首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
It is shown in a joint analysis of ionospheric vertical sounding data at the arctic Heiss Island and antarctic Vostok stations and the geomagnetic PC index, which characterizes the geoefficient component of the interplanetary magnetic field, that, during a disturbed geomagnetic period when PC > 2 in years of solar activity (SA) maxima in the winter season, positive phases of ionospheric disturbances are predominantly observed. In the nighttime hours, an increase in the critical foF2 frequencies by a factor of 2–3 can occur. In a disturbed geomagnetic period at the PC > 1.5 level in the summer season, negative phases of ionospheric disturbances are mainly observed. In years of maximum and moderate SA, the decrease in foF2, as compared to their median values, happens at night (∼30%). In years of low SA, the decrease value is much lower. At a substantial decrease in the PC index level, in the region of the geomagnetic pole at the Vostok station, in some cases, a substantial increase in the electron density level in the F region occurs with a delay of 0.5 h. At the same time, a significant correlation (r = −0.57) is observed between variations in the PC index and foF2.  相似文献   

2.
The relation between the daytime in the nighttime values of the critical frequencies (foF2) of the ionospheric F 2 layer is considered. The correlation coefficient of foF2 measured at 1400 and 0200 LT of the same day is considered in various seasons of years with different solar activity (during the complete cycle of solar activity in 1979–1989). Special accent is made on the dependencies of the above mentioned correlation on a choice of magnetically quiet days with various limitations on maximal values of geomagnetic index Ap. It has been obtained that a statistically significant negative correlation between the foF2(1400) and foF2(0200) is more pronounced in the periods of high solar activity. The effect increases with increasing limitation of the considered days on value of Ap: the largest values of the correlation coefficient are observed if only very quiet days are considered (Ap < 6). There are preliminary indications that the considered relation between daytime and nighttime foF2 values depends on latitude.  相似文献   

3.
Morphological analysis of variations of the critical frequency foF2 in the midlatitude ionosphere at various sectors of local time is carried out on the basis of data from ground-based stations of vertical sounding of the ionosphere in the period when during use of the incoherent scatter radar at Saint-Santin an anomalously strong increase in the electric field was observed at heights of the ionospheric F region in the period of enhanced geomagnetic activity (4+ < Kp < 6−). The obtained picture of the space-time distribution of disturbances in foF2 makes it possible to assume that they could be caused by penetration to middle latitudes of the large-scale electric field of the magnetospheric convection directed westward in the nighttime and morning hours and eastward in the noon and evening sectors.  相似文献   

4.
Disturbances in the magnetic field and magnetospheric and ionospheric plasma registered on December 14–16, 2006, during a strong magnetic storm caused by a solar flare of 4B/X3.4 class are studied. It is shown that in the north of Yakutia, interactions between the Earth’s magnetosphere and the region of high dynamic pressure of the solar wind led to the formation of sporadic layers in the ionospheric E and F regions, depletion of the critical frequency of the F2 layer, and total absorption. At the end of the magnetic storm’s main phase, anomalously high values of foF2 exceeding the quiet level by a factor of 1.5–1.7 were detected. It was found that the disturbances detected by ground-based observatories had developed on the background of changes in the temperature, density, and the pitch-angle distribution of particles at the geostationary orbit manifesting radial shifts of magnetospheric structures (magnetopause, cusp/cleft, and plasma sheet) relative to the observation points. A conclusion is drawn that in this case, changes in the near-Earth plasma and magnetic field manifest the dynamics of the physical conditions at the magnetospheric boundary and diurnal rotation of the Earth.  相似文献   

5.
The bases of the classification method of ionospheric disturbances caused by solar-geomagnetic activity on the basis of the critical frequency of the F2 layer are developed. Data for the total solar activity cycle from 1975 to 1986 were used for studying variations in the critical frequency of the ionospheric F2 layer. The critical frequency was measured at the Moscow ionospheric observatory (55°45′N, 37°37′E) at an interval of 1 h. The gaps in the critical frequency values were filled in by the cubic interpolation method. The solar activity level was estimated using the F10.7 index. The geomagnetic disturbance was determined using the Kp · 10, Dst, and AE indices. According to the developed classification, an index of ionospheric activity is introduced. An analysis of the obtained values of the index for years of solar activity minimum and maximum shows that an increase in the absolute values of the index as a rule occurs at an increase in global geomagnetic and/or auroral disturbances. This fact indicates the sufficient information content of the developed index for characterizing ionospheric activity in any season. Moreover, using the sign of the index, one can form an opinion regarding an increase or decrease in the concentration of the ionospheric F2 layer, because the values of the considered index correspond to real oscillations in the critical frequency of the midlatitude ionosphere.  相似文献   

6.
Results of statistical analysis of the properties of variability of F2-layer maximum parameters (critical frequency foF2 and the height hmF2) in quiet midlatitude ionosphere under low solar activity in the daytime (1000–1500 LT) and nighttime (2200–0300 LT) hours are presented on the basis of Irkutsk station data for 2007–2008. It is found that the distribution density of δfoF2 could be presented as consisting of two distinctly different normal laws of this distribution, one of which corresponds to weak (|δfoF2| < 10%) fluctuations in foF2 and the other corresponds to strong (30% > |δfoF2| > 10%) fluctuations. Weak fluctuations in foF2 to a substantial degree are related to ionospheric variability at times less of than 1–3 h and determine the δfoF2 variability in the daytime hours. Strong fluctuations in foF2 are mainly related to day-to-day variability of the ionosphere at a fixed local time, the variability increasing by approximately a factor of 3 during the transition from day to night and determining the δfoF2 variability in the nighttime hours. The distribution density of ΔhmF2 is close to the normal distribution law. An interpretation of the different character of the distribution densities of δfoF2 and ΔhmF2 is given.  相似文献   

7.
The maximal R ratios of the winter-to-summer NmF2 values of each ionosonde are calculated for a specified UT under daytime quiet geomagnetic conditions and at approximately equal levels of solar activity, based on foF2 measurement data of 98 ionosondes at mid- and low geomagnetic latitudes of the Northern and Southern hemispheres for 1957–2009. The P(R > 1) conditional probability of NmF2 winter anomaly observations, as well as the most probable RMP and average <R> of R values are calculated for low, moderate, and high solar activity on the base of foF2 measurements during the periods December 22 ± 30 days and June 21 ± 30 days. Variations in P(R > 1), RMP, and 〈R〉 with latitude and solar activity are analyzed.  相似文献   

8.
On the basis of the 15-min data from a series of ground-based vertical ionospheric sounding stations, a study of variations of the foF2 critical frequency before the strong earthquake (M = 6.3) that occurred on April 6, 2009 at L’Aquila (Italy) was carried out. The earthquake epicenter was located 85 km north-eastward from Rome. Approximately 20 h prior to the earthquake, a well-pronounced statistically significant effect of foF2 increase relative to the average background for magnetically quiet days was observed for almost 1.5 h at the Rome ionospheric station. In this case, at control stations distanced from the earthquake epicenter, no statistically significant deviations of foF2 from the background values were detected during the same observations period. This fact provides grounds for consideration of the foF2 increase observed at Rome station as a possible ionospheric precursor of this earthquake.  相似文献   

9.
Variations in the critical frequency of the F2 layer at 22 ionospheric stations within the period 1990–2010 according to the SPIDR system data are considered. A confirmation of the negative trends in foF2 for seven stations considered by one of the authors earlier on the basis of median data is obtained. It is found that both negative (a decrease in foF2 with time) and positive (growth in foF2 with time) trends of the critical frequency are observed. During the later part of the considered period (after 1997), negative trends dominate. This fact manifests itself, apparently, in an increase in the role of the decrease in the thermospheric neutral temperature in the formation of foF2 trends.  相似文献   

10.
A method for constructing the empirical model of the F2 layer critical frequency (foF2) under magnetically quiet conditions, aimed at analyzing disturbances of any nature, is proposed. This method has been analyzed, and typical features of regular changes in foF2 of the quiet ionosphere and day-to-day foF2 variability are analyzed using the data from Irkutsk and Slough stations as an example. In particular, it has been obtained that this model differs from the international IRI model, and this difference is mainly caused by the fact that the foF2 values in the IRI model do not correspond to quiet conditions. Therefore, this model gives a larger amplitude of the annual and semiannual variations in foF2 than the IRI model. In addition, this model more accurately reproduces the rate of foF2 annual variations at a fixed local time, especially in equinoxes, when foF2 variations can exceed 1 MHz within one month.  相似文献   

11.
Using the foF2 database obtained from satellites and ground-based ionospheric stations, we have constructed a global empirical model of the critical frequency of the ionospheric F2-layer (SDMF2—Satellite and Digisonde Data Model of the F2 layer) for quiet geomagnetic conditions (Kp < 3). The input parameters of this model are the geographical coordinates, UT, day, month, year, and the integral index F10.7 (day, τ = 0.96) of solar activity for a given day. The SDMF2 model was based on the Legendre method for the spatial expansion of foF2 monthly medians to 12 in latitude and 8 in longitude of spherical harmonics. The resulting spatial coefficients have been expanded by the Fourier method in three spherical harmonics with respect to UT. The effect of the saturation of critical frequency of the ionospheric F2-layer at high solar activity was described in the SDMF2 model by foF2 as a logarithmic function of F10.7 (day, τ = 0.96). The difference between the SDMF2 and IRI models is a maximum at low solar activity as well as in the Southern Hemisphere and in the oceans. The testing on the basis of ground-based and satellite data has indicated that the SDMF2 model is more accurate than the IRI model.  相似文献   

12.
The relationship between the critical frequency of the F 2 layer and the atmospheric characteristics has been obtained in a general form. It has been shown that this relation makes it possible to sufficiently accurately describe the daytime values of foF2 while comparing them with the observed monthly median values. Such comparisons were performed, first, for the data of measurements in Irkutsk using the DPS-4 digital ionosonde in 2003–2006 and, second, based on the annual variations in the noon foF2 values at 24 stations of the Northern Hemisphere in 1984. The calculations were performed using the MSIS-86 thermospheric model [Hedin, 1987].  相似文献   

13.
The paper is dedicated to the studies of formation mechanisms of additional layers in the equatorial ionosphere carried out using numerical simulations with use of the Global Self-Consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) modified in the part of the solution of the electric field equation in the Earth’s ionosphere. Calculations were preformed for quiet geomagnetic conditions using the MSIS-90 model for the calculation of thermospheric parameters. The obtained spatio-temporal pattern of thermospheric circulation and the variations in the dynamo electric field obtained on its basis make it possible to reproduce the stratification effect of the F2 layer and the appearance of the F3 layer in the equatorial ionosphere due to the action of the nonuniform in height zonal electric field at the geomagnetic equator. On the basis of the earlier presented results of calculations using the modified GSM TIP model, the appearance of a maximum in the vertical profile of the electron density at a height of ∼1000 km formed by H+ ions, which we called the G layer, has been predicted. Numerical simulations showed that this layer is formed by the meridional component of the thermospheric wind and is related to the formation of the nighttime midlatitude maximum at heights of the ionospheric F region.  相似文献   

14.
The X17 solar flare occurred on October 28, 2003, and was followed by the X10 flare on October 29. These flares caused very strong geomagnetic storms (Halloween storms). The aim of the present study is to compare the variations in two main ionospheric parameters (foF2 and hmF2) at two chains of ionosondes located in Europe and North America for the period October 23–28, 2003. This interval began immediately before the storm of October 28 and includes its commencement. Another task of the work is to detect ionospheric precursors of the storm or substorm expansion phase. An analysis is based on SPIDR data. The main results are as follows. The positive peak of δfoF2 (where δ is the difference between disturbed and quiet values) is observed several hours before the magnetic storm or substorm commencement. This peak can serve as a disturbance precursor. The amplitude of δfoF2 values varies from 20 to 100% of the foF2 values. The elements of similarity in the variations in the δfoF2 values at two chains are as follows: (a) the above δfoF2 peak is as a rule observed simultaneously at two chains before the disturbance; (b) the δfoF2 variations are similar at all midlatitude (or, correspondingly, high-latitude) ionosondes of the chain. The differences in the δfoF2 values are as follows: (a) the effect of the main phase and the phase of strong storm recovery at one chain differs from such an effect at another chain; (b) the manifestation of disturbances at high-latitude stations of the chain differ from the manifestations at midlatitude stations. The δhmF2 variations are approximately opposite to the δfoF2 variations, and the δhmF2 values lie in the interval 15–25% of the hmF2 values. The performed study is useful and significant in studying the problems of the space weather, especially in a short-term prediction of ionospheric disturbances caused by magnetospheric storms or substorms.  相似文献   

15.
The consideration of the relation between the daytime and nighttime values of the critical frequency F2, foF2 of the ionospheric F2 layer, started in the previous publication of the authors, is continued. The main regularities in variations in the correlation coefficient R(foF2) characterizing this relation are confirmed using larger statistical material (more ionospheric stations and longer observational series). Long-term trends in the R(foF2) value are found: at all stations the negative value of R(foF2) increases with time after 1980.  相似文献   

16.
This article considers sparse available data on variations in the main parameters of the ionospheric F2 layer foF2(ss + 2) and hmF2(ss + 2) at the end of the 1990s and the beginning of 2000s. It is shown that the monotonous behavior of hmF2(ss + 2) obtained in earlier publications for the period after 1980 is violated. The hmF2(ss + 2) behavior obtains a more complicated nature by time with a tendency towards a decrease in hmF2(ss + 2) at the beginning of a new century. A statistically significant relationship between foF2(ss + 2) and hmF2(ss + 2) is discovered confirming the Rishbeth statement that during the first hours after sunset, the critical frequency foF2 is governed by dynamical processes via changes in the F2-layer height. It is found that at the end of the interval in question, there is a tendency towards deviations from the above-mentioned dependence. The latter could be a manifestation of the fact that changes in the aeronomical parameters caused by the general cooling and contraction of the thermosphere begin influencing the foF2 value. It is found that in the summer months, the foF2(ss + 2) value demonstrated a systematic decline tendency from the “boundary date” towards the beginning of the 2000s.  相似文献   

17.
The zone of anomalous diurnal variations in foF2, which is characterized by an excess of nighttime foF2 values over daytime ones, has been distinguished in the Southern Hemisphere based on the Intercosmos-19 satellite data. In English literature, this zone is usually defined as the Weddell Sea anomaly (WSA). The anomaly occupies the longitudes of 180°–360° E in the Western Hemisphere and the latitudes of 40°–80° S, and the effect is maximal (up to ∼5 MHz) at longitudes of 255°–315° E and latitudes of 60°–70° S (50°–55° ILAT). The anomaly is observed at all levels of solar activity. The anomaly formation causes have been considered based on calculations and qualitative analysis. For this purpose, the longitudinal variations in the ionospheric and thermospheric parameters in the Southern Hemisphere have been analyzed in detail for near-noon and near-midnight conditions. The analysis shows that the daytime foF2 values are much smaller in the Western Hemisphere than in the Eastern one, and, on the contrary, the nighttime values are much larger, as a result of which the foF2 diurnal variations are anomalous. Such a character of the longitudinal effect mainly depends on the vertical plasma drift under the action of the neutral wind and ionization by solar radiation. Other causes have also been considered: the composition and temperature of the atmosphere, plasma flows from the plasmasphere, electric fields, particle precipitation, and the relationship to the equatorial anomaly and the main ionospheric trough.  相似文献   

18.
The 40-year period of observations of short-term variations (with characteristic times of up to 1–2 days) in the critical frequency of the ionospheric F2 layer (foF2) is analyzed. The continuous (with a step of 1 h) series of fluctuations (F) of the foF2 critical frequency (with eliminated daily variations) has been calculated using the hourly variations in foF2 at Moscow stations. The fractal dimension (FRH) of the fluctuations, characterizing short-term variations in foF2, has been determined and analyzed on a 30-day interval, using the Higuchi method. It has been established that FRH estimates substantially change in time. The 11-year cycle, which is in antiphase with the solar cycle, and the total annual and semiannual variations, similar to the variations observed in the normalized critical frequency of the E region and in the electron density of the D region, are clearly defined in these changes. Thus, the parameters of fast variations in the ionospheric F2 layer are affected by the phase of the 11-year solar cycle and by the position of the Earth in the orbit or seasonal variations in the atmosphere.  相似文献   

19.
Results of studies of the wave structure of the critical frequencies of the ionospheric F2 layer with periods of planetary waves for two Asian stations—Irkutsk and Wuhan (China)—are presented. Estimates of the appearance frequency, amplitudes, and the lifetime of oscillations with periods typical of planetary waves (2–25 days) are obtained. It is shown that these characteristics depend on the season and place of observation. The appearance of joint periodicities in the critical frequencies at both stations, as well as in the planetary index of geomagnetic activity Ap, is noted.  相似文献   

20.
A study of variations in the critical frequency of the F2 layer (foF2) prior to a shallow-focus eartquake with a magnitude M = 5.1 which occurred in Spain on May 11, 2011, is carried out. The obtained results show that a positive disturbance in the foF2 value was observed at the ionospheric Del’ebre station, which is the closest to the earthquake epicenter. At the same time, no disturbances in foF2 are revealed at ionospheric stations located at a greater distance from the epicenter. This fact makes it possible to conclude that the positive disturbance in the F2 layer observed at the Del’ebre station could have a sesmogenic nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号