首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Summary A datum change between two geodetic systems with points in common may be derived in three stages; slight adjustments of coordinates to make the networks of common points geometrically similar in the two systems; a scale factor to make them geometrically congruent; finally, an orthogonal transformation to swing them into coincidence. The geometrical concept is developed of a “datum screw”, not arbitrarily chosen as is the “origin” or “datum point” of a geodetic survey, but intrinsic to the geometry. The conditions under which it degenerates to a simple “datum shift” are discussed. Differential and other formulae for changes of spheroid and of datum are given, together with a set of tables of coefficients.  相似文献   

2.
The resolution of a nonlinear parametric adjustment model is addressed through an isomorphic geometrical setup with tensor structure and notation, represented by a u-dimensional “model surface” embedded in a flat n-dimensional “observational space”. Then observations correspond to the observational-space coordinates of the pointQ, theu initial parameters correspond to the model-surface coordinates of the “initial” pointP, and theu adjusted parameters correspond to the model-surface coordinates of the “least-squares” point . The least-squares criterion results in a minimum-distance property implying that the vector Q must be orthogonal to the model surface. The geometrical setup leads to the solution of modified normal equations, characterized by a positive-definite matrix. The latter contains second-order and, optionally, thirdorder partial derivatives of the observables with respect to the parameters. This approach significantly shortens the convergence process as compared to the standard (linearized) method.  相似文献   

3.
In this contribution it is shown that the so-called “total least-squares estimate” (TLS) within an errors-in-variables (EIV) model can be identified as a special case of the method of least-squares within the nonlinear Gauss–Helmert model. In contrast to the EIV-model, the nonlinear GH-model does not impose any restrictions on the form of functional relationship between the quantities involved in the model. Even more complex EIV-models, which require specific approaches like “generalized total least-squares” (GTLS) or “structured total least-squares” (STLS), can be treated as nonlinear GH-models without any serious problems. The example of a similarity transformation of planar coordinates shows that the “total least-squares solution” can be obtained easily from a rigorous evaluation of the Gauss–Helmert model. In contrast to weighted TLS, weights can then be introduced without further limitations. Using two numerical examples taken from the literature, these solutions are compared with those obtained from certain specialized TLS approaches.  相似文献   

4.
This paper is to construct a “digital local, regional, region“ information framework based on the technology of “SIG“ and its significance and application to the regional sustainable development evaluation system. First, the concept of the “grid computing“ and “SIG“ is interpreted and discussed, then the relationship between the “grid computing“ and “digital region“ is analyzed, and the framework of the “digital region“ is put forward. Finally, the significance and application of “grid computing“ to the “region sustainable development evaluation system“ are discussed.  相似文献   

5.
Positional error of line segments is usually described byusing “g-band”,however,its band width is in relation to the confidence level choice.In fact,given different confidence levels,a series of concentric bands can be obtained.To overcome the effect of confidence level on the error indicator,by introducing the union entropy theory,we propose an entropy error ellipse index of point,then extend it to line segment and polygon.and establish an entropy error band of line segment and an entropy error do-nut of polygon.The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level,and that they are suitable for positional uncertainty of planar geometry features.  相似文献   

6.
Atmospheric delays are contributors to the GNSS error budget in precise GNSS positioning that can reduce positioning accuracy considerably if not compensated appropriately. Both ionospheric and tropospheric delay corrections can be determined with help of reference stations in active GNSS networks. One approach to interpolate these error terms to the user’s location that is employed in Germany’s SAPOS network is the determination of area correction parameters (ACP, German: “Fl?chenkorrekturparameter—FKP”). A 2D interpolation scheme using data from at least 3 reference stations surrounding the rover is employed. A modification of this method was developed which only makes use of as few as 2 reference stations and provides 1D linear correction parameters along a “corridor” in which the user’s rover is moving. We present the results of a feasibility study portraying results from use of corridor correction parameters for precise RTK-like positioning. The differences to the reference coordinates (3D) attained in average for 1 h of data employing selected network nodes in Germany are between 0.8 and 2.0 cm, which compares well with the traditional area correction method that yields an error of 0.7 up to 1.1 cm.  相似文献   

7.
The term “entity” covers, when used in the field of electronic data processing, the meaning of words like “thing”, “being”, “event”, or “concept”. Each entity is characterized by a set of properties. An information element is a triple consisting of an entity, a property and the value of a property. Geodetic information is sets of information elements with entities being related to geodesy. This information may be stored in the form ofdata and is called ageodetic data base provided (1) it contains or may contain all data necessary for the operations of a particular geodetic organization, (2) the data is stored in a form suited for many different applications and (3) that unnecessary duplications of data have been avoided. The first step to be taken when establishing a geodetic data base is described, namely the definition of the basic entities of the data base (such as trigonometric stations, astronomical stations, gravity stations, geodetic reference-system parameters, etc...). Presented at the “International Symposium on Optimization of Design and Computation of Control Networks”, Sopron, Hungary, July 1977.  相似文献   

8.
This paper presents the hypermedia data model based on the infinity RS image information system we have developed.The hypermedia data model consists of different semantic units called nodes,and the associations between nodes are called links.This paper proposes three kinds of nodes (interior node,physical node and complex node) and two kinds of links (plane network structure link,hyper-cube network structure links).The hypermedia information system,based on the model and the basic data layer (the infiniy RS image),represents a digital globe.An approach to the "Getting Lost in the Hyper-space" problem is presented.The approach using the hypermedia data model is an efficient way of handling a large number of RS images in various geographical information systems.  相似文献   

9.
地图数字化的坐标转换及数据的精度与相关性   总被引:14,自引:2,他引:14  
在分析地图数字化坐标数据的误差性质时,通常将经过坐标转换后的坐标值作为相互独立的数字化观测值,而将它们与相应的已知坐标之差值当作相互独立的随机误差进行分析,为了对数字化坐标数据及其误差进行更严贩分析,本文将来求转换参数的已知的地面坐标和数字化坐标都视为观测值,并用附有参数的条件平差法来求转换参数,再进一步对转换后的数字坐标的精度和基相关性进行讨论。  相似文献   

10.
Summary In a combined Doppler and terrestrial net adjustment not only the known systematic discrepancies in scale and orientation between the Doppler measurements and the terrestrial results must be modelled, but also all available informations about the accuracy of these systematic differences are to be taken into account. Using the Helmert-block method for the combination procedure, no covariance matrices for the terrestrially determined coordinates must be computed, their numerical evaluation being a computational detour. The proposed procedure as applied to real nets, includes all different kinds of geometric or physical models, whereby their specific parameters are eliminated at this level. Two solutions are discussed, a three-dimensional and a two-dimensional one, but “two-dimensional” is not equivalent to “non-spatial” in this context.  相似文献   

11.
This paper is to advance some relevant techniques to set up a three-dimensional industrial surveying system of “building blocks type“, making use of the electronic theodolite, standard ruler and portable computer.  相似文献   

12.
 A comparison was made between two methods for gravity field recovery from orbit perturbations that can be derived from global positioning system satellite-to-satellite tracking observations of the future European gravity field mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer). The first method is based on the analytical linear orbit perturbation theory that leads under certain conditions to a block-diagonal normal matrix for the gravity unknowns, significantly reducing the required computation time. The second method makes use of numerical integration to derive the observation equations, leading to a full set of normal equations requiring powerful computer facilities. Simulations were carried out for gravity field recovery experiments up to spherical harmonic degree and order 80 from 10 days of observation. It was found that the first method leads to large approximation errors as soon as the maximum degree surpasses the first resonance orders and great care has to be taken with modeling resonance orbit perturbations, thereby loosing the block-diagonal structure. The second method proved to be successful, provided a proper division of the data period into orbital arcs that are not too long. Received: 28 April 2000 / Accepted: 6 November 2000  相似文献   

13.
In order to achieve to GPS solutions of first-order accuracy and integrity, carrier phase observations as well as pseudorange observations have to be adjusted with respect to a linear/linearized model. Here the problem of mixed integer-real valued parameter adjustment (IRA) is met. Indeed, integer cycle ambiguity unknowns have to be estimated and tested. At first we review the three concepts to deal with IRA: (i) DDD or triple difference observations are produced by a properly chosen difference operator and choice of basis, namely being free of integer-valued unknowns (ii) The real-valued unknown parameters are eliminated by a Gauss elimination step while the remaining integer-valued unknown parameters (initial cycle ambiguities) are determined by Quadratic Programming and (iii) a RA substitute model is firstly implemented (real-valued estimates of initial cycle ambiguities) and secondly a minimum distance map is designed which operates on the real-valued approximation of integers with respect to the integer data in a lattice. This is the place where the integer Gram-Schmidt orthogonalization by means of the LLL algorithm (modified LLL algorithm) is applied being illustrated by four examples. In particular, we prove that in general it is impossible to transform an oblique base of a lattice to an orthogonal base by Gram-Schmidt orthogonalization where its matrix enties are integer. The volume preserving Gram-Schmidt orthogonalization operator constraint to integer entries produces “almost orthogonal” bases which, in turn, can be used to produce the integer-valued unknown parameters (initial cycle ambiguities) from the LLL algorithm (modified LLL algorithm). Systematic errors generated by “almost orthogonal” lattice bases are quantified by A. K. Lenstra et al. (1982) as well as M. Pohst (1987). The solution point of Integer Least Squares generated by the LLL algorithm is = (L')−1[L'◯] ∈ ℤ m where L is the lower triangular Gram-Schmidt matrix rounded to nearest integers, [L], and = [L'◯] are the nearest integers of L'◯, ◯ being the real valued approximation of z ∈ ℤ m , the m-dimensional lattice space Λ. Indeed due to “almost orthogonality” of the integer Gram-Schmidt procedure, the solution point is only suboptimal, only close to “least squares.” ? 2000 John Wiley & Sons, Inc.  相似文献   

14.
It is shown that also in a rank deficient Gauss-Markov model higher weights of the observations automatically improve the precision of the estimated parameters as long as they are computed in thesame datum. However, the amount of improvement in terms of the trace of the dispersion matrix isminimum for the so-called “free datum” which corresponds to the pseudo-inverse normal equations matrix. This behaviour together with its consequences is discussed by an example with special emphasis on geodetic networks for deformation analysis.  相似文献   

15.
In this paper, Romanowski’s modified normal distribution is considered from the mathematical standpoint. Initially, the characteristic function is computed. This function is then utilized to (1) compute moments, (2) demonstrate normal tendency as the modulating (“a”) parameter tends to infinity, (3) to formulate the modified normal distribution in terms of well known classical functions. To complete this mathematical consideration, the probability distribution is formulated in terms of tabulated functions. The paper is concluded with a discussion on the direction for further research.  相似文献   

16.
The differential equations which generate a general conformal mapping of a two-dimensional Riemann manifold found by Korn and Lichtenstein are reviewed. The Korn–Lichtenstein equations subject to the integrability conditions of type vectorial Laplace–Beltrami equations are solved for the geometry of an ellipsoid of revolution (International Reference Ellipsoid), specifically in the function space of bivariate polynomials in terms of surface normal ellipsoidal longitude and ellipsoidal latitude. The related coefficient constraints are collected in two corollaries. We present the constraints to the general solution of the Korn–Lichtenstein equations which directly generates Gau?–Krüger conformal coordinates as well as the Universal Transverse Mercator Projection (UTM) avoiding any intermediate isometric coordinate representation. Namely, the equidistant mapping of a meridian of reference generates the constraints in question. Finally, the detailed computation of the solution is given in terms of bivariate polynomials up to degree five with coefficients listed in closed form. Received: 3 June 1997 / Accepted: 17 November 1997  相似文献   

17.
The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.  相似文献   

18.
Suppose that geographic data under investigation are rates associated with polygons. For example, disease incidence, mortality, and census undercount data may be displayed as rates. Spatial analysis of data of this sort can be handled very naturally through Bayesian hierarchical statistical modeling, where there is a measurement process at the first level, an explanatory process at the second level, and a prior probability distribution on unknowns at the third level. In our paper, we shall feature epidemiological data, specifically disease-incidence rates, and the “polygons” referred to in the title are typically states or counties.  相似文献   

19.
Global plate tectonics and the secular motion of the Pole   总被引:1,自引:0,他引:1  
Astronomical data compiled during the last 70 years by the international organizations (ILS/IPMS, BIH) providing the coordinates of the instantaneous pole, clearly shows a continuous drift of the “mean pole” (≡barycenter of the wobble cycle with respect to the Conventional International Origin (CIO). This study was undertaken to investigate the possibility of an actual secular motion of the barycenter (approximated by the earth's maximum principal moment of inertia axis or axis of figure) due to differential mass displacements from lithospheric plate rotations. The method assumes the earth's crust modeled as a mosaic of 1°×1° blocks, each one moving independently with their corresponding absolute plate velocities. The differential contributions to the earth's second-order tensor of inertia were computed, resulting in no significant displacement of the earth's axis of figure. In view of the above, the possibleapparent displacement of the “mean pole” as a consequence of station drifting due to absolute plate motions was also analyzed, again without great success. As a further step the old speculation of the whole crust possibly sliding over the upper mantle is revived and the usefulness of the CIO is questioned. Presented at the IAU Symposium No. 78, “Nutation and the Earth Rotation”, Kiev, 22–29, May, 1977.  相似文献   

20.
By using Halley’s third-order formula to find the root of a non-linear equation, we develop a new iterative procedure to solve an irrational form of the “latitude equation”, the equation to determine the geodetic latitude for given Cartesian coordinates. With a limit to one iteration, starting from zero height, and minimizing the number of divisions by means of the rational form representation of Halley’s formula, we obtain a new non-iterative method to transform Cartesian coordinates to geodetic ones. The new method is sufficiently precise in the sense that the maximum error of the latitude and the relative height is less than 6 micro-arcseconds for the range of height, −10 km ≤ h ≤ 30,000 km. The new method is around 50% faster than our previous method, roughly twice as fast as the well-known Bowring’s method, and much faster than the recently developed methods of Borkowski, Laskowski, Lin and Wang, Jones, Pollard, and Vermeille.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号