首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 192 毫秒
1.
珠江口最大浑浊带的形成与季节变化   总被引:3,自引:0,他引:3  
应用Delft3D研究了珠江口最大浑浊带的分布以及影响因素。盐度和悬沙浓度的垂向分布揭示出最大浑浊带范围的变化。最大浑浊带在干季的悬沙浓度比湿季更大,而其中心位置与湿季相比向上游移动10 km。最大浑浊带的形成受到潮汐、径流和地形的综合影响,而沉积物的再悬浮和垂向环流为影响最大浑浊带的主要因素。  相似文献   

2.
长江分汊河口涨、落潮悬沙不对称特征及季节性差异   总被引:1,自引:1,他引:0  
入海河口由于径流的存在以及河口地貌形态的影响,存在涨、落潮水动力、悬沙以及盐度分布等不对称现象,同时这一不对称现象还存在显著的区域性和季节性差异。根据2013年7月和2014年1月洪、枯季长江口定点准同步水文泥沙调查结果,发现长江口分汊型河槽悬沙浓度在时间上存在洪枯季、大小潮不对称特征,在空间上存在东西向沿程分布、南北向横向分布以及垂向上表底层分布不对称特征。河势演变形成南、北支河口涨、落潮悬沙浓度不对称分布的整体格局;洪、枯季变化影响河口涨、落潮悬沙分布的再分配过程;大潮涨、落潮过程对悬沙分布不对称影响显著大于小潮;季节性风浪作用影响河口最大浑浊带涨、落潮悬沙不对称南北差异;底部高含沙浓度对口门段涨、落潮悬沙不对称性贡献显著。  相似文献   

3.
珠江口的黏性泥沙输运对区域海洋工程和河口海洋环境有着重要的影响。本文利用SELFE模型,针对珠江河口海域建立了一个采用非结构三角形网格的三维斜压水动力模型,可耦合模拟海流、潮流及风海流水动力环境,并在此基础上开发了包括底床模块的黏性泥沙输运模型。模拟结果与实测值验证较好,再现了丰水期珠江河口的泥沙输运特征以及最大浑浊带的变化和分布特点。研究表明,丰水期珠江口悬沙质量浓度西侧大于东侧,泥沙主要来自河口上游。河口浅滩上会形成最大浑浊带,最大质量浓度可达0.5 g/L。珠江口最大浑浊带的形成主要受潮动力、重力环流及泥沙再悬浮和沉积过程影响,其中泥沙再悬浮和沉积过程对中滩的最大浑浊带影响显著,而重力环流作用对西滩的最大浑浊带影响显著。  相似文献   

4.
长江口悬沙动力特征与输运模式   总被引:5,自引:0,他引:5  
本项研究用ADCP在长江河口进行高频、高分辨率三维流速和声学浊度的定点观测,通过对定点站位潮周期内的悬沙浓度、流速和盐度的分析,计算悬沙输运率;悬沙输运机制分析表明平流作用、斯托克斯漂移效应在悬沙输运中占据主导地位.此外,从河口内向河口外,潮周期内的水动力特征与悬沙净输运具有明显的地域性差异,主要表现在悬沙输送的贡献因子、盐度的垂向混合和分布特征、垂向流速等方面.在拦门沙下游和口外地区,悬沙均向西、北方向输送,而拦门沙上游则向东、南方向输送.这种悬沙输运格局,对于长江口拦门沙及附近最大浑浊带的形成有着重要的作用.  相似文献   

5.
长江口最大浑浊带是陆海交汇的核心区域,其航槽是扼海-河联运的咽喉,悬沙峰的涨落潮周期变化深刻影响航槽的稳定性。本文利用长江口南槽上、中、下段3个站点枯季小潮和大潮的流速、盐度、悬沙平均粒径和悬沙浓度的实测资料,分析最大浑浊带悬沙峰特征及其动力机制。发现:流速和滩槽交换增强导致大潮平均悬沙浓度比小潮增加了0.78—1.97倍,絮凝也导致憩流底层悬沙浓度增加8%左右,但流速和絮凝与悬沙浓度的关系均非线性。大小潮盐度梯度与底层悬沙浓度关系呈现高线性相关关系,表明盐度梯度强化或突变是泥沙再悬浮形成悬沙峰的主要动力。  相似文献   

6.
高浑浊度河口沉积物的沉积机理评述   总被引:2,自引:0,他引:2  
该文主要介绍了潮流对沉积作用的影响,沉积物的再悬浮和最大浑浊带的形成机制以及影响沉积物絮凝沉降的因素。潮流是搬运河口泥沙的主要动力,沉积在河口拦门沙的泥沙会在潮流的作用下向河口外继续搬运。沉积物的再悬浮和最大浑浊带密不可分,正是由于沉积物在周期性潮流的作用下引起再悬浮,为最大浑浊带的形成提供了条件。影响沉积物絮凝沉降的因素很多,有内因,也有外因。内因是颗粒物自身的性质;外因如盐度、流速、pH值等。  相似文献   

7.
长江口北港口门海域悬沙输运机制分析   总被引:1,自引:0,他引:1  
根据2012年10月24日至11月1日在长江口北港口门海域获取的沉积动力学数据,采用输运通量分解方法分析水沙输运机制。结果表明,长江口北港口门附近海域涨、落潮期间底部悬沙浓度与近底部流速呈显著线性相关,存在显著的再悬浮作用;潮周期内的悬沙输运具不对称特征,涨潮悬沙浓度大于落潮悬沙浓度,悬浮泥沙有向陆输运的趋势。拉格朗日平流输运是影响悬沙输运的主要贡献项;潮泵效应(尤其是潮汐捕捉效应)以及河口垂向环流作用是两个次要影响因素,在影响程度上前者比后者略大。观测发现,长江口北港口门海域潮流除了具有涨落潮流速、历时等不对称现象外,还具有流速结构不对称的特征,进而导致涨、落潮底部湍流混合程度不对称与输沙不对称,这可能是造成悬沙向河口内输运形成最大浑浊带的重要因素。  相似文献   

8.
鸭绿江河口地区沉积物特征及悬沙输送   总被引:13,自引:1,他引:13  
根据鸭绿江河口区4个站位的潮周期测量数据和3个柱状样的粒度数据,对悬沙的输送规律以及口门地区最大浑浊带的形成机制、悬沙输送方向以及物质来源和动力条件进行了分析。计算分析表明,鸭绿江是一条落潮流占优势的河流,平均流作用、斯托克斯漂移效应以及水深与悬沙浓度的潮变化引起的悬沙输送是其河口区最主要的悬沙输送机制。3个柱状样粒度参数自东向西的变化反映了鸭绿江辽口西侧沿岸地区动力条件和沉积环境的变化:沉积物的平均粒径变小,分选变差,并且更正偏,物源的多元化特征逐渐增强。物源和河口区沿岸沉积动力环境的差异以及潮相的周期变化使3个柱状样中的环境敏感粒度组分对应着不同的粒径分布区间。  相似文献   

9.
针对目前渤海整个海域悬浮泥沙分布全貌的研究不充分。根据2000—2004年渤海表层悬浮泥沙分布特征选取7个典型海区,通过利用长时间序列悬沙质量浓度和风场遥感反演资料,在分析悬沙质量浓度与局地风速、物质来源等关系的基础上,定量研究风浪和潮流共同作用下、随季节显著变化的沉积物再悬浮过程,从而揭示整个渤海海域代表性海区悬沙质量浓度时空分布的动力成因。渤海不同海区表层悬沙质量浓度绝对值差别很大,多年平均最高质量浓度在20~450mg/L变化,高质量浓度集中在近岸河口区及其邻近海域,如黄河口和辽河口地区,低质量浓度区位于渤海中部、渤海海峡以及秦皇岛外海(属于近岸海域却质量浓度常年偏低的特殊海区)。渤海表层悬沙质量浓度具有明显的季节变化特征,风场的季节变化是主要影响因子,各代表性海区悬沙质量浓度与风速之间具有显著正相关关系。悬沙质量浓度与风速之间存在一定时间段的滞后相关。沉积物再悬浮的定量研究表明,除渤海海峡外,渤海其它典型海区表层悬沙质量浓度及其季节变化,均与各自海区风浪和潮流共同作用产生的最大底流速及其季节变化相对应。在渤海,底层沉积物再悬浮的季节变化是影响悬沙质量浓度季节变化最关键的动力过程。  相似文献   

10.
强潮环境下悬沙对底部边界层的影响   总被引:1,自引:0,他引:1  
王韫玮  高抒 《海洋科学》2010,34(1):52-57
对杭州湾金山深槽附近两个定点站位的大潮期间同步水文、泥沙观测结果进行了粉砂分布区再悬浮效应的分析,提出了根据再悬浮过程反演底床切应力的新方法。研究结果表明,在强潮动力、高悬沙质量浓度环境下,即使无密度成层性,悬沙质量浓度对底部边界层的影响仍然存在,表现为底部切应力的减小。在这一条件下,如仍然采用卡门-普朗特模型(κ=0.4),则估算的底部切应力将大大高于实际的数值。  相似文献   

11.
基于ROMS三维模型, 模拟了珠江口洪季最大浑浊带的轴、侧向分布和大、小潮变化。模拟结果表明, 珠江口伶仃洋最大浑浊带的轴向位置在22.3°—22.45°N之间, 并随着潮流变化而周期性上下游迁移。控制最大浑浊带形成的主要因素是余流作用下的底层泥沙辐聚, 决定最大浑浊带位置的主要因素是水平对流输沙, 泥沙来源主要是上游浅滩沉积物的再悬浮。小潮期间堆积在浅滩的细颗粒沉积物在大潮期间被悬浮, 搬运到下游的滞流点位置, 在中滩南部和西滩外缘落淤。“潮泵”作用在大潮期间将泥沙向下游输运, 在小潮期间向上游输运; 垂向剪切作用则有利于悬浮泥沙的陆向输运; 二者共同作用产生泥沙辐聚, 形成最大浑浊带。大、小潮期间余流结构差异不大, 主要由密度差和潮汐混合不对称共同导致, 其中前者贡献更大。  相似文献   

12.
根据鸭绿江西水道口外两个站位大小潮实测悬沙数据,结合表层沉积物特征及潮流动力分析结果,从悬沙浓度、悬沙输沙量和悬沙粒级3个方面,分析了悬浮泥沙浓度大小潮时空变化特征及其与潮汐、潮流动力因素的关系,净输沙量特征及输沙方向、悬沙各粒级百分含量与涨落潮及泥沙沉积物之间的关系等内容。计算分析表明:影响悬沙动力特征的主要因素为空间位置、动力强弱及泥沙源;1#站位细粒沉积物丰富,潮流及输沙受口门地形控制,2#站位地形平坦,沉积物颗粒粗,泥沙源来自异地;悬沙浓度受潮流、潮汐动力影响呈规律性变化,输沙量受潮流动力、泥沙来源双重影响;两个站位悬沙粒级百分含量随涨落潮的峰值变化及与流速、流向、潮位的对应关系的不同,有效的指示了沉积物空间分布特征,反映了外部环境对悬沙的作用过程。  相似文献   

13.
根据2006年10月在崇明东滩潮间带和潮下带两个站位的大小潮水文泥沙观测资料和悬沙水样的室内粒度分析资料,对悬沙粒径的时空分布特征及其与流速等的关系进行了分析,并对再悬浮特点进行了探讨,结果表明,大小潮期间的悬沙颗粒组成较细,平均粒径的均值仅为6μm;大潮时的悬沙粒径略粗于小潮的,潮间带的略粗于潮下带的;由底床向上悬沙粒径趋于减小。悬沙粒径与流速、悬沙含量无明显的统计学关系,底质粒径、再悬浮强度和再悬浮泥沙粒径的空间变化以及浮泥的悬浮作用等是主要的影响因素。由于底质粒径的空间分布复杂,在东滩水域再悬浮具有明显的空间变化。在底质平均粒径大于60μm的粗颗粒沉积区,大小潮的再悬浮作用微小,底质以推移质运动为主。在底质平均粒径介于5~11μm的细颗粒沉积区上,悬沙级配与底质级配基本相同,该区域是再悬浮的主要发生源地;悬沙级配的变化过程揭示,再悬浮对底层悬沙的贡献率平均为8%~20%,大潮时的再悬浮强度是小潮的5~10倍,由底质再悬浮产生的悬沙在底部水层中的平均含量约为0.03~0.47 kg/m3。  相似文献   

14.
Observations of the residual fluxes of water, salt and suspended sediment are presented for seven stations along the Tamar Estuary. The data include measurements over single spring and neap tidal cycles, and are generally applicable to medium or high run-off conditions.Surface to bed differences in salinity are typically of the order of several parts per thousand. Gravitational circulation is an important component of residual flow in the deep, lower reaches of the estuary. Here, Stokes drift is insignificant. In the shallow upper reaches, the major residual currents are generated by Stokes drift and freshwater inputs. Data are compared with predictions from Hansen and Rattray's (1966) model of estuarine circulation.Salt fluxes due to tidal pumping and vertical shear are directed up-estuary at spring tides, tidal pumping being dominant. Tidal pumping of salt is also directed up-estuary at neap tides, although it is insignificant in the lower reaches, where vertical shear dominates.Tidal pumping of suspended sediment is directed up-estuary near the head at spring tides, and probably contributes to the formation of the turbidity maximum. The existence of the turbidity maximum is predicted using a simplified model of the transport of water and sediment. The model shows that an additional mechanism for the existence of the turbidity maximum is an up-estuary maximum in the tidal current speeds (and thus resuspension). In the lower reaches, transport of suspended sediment is directed down-estuary at both spring and neap tides, and sediment is essentially flushed to sea with the fresh water.  相似文献   

15.
长江口枯季悬沙粒度与浓度之间的关系   总被引:4,自引:0,他引:4  
2003和2004年枯季在长江口采集水样并作水文观测,对所获水样进行过滤和粒度分析,以计算悬沙浓度和悬沙粒度分布。结果表明,2003年11月小潮期间,悬沙中值粒径与悬沙浓度存在着显著的指数关系,在大潮期间没有显著关系;在2004年2月小湖期间,两者之间没有显著关系,但在大潮期间存在着显著的指数关系。枯季水体悬沙以粉砂组份为主,并且随着向口外的推移,细颗粒组份逐渐增加,但在拦门沙最大浑浊带附近,由于絮凝作用,沉积物粒度变幅较大,可产生粒径粗化的现象。小潮期间,砂含量较低,但与悬沙浓度之间有显著相关关系;大潮期间,悬沙粒径粗化,但砂含量与悬沙浓度之间的关系不显著。上述分布趋势与沉积物来源、当地的水动力条件和絮凝作用等因素有密切关系。  相似文献   

16.
悬浮泥沙和叶绿素是海洋水色的重要部分,是反映河口海岸地区生态环境状况的重要指标。本文基于Landsat TM/ETM+/OLI遥感影像,在不依赖地面实测数据的条件下,结合水文气象数据,利用光谱信息建立水色遥感模型对莱州湾1996—2015年不同时期的悬浮泥沙和叶绿素变化进行研究。研究结果表明:(1)此模型可以快速反演出较大空间尺度内的水色时空分布情况。(2)1996—2015年这一时期内悬浮泥沙浓度变化明显,枯水期的悬浮泥沙扩散范围总体大于丰水期,悬浮泥沙高浓度区主要分布在黄河口附近海域和沿岸区域,泥沙主要来源于陆源输沙和海水中的泥沙再悬浮,悬浮泥沙的扩散主要受潮流的影响,风和波浪等动力因素也在一定程度上影响着悬浮泥沙的扩散;(3)此外,莱州湾叶绿素高浓度区主要分布在莱州湾东—南部海域,其分布具有明显的季节性,春季(5月)海水温度升高,水中营养物质垂直混合好使得叶绿素浓度处于较高态势。  相似文献   

17.
基于遥感反演的莱州湾悬沙分布及其沉积动力分析   总被引:5,自引:3,他引:2  
选用1986-2004年不同时期的LandsatTM/ETM+影像,利用2004年黄河口附近实测数据推导的表层悬浮泥沙浓度反演模型,结合水文气象资料、多年水深数据和极端天气数模结果,研究了莱州湾西南近岸海域表层悬浮泥沙分布特征,结果表明,受黄河丰枯水期的影响,莱州湾西南部海域悬浮泥沙高浓度区主要分布于黄河口附近海域和西南沿岸,其枯水期的覆盖范围一般大于丰水期的。受潮流高流速场控制,黄河口外悬沙浓度高值区与海底泥沙堆积区对应较好,泥沙主要来源于陆源输沙和泥沙再悬浮;在西南近岸浅海区悬沙浓度高值区主要形成于泥沙的再悬浮,在近岸出现轻微冲刷。风等其他海洋动力因素,一般情况下对悬浮泥沙扩散的程度和范围具有一定的影响作用,但悬沙受潮流场影响而形成的总体扩散趋势未发生改变;极端条件下,风暴潮流使莱州湾西南部近岸浅海区的悬浮泥沙浓度显著增加。  相似文献   

18.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号