首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
陕西关中盆地中部地下热水H、O同位素交换 及其影响因素   总被引:4,自引:1,他引:3  
马致远  王心刚  苏艳  余娟 《地质通报》2008,27(6):888-894
对关中盆地地下热水δ&18O和8D数据的研究表明:盆地中部西安、咸阳深部的地压地热流体发生明显的δ^18O同位素交换,并出现^2H同位素交换,表明热储流体发生了强烈的水岩反应,盆地周边及中部的非地压地热流体^18O交换则不明显。根据研究区^18O同位素的交换程度(用^2H过量参数d表征)和水化学资料,可将关中盆地热储流体分为循环型和封闭型热储流体2类。地热水埋深越大、滞留时间越长、TDS和温度越高、地质环境越封闭,18^O交换程度就越大。西安和咸阳地下热水分属于不同的地热系统,具有不同的补给来源。  相似文献   

2.
卞跃跃  赵丹 《地球学报》2018,39(4):491-497
康定地热田位于四川盆地西缘山地和青藏高原的过渡地带,属于高热流背景上的深循环高温地热系统。本文以康定地热田地下热水为研究对象,通过采集地热田内的主要两个热显示区(榆林河和雅拉河地区)的温泉和地热井的地下热水样,进行水化学和稳定同位素测试分析,研究其地下热水的补给来源和热储温度。雅拉河地下热水的水化学类型主要为HCO_3-Na型水,榆林河地下热水的水化学类型主要为HCO_3·Cl-Na型水,均显示了深部地下热水沿断裂上涌与浅部冷水混合的特点。根据地下热水同位素的结果分析计算,康定地热田地下热水的起源均来自大气降水,雅拉河地下热水的补给高程为5 600~5 900 m,榆林河地下热水的补给高程为5 300~6 300 m,来源于南部的贡嘎山的可能性较大。榆林河地下热水具有明显的氧-18漂移现象,其原因为较高的热储温度,二氧化硅温标和阳离子温标的结果证明了这个判断,雅拉河地下热水的热储温度为172~188℃,榆林河地下热水的热储温度为192~288℃。  相似文献   

3.
开展关中盆地腹部深层地下热水起源成因的研究,对推动研究区地下热水的可持续开发利用意义重大。中国大多数地下热水赋存地区的热水样点与现代循环水的关系密切,多属循环型热水,而关中盆地深层地下热水却远离大气降水线,δ~(18)O漂移显著,对此,国内外学者专家对引起关中盆地地下热水δ~(18)O富集的主要因素有不同的认识。应用同位素水文地球化学方法结合关中盆地地质构造演化,对关中盆地不同构造单元深层地下热水δ~(18)O富集的主控因素进行探索性研究。研究结果表明,影响关中盆地深层地热水δ~(18)O富集的因素是多元的,因热储环境开发度而异,在较封闭的热储条件下,其主控因素是水岩反应。热储蒸发实验的结果表明,深层地热水在进入地层前作为补给水源时,存在一定程度的蒸发作用,入渗后进入较封闭热储环境时则主要受控于水岩作用的影响,且受水岩反应的影响程度为固市凹陷咸礼断阶东咸礼断阶西及西安凹陷。  相似文献   

4.
古气候变化与地下热水中氢氧稳定同位的关系   总被引:1,自引:0,他引:1  
关中盆地地下热水中氢氧稳定同位素的研究表明:研究区地下热水中氢氧稳定同位素组成变化与当地古气候变化具有良好的对应关系,古气候变化直接影响了地下热水接受补给时的氢氧稳定同位素组成。研究区地下热水的补给为更新世前古代大气降水。大约在8.2~10.2 kaB.P.和18.1~19.2 kaB.P.这两个时间段,可能是由于当时温度较低导致关中盆地地下热水补给偏少;关中盆地地下热水的补给过程受古气候的变化影响呈现非等速补给特征,可能存在一定的古地下水形成期。  相似文献   

5.
长期以来,西藏昌都觉拥温泉处于天然状态,研究该地热显示区的温泉水化学特征、确定热储温度对于下一步的综合开发利用及热害防治具有重要的现实研究意义。通过采集区内冷水及温泉水样品,进行水化学全分析及氢氧同位素分析,探讨觉拥温泉水化学特征、地下热水补给高程、热储温度及循环深度。基于数据测试结果研究得出觉拥温泉水化学类型与地表水及冷泉水不同,为HCO~-_3—Na~+型,并富含多种微量元素。利用氢氧稳定同位素数据,计算得出补给高程为4725~4802 m。利用Na~+—K~+—Mg~(2+)平衡图判断该区地下热水为未成熟水,并有冷水混入。建立硅—焓、氯—焓混合模型,分析得出觉拥热储温度为137℃左右;综合以上数据计算得出热储深度约为3801 m。  相似文献   

6.
关中盆地深层热储流体锶同位素演化及其指示意义   总被引:3,自引:2,他引:1       下载免费PDF全文
应用Sr含量、87Sr/86Sr比值及热水水化学资料,结合关中盆地地质构造演化对关中盆地腹部深部热储流体的补给起源、路径、成因及混合作用进行研究。结果表明:西北方向为咸礼断阶东南热储流体接受补给的来水方向;咸礼断阶西北水源来水方向为西北部;西安城区补给源有少量来自秦岭北麓,其主要水源来水方向为西部及北部,而长安区热储流体接受来自秦岭北麓正南方向的补给。固市凹陷深层热水封闭性好、水岩反应显著,属残存沉积水;咸礼断阶东南咸阳城区深层热水封闭性较好、水岩反应较为显著,是含残存沉积水的古溶滤水;西安凹陷西安城区热水半封闭,存在一定水岩作用的古溶滤水;长安东大中层-浅层热水开放性好,属混入现代降水的古溶滤水。  相似文献   

7.
章旭  郝红兵  刘康林  毛武林  肖尧  张文 《中国地质》2020,47(6):1702-1714
通过沃卡地堑盆地地下热水水文地球化学特征研究,进行热储温度、补给高程计算,建立沃卡地堑地下热水系统中-高温地热概念模型。结果表明,沃卡温泉为中偏碱性水,溶解性总固体较低,水化学类型主要为SO4-Na型、SO4·Cl-Na型、HCO3·SO4-Na型。热水水文地球化学特征表明,沃卡盆地地下热水系统具有大气降水补给、浅循环地下水的特征,热水以深部熔融体为热源,受控于沃卡半隐伏控热断裂构造,但受裂隙潜水或地表冷水的混合作用,其Na-K-Mg平衡图表现为部分平衡或混合水。利用混合模型对热储真实温度进行估算,得到热储的温度范围为120~200℃,冷水混入比例为70%~83%。  相似文献   

8.
藏北温泉盆地地热资源丰富,但研究程度较低。为查明温泉盆地地热资源赋存状态及热源来源,揭示热循环机理,定量评估研究区热储温度、冷水混入比例、热循环深度等,利用温泉盆地地热田共18组温泉水样进行水化学分析,进行定量计算。结果表明:温泉盆地温泉水水化学类型主要为Ca-HCO3?SO4型。温泉盆地地下热水在向上运移过程中,受浅层地下水的混合作用影响,使得热水变为“未成熟水”。温泉水中文石、方解石等钙质热液的饱和度指数大于0。热储温度60.93~96.52 ℃,热循环深度3 238.06~5 215.28 m,冷水混入比例在20.97%~70.19%之间。硅-焓模型计算出未混入冷水时深部热储温度在81.94~167.26 ℃之间,热储循环深度4 405.56~9 145.56 m。   相似文献   

9.
为探究柴达木盆地北缘的大柴旦地热田的水化学特征及成因模式,本文对研究区14组地下热水进行了水化学组分和同位素(δD,δ18O,87Sr/86Sr,3H)分析。结果表明,大柴旦地下热水出露温度为52~74℃,溶解性总固体浓度(TDS)为959.8~1451.3 mg/L。地下热水的水化学类型为Cl-Na型,区内地下热水的水化学成分主要来源于蒸发岩和硅酸盐矿物的溶解;氢、氧稳定同位素特征表明,大气降水及冰雪融水是地下热水主要补给来源,且部分温泉有岩浆水的补给,估算的补给高程为3591~4374 m。3H测年结果表明,区内地下热水主要由1952年之前的古水补给、蒸发作用和水-岩反应增强导致。XSWQ-06和XSWQ-07样品有明显的氧漂移。基于SiO2地热温标、多矿物平衡法和硅焓模型估算出的地下热水的热储温度为171~227℃,循环深度为4.7~6.9 km。该地区地热资源具有较大的开发利用潜力。  相似文献   

10.
研究工作对完善区内高温地热系统成因机理和后期勘探及钻探工作提供一定的参考意义.为进一步研究贵德盆地地热资源赋存状态及热源来源,在充分了解贵德盆地地热地质条件的基础上,采集区内地热流体样品,进行水化学全分析和氢氧同位素分析,得到该区地热流体化学特征和氢氧同位素特征,估算了区内高温热田-扎仓寺热田的热储温度.分析结果表明:该区高温地下热水的水化学类型主要为SO4·Cl-Na型,低温水水化学类型较为复杂,主要为SO4-Na、SO4·HCO3-Na型;扎仓寺热田地下热水中Li+、F-、Sr2+、As3+与Cl-存在很好的正相关性,显示了相同的物质来源,SiO22-与Cl-极高的正相关性进一步验证了扎仓寺地热为深部热源;氢氧同位素数据都集中在当地大气降水线附近,说明地下热水主要为大气降水补给.选用合理的水文地球化学温标计算了扎仓寺热田的热储温度,并利用硅-焓模型分析了该热田地热流体中冷水混入比例及冷水混入前的热储温度,分析认为扎仓寺热田4 000 m以内存在两个热储层,第一热储层热储温度约为133 °C,热循环深度为1 800 m;第二热储层热储温度约为222 °C,热循环深度约为3 200 m.   相似文献   

11.
张亚鸽  马致远  胡杨 《地下水》2010,32(2):8-10,22
为了了解西安凹陷地下热水的补给循环及其赋存环境特征,对西安凹陷地下热水D、^18O、^13C、^14C、^34S分布特征进行了测定与分析。研究表明:西安城区地下热水中环境同位素δ(^180)、δ(^13C)、δ(^34S)的分布规律与其所在的关中盆地存在相反趋势,指示西安城区地下深部存在欠压实作用,表明西安是一个年轻的快速沉积盆地或其深部存在开启性断裂。通过水化学分析表明西安地区主要水化学类型为SO4-Na型,咸阳主要为Cl—Na型,指示咸阳地区的地质环境更为封闭。根据补给高程计算,西安、咸阳城区地下热水补给来源分别为秦岭和北山末次冰期高山雪水补给。  相似文献   

12.
Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage modes of geothermal resources in the basin.In this paper,the basin was divided into six geotectonic units,where a total of 121 samples were collected from geothermal wells and surface water bodies for the analysis of hydrogen-oxygen isotopes.Analytical results show that the isotopic signatures of hydrogen and oxygen throughout Guanzhong Basin reveal a trend of gradual increase from the basin edge areas to the basin center.In terms of recharge systems,the area in the south edge belongs to the geothermal system of Qinling Mountain piedmont,while to the north of Weihe fault is the geothermal system of North mountain piedmont,where the atmospheric temperature is about 0.2℃-1.8℃in the recharge areas.The main factors that affect the geothermal waterδ18O drifting include the depth of geothermal reservoir and temperature of geothermal reservoir,lithological characteristics,water-rock interaction,geothermal reservoir environment and residence time.Theδ18O-δD relation shows that the main source is the meteoric water,together with some sedimentary water,but there are no deep magmatic water and mantle water which recharge the geothermal water in the basin.Through examining the distribution pattern of hydrogen-oxygen isotopic signatures,the groundwater circulation model of this basin can be divided into open circulation type,semi-open type,closed type and sedimentary type.This provides some important information for rational exploitation of the geothermal resources.  相似文献   

13.
徐梓矿  徐世光  张世涛 《地球科学》2021,46(11):4175-4187
碳酸盐岩淡水热储层在我国西南地区广泛分布,安宁地热田毗邻昆明地热田西侧约40 km,是具有垂向双层热储结构的低温地热田.在深部地层缺乏钻探资料时,为了探究地热田成因,寻找深部热储向浅部热储的补给通道,使用了以下研究方法:(1)通过类比昆明地热田确定灯影组深部热储的水化学特征,(2)从水岩作用、水化学类型和主要离子相关性分析方面入手,阐述深部热储与浅部栖霞茅口组热储水化学特征的区别与联系,发现可用钠离子作为热水通道的指示因子,(3)以包括开采现状、实测温度和通道位置的数值反演模型验证通道的合理性.分析显示,浅部地热水为混合水,水化学类型(HCO3-Ca·Mg型)明显受同层冷水控制,与深部地热水离子浓度差别大.浅部热储水各点的地热水化学特征差异小,仅钠离子浓度分布可与地热田温度分区和开发利用情况相呼应.对于补给通道的水化学数据分析结果和数值模拟结果嵌合较好,说明采用以钠离子分布为主的综合分析方法所推断的补给通道位置较为合理.   相似文献   

14.
地热资源按地质构造及成因的不同可划分为火山型及沉积盆地型两种类型。国内外许多学者对沉积型地热系统的同位素水文地球化学研究较多,而火山型地热系统研究不足,且沉积型和火山型地热流体的同位素水文地球化学对比研究还有待进一步深入。文章以关中盆地腹部沉积型地热系统及腾冲火山地热系统为代表,应用同位素水文地球化学方法对不同类型地热流体的地质构造、地热流体起源及成因、热储开放程度等进行系统对比研究,进而揭示其异同之处,为我国不同类型地热资源的可持续开发利用提供科学依据。关中盆地与腾冲热海地热系统在热储空间、构造条件、热源方面均存在较大差异,前者热储更为封闭,热储层更厚,后者热储通道更为畅通,热源更为丰富;腾冲热海地热系统热储温度高,埋藏更浅,热水循环更快,更易于开发利用。关中盆地与腾冲热海地热系统均存在比较明显的δ18O富集现象,关中盆地地热流体滞留时间更长是δ18O富集的主控因素,腾冲较高的热储温度是δ18O富集的主控因素;关中盆地腹部为沉积-半封闭型、封闭型,腾冲热海地热系统为火山-半封闭型;在漫长的地质历史时期,水岩反应的程度是决定热储流体水化学类型的主控因素。  相似文献   

15.
针对太原盆地区碳酸盐岩中—低温地热系统与边山岩溶水系统的相互作用关系这一难点问题, 以地质构造分析为背景, 以岩溶水的水化学、同位素组成特征为线索, 重塑了太原盆地区碳酸盐岩中—低温地热系统地质演化过程.获得了如下3方面的认识: (1)该系统经历了自燕山运动以来的5个阶段的地质演化过程.在晚第三纪至早更新世阶段的稳定沉降期, 该系统与边山岩溶水系统开始分离, 并各自演化.(2)该系统的岩溶作用来自于2个方面: ①中更新世晚期-晚更新世早期的大气降雨沿汾河等断裂带下渗, 经与石炭—二叠煤系地层中的金属硫化物作用, 形成富含硫酸的地下水, 补给碳酸盐岩热储层, 并与其中存留的更古老的岩溶水混合, 促进了碳酸盐岩溶解; ②受中更新世晚期-晚更新世早期盆地基底岩浆的烘烤, 碳酸盐岩发生热解.(3)该系统中的岩溶热水形成于中更新世晚期-晚更新世早期, 由于上覆盖层良好的保温作用而封存至今.其分布范围受地质构造的控制, 东西向分别以东山、西山断裂为界, 南以田庄断裂为界, 北以亲贤地垒北边界为界.   相似文献   

16.
任大忠  孙卫  黄海  刘登科  屈雪峰  雷启鸿 《地球科学》2016,41(10):1735-1744
鄂尔多斯盆地姬塬油田长6储层原油储量丰富,储层致密制约着油气的勘探开发潜力和评价精度.通过开展物性、粒度、铸体薄片、X衍射、扫描电镜、压汞等测试研究储层特征,以时间为主轴,综合成岩史、埋藏史、地热史、构造等因素,采用“成岩作用模拟”和“地质效应模拟”构建孔隙度演化模型及计算方法探讨致密储层成因机理.结果表明:储层经过较强的演化改造发育微-纳米孔喉系统,形成低孔特低孔-超低渗的致密砂岩储层.H53井长6段孔隙度演化史揭示了增孔和减孔因素对孔隙度及油气充注的影响;通过对比最大粒间孔面孔率、最大溶蚀面孔率、最大压实率、最大胶结率样品孔隙度演化路径和含油饱和度,查明了致密储层成因的差异及品质.   相似文献   

17.
关中盆地地温场划分及其地质影响因素   总被引:2,自引:1,他引:1       下载免费PDF全文
周阳  穆根胥  张卉  王克  刘建强  张亚鸽 《中国地质》2017,44(5):1017-1026
具有无污染、可再生、分布广、储量大以及可就近利用等诸多优势的地热能是一种洁净能源,应用前景广阔。地热能的开发利用与区域地温场划分紧密相关,关于关中盆地整体地温场划分的研究鲜有报道。根据关中盆地的工程地质、水文地质、环境地质条件等因素,总结了岩体类和砂土类的热物性质特征。通过灰色关联分析方法,分析了岩土体热物性参数的影响因素,认为干燥重度对导热系数的影响程度最大,含水率、天然重度、孔隙率三者影响程度相近;干燥重度对比热容影响程度最大,天然重度次之,含水率和孔隙率影响最弱。利用盆地内多个地温常观孔,绘制了地温变化曲线和地温梯度等值线,认为关中盆地常温带位于15~20 m埋深处,地温梯度总体呈中部高、东西低,固市凹陷、西安凹陷、蒲城凸起、断裂及断裂汇合区域地温梯度较大,宝鸡凸起、咸礼凸起以及临蓝凸起地温梯度较小,产生差异的原因包括地质构造、地下水活动、岩土体热物性参数等三方面。利用热物性参数和地温梯度值,计算了盆地内浅层和深层的大地热流值,并分析了两者差异的成因,经对比全国区域地热资料,认为关中盆地是一个复杂的坳陷型中低温地热田,地热资源潜力巨大,居全国上游。该文旨在系统地分析关中盆地地温场特征,为地热能的勘查评价提供基础数据支持,促进关中盆地地热开发利用,为构建环境友好型社会服务。  相似文献   

18.
The geothermal water hydrochemistry and isotopic characteristics of boreholes in the Suijiang-1 well in Yunnan Province were studied based on the actual drilling geology, regional geological structure and hydrogeological conditions. The analysis results show that the geothermal water is SO4-Ca?Mg type, the recharge elevation is 1 381-1 646 m, the recharge source is atmospheric precipitation, the geothermal reservoir temperature is 42-45 ℃, and the geothermal water is controlled by lithology and geological structure conditions of study area. Atmospheric precipitation enters the groundwater circulation system through the surface karst form of the Wujiaobao anticline, northwest-southeast tensile faults, fissures and karst depression, and geothermal water formed through the rising deep cycle water temperature, then blocked by the double rivers’ fault zone and drilling explosion.  相似文献   

19.
The geothermal water hydrochemistry and isotopic characteristics of boreholes in the Suijiang-1 well in Yunnan Province were studied based on the actual drilling geology, regional geological structure and hydrogeological conditions. The analysis results show that the geothermal water is SO_4-Ca·Mg type, the recharge elevation is 1 381-1 646 m, the recharge source is atmospheric precipitation, the geothermal reservoir temperature is 42-45 ℃, and the geothermal water is controlled by lithology and geological structure conditions of study area. Atmospheric precipitation enters the groundwater circulation system through the surface karst form of the Wujiaobao anticline, northwest-southeast tensile faults, fissures and karst depression, and geothermal water formed through the rising deep cycle water temperature, then blocked by the double rivers' fault zone and drilling explosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号