevating the LREEs.  相似文献   

19.
Recent reassessment of abyssal peridotites obtained during the dredging of the oblique supersegment and the easternmost subsection of the Southwest Indian Ridge by the R/V Knorr Cruise 162 and the R/V Yokosuka YK98-07 revealed the occurrence of dunites containing podiform chromitites and dunites with variable chromite concentration closely associated with lherzolite and harzburgite. The size of the chromitite pods varies from a few mm to 2 cm in width. Chromites in the podifom chromitites have very low Cr# (=0.22–0.23) and low TiO2 (<0.17 wt%). They are almost free of silicate inclusions except for a few euhedral sulfide grains which occur far from cracks and lamellae and are considered primary in origin. The lherzolite which possibly represents the wallrock hosting the dunites with podiform chromitites also show low spinel Cr#(=0.16) and low Cr# in the clinopyroxenes (=0.09–0.10) and orthopyroxenes (=0.07–0.09). The small size of the SWIR podiform chromitites is strongly controlled by the low Cr/Al available in the wallrock and the invading melt. The presence of sulfide inclusions and the absence of PGEs further attest to the low Cr/Al (i.e. low refractoriness) in the system involved in the genesis of the SWIR podiform chromitites. Lastly, the discovery of podiform chromitites in the SWIR implies that the formation of podiform chromitite at mid-oceanic ridges, regardless of its spreading rate, is highly possible.  相似文献   

20.
The middle Jurassic Coast Range Ophiolite (CRO) is one of the most important tectonic elements in western California, cropping out as tectonically dismembered elements that extend 700 km from south to north. The volcanic and plutonic sections are commonly interpreted to represent a supra-subduction zone (SSZ) ophiolite, but models specifying a mid-ocean ridge origin have also been proposed. These contrasting interpretations have distinctly different implications for the tectonic evolution of the western Cordillera in the Jurassic. If an SSZ origin is confirmed, we can use the underlying mantle peridotites to elucidate melt processes in the mantle wedge above the subduction zone. This study uses laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) to study pyroxenes in peridotites from four mantle sections in the CRO. Trace element signatures of these pyroxenes record magmatic processes characteristic of both mid-ocean ridge and supra-subduction zone settings. Group A clinopyroxene display enriched REE concentrations [e.g., Gd (0.938–1.663 ppm), Dy (1.79–3.24 ppm), Yb (1.216–2.047 ppm), and Lu (0.168–0.290 ppm)], compared to Group B and C clinopyroxenes [e.g., Gd (0.048–0.055 ppm), Dy (0.114–0.225 ppm), Yb (0.128–0.340 ppm), and Lu (0.022–0.05 ppm)]. These patterns are also evident in orthopyroxene. The differences between these geochemical signatures could be a result of a heterogeneous upper mantle or different degrees of partial melting of the upper mantle. It will be shown that CRO peridotites were generated through fractional melting. The shapes of REE patterns are consistent with variable degrees of melting initiated within the garnet stability field. Models call for 3% dry partial melting of MORB-source asthenosphere in the garnet lherzolite field for abyssal peridotites and 15–20% further partial melting in the spinel lherzolite field, possibly by hydrous melting for SSZ peridotites. These geochemical variations and occurrence of both styles of melting regimes within close spatial and temporal association suggest that certain segments of the CRO may represent oceanic lithosphere, attached to a large-offset transform fault and that east-dipping, proto-Franciscan subduction may have been initiated along this transform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号