首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 753 毫秒
1.
The purpose of this study is to establish a 3D groundwater flow modelling for evaluating groundwater resources of the North China Plain.First,the North China Plain was divided into three aquifers vertically through a characterization of hydrogeological conditions.Groundwater model software GMS was used for modeling to divide the area of simulation into a regular network of 164 rows and 148 lines.This model was verified through fitting of the observed and the simulated groundwater flow fields at deep and shallow layers and comparison between the observed and simulated hydrographs at 64 typical observation wells.Furthermore,water budget analysis was also performed during the simulation period(2002-2003).Results of the established groundwater flow model showed that the average annual groundwater recharge of the North China Plain during 1991 to 2003 was 256.68×10~8 m~3/yr with safe yield of groundwater resources up to 213.49×10~8 m~3/yr,in which safe yield of shallow groundwater and that of deep groundwater was up to 191.65×10~8 m~3/yr and 22.64×10~8 m~3/yr respectively.Finally,this model was integrated with proposal for groundwater withdrawal in the study area after commencement of water supply by South-North Water Transfer Project,aiming to predict the changing trend of groundwater regime.As indicated by prediction results,South-North Water Transfer Project,which is favorable for effective control of expansion and intensification of existing depression cone,would play a positive role in alleviation of short supply of groundwater in the North China Plain as well as maintenance and protection of groundwater.  相似文献   

2.
A heterogeneous anisotropic steady-state groundwater flow model for the multi-aquifer system of a part of southern Bengal Basin shows that human intervention has changed the natural groundwater flow system. At present, the shallow groundwater flow is restricted within the aquifer, with very short travel time of tens of years and vertical path length. The deep aquifer is fed by surface water or rainwater from distant locations with travel time of thousands of years and has no hydraulic connection with the arsenic-rich shallow aquifer. Numerical simulations indicate that the future pumping of deep groundwater is not likely to drive in arsenic from the shallow aquifer. Therefore, new wells may be installed in the deep aquifer. High pumping of shallow unpolluted aquifer consisting of brown sand will drive in groundwater containing organic matter from the post-Last Glacial Maximum aquifer-aquitard system. The organic matter drives reduction of manganese oxides at strip interfaces between palaeo-channel and palaeo-interfluve. After the completion of manganese reduction, FeOOH reduction may take place in the marginal palaeo-interfluvial aquifer and release sorbed arsenic. Arsenic then moves into the interior of palaeo-interfluvial aquifer polluting its fresh groundwater. Arsenic migration rates ranges between 0.21 and 6.3 and 1.3 × 10?2 and 0.4 m/year in horizontal and vertical directions, respectively. Therefore, palaeo-interfluvial aquifer will remain arsenic-free for hundreds to thousands of years to supply safe drinking water.  相似文献   

3.
Recently, Ras Sudr (the delta of Wadi Sudr) area received a great amount of attention due to different development expansion activities directed towards this area. Although Quaternary aquifer is the most prospective aquifer in Ras Sudr area, it has not yet completely evaluated. The present work deals with the simulation of the Quaternary groundwater system using a three-dimensional groundwater flow model. MODFLOW code was applied for designing the model of the Ras Sudr area. This is to recognize the groundwater potential as well as exploitation plan of the most prospective aquifer in the area. The objectives were to determine the hydraulic parameters of the Quaternary aquifer, to estimate the recharge amount to the aquifer, and to determine the hydrochemistry of groundwater in the aquifer. During this work, available data has been collected and some field investigation has been carried out. Groundwater flow model has been simulated using pilot points’ method. SEAWAT has been also applied to simulate the variable-density flow and sea water intrusion from the west. It can be concluded that: (1) the direction of groundwater flow is from the east to the west, (2) the aquifer system attains a small range of log-transformed hydraulic conductivity. It ranges between 3.05 and 3.35 m/day, (3) groundwater would be exploited by about 6.4 × 106 m3/year, (4) the estimated recharge accounts for 3 × 106 m3/year, (5) an estimated subsurface flow from the east accounts for 2.7 × 106 m3/year, (6) the increase of total dissolved solids (TDS) most likely due to dilution of salts along the movement way of groundwater from recharge area to discharge area in addition to a contribution of sea water intrusion from the west. Moreover, it is worth to note that a part of TDS increase might be through up coning from underlying more saline Miocene sediments. It is recommended that: (1) any plan for increasing groundwater abstraction is unaffordable, (2) reliable estimates of groundwater abstraction should be done and (3) automatic well control system should be made.  相似文献   

4.
黄金柏  魏帆  李德标  王斌  桧谷治 《水文》2014,34(3):24-30
研究主要目的是以数值模拟的方法,再现选定的研究区域20世纪70~90年代地下水位处于较低水平的过程并推求地下水的补给过程。研究区为某流域入海口前10×12km2的矩形区域,基于研究区土层纵断面的物理条件,在平面二维的基础上,考虑含水层垂向水收支成分,利用地下水计算的基本方程式开发地下水准三维数值计算模型,以数值模拟的方法验证模型效率。对地下水位数值模拟的结果表明,模型效率可以达到80%以上。基于1966~2005年的数值计算结果,推求了研究区各含水层的补给过程。研究结果可为区域性地下水数值模拟技术及地下水资源量的评估等研究提供方法上的借鉴。  相似文献   

5.
Combined geophysical techniques such as multi-electrode resistivity, induced polarization, and borehole geophysical techniques were carried out on volcano-sedimentary rocks in the north of Gemas as part of the groundwater resource’s investigations. The result identifies four resistivity units: the tuffaceous mudstone, tuffaceous sandstone, the tuff bed, and the shale layer. Two types of aquifer systems in terms of storage were identified within the area: one within a fracture system (tuff), which is the leaky area through which vertical flow of groundwater occurs, and an intergranular property of the sandy material of the aquifer which includes sandstone and tuffaceous sandstone. The result also reveals that the aquifer occupies a surface area of about 3,250,555 m2 with a mean depth of 43.71 m and a net volume of 9.798?×?107?m3. From the approximate volume of the porous zone (28 %) and the total aquifer volume, a usable capacity of (274.339?±?30.177)?×?107?m3 of water in the study area can be deduced. This study provides useful information that can be used to develop a much broader understanding of the nature of groundwater potential in the area and their relationship with the local geology.  相似文献   

6.
The present study assesses groundwater resources in the semiarid central Sudan, where 20 deep productive wells were installed to supply a major city in the region, El Obeid. The wells, which has an average 20 L/s discharge each, are taping a deep semiconfined to confined aquifer of fluvial silisiclastics deposited in the Tertiary–Pleistocene. Groundwater modeling was used as a technique to interpret the hydrologic system in arid to semiarid central Sudan and to simulate the future influence of the project on the hydrogeologic system. The simulation confirmed that steady-state flow conditions have been currently reached as indicated by consistency of computed heads. It also calibrated the values of the conductivity and recharge and ensured the sustainability of the El Obeid water supply project. A total of 3.5 × 107 m3/year can be continually extracted from the deep aquifer to supply El Obeid city without endangering the groundwater resources in the region. The decline in water level will not exceed 25 m during the first 10 years, while indefinite continuous pumping will affect only the vicinity of the wells in a circle of 30 km diameter. Therefore, aquifer storage capacity and hydraulic properties encourage further groundwater exploitation. The present use of groundwater is extremely lower than the present demand, and it can potentially cover future demands without introducing significant changes to the system. The increase of pumping cost due to the decline in head subsequent to project operation was found to be minimal and of local effect.  相似文献   

7.
河北平原第四系深层地下水36Cl同位素年龄的研究   总被引:10,自引:0,他引:10  
董悦安  何明等 《地球科学》2002,27(1):105-109
为研究河北平原第四系深层地下水的年龄,应用加速器质谱计对河北平原深层地下水样品的N(^36Cl)/N(Cl)进行了测定,计算了其年龄,并与地下水动力学年龄进行了对比研究。结果表明,河北冲洪积平原山前地带保定市第四系第三和第四含水组的地下水年龄皆很小,为近期补给的地下水。中部地带保定地区东部和沧州地区西部的第三含水组地下水年龄皆小于5万a,第四含水组地下水的年龄可能大于10万a。边缘地带沧州市和青县第三含水组地下水年龄为8-9万a左右,东光县为26万a左右;沧州市第四含水组地下水年龄为33万a左右,东光县为77万a左右。  相似文献   

8.
天津市地下水流-地面沉降耦合模型   总被引:6,自引:0,他引:6  
天津市平原区地面沉降主要由地下水大量开采引起,影响范围广、危害大,已成为天津市主要的环境地质问题。分析了研究区的水文地质条件,结合地下水开发利用状况,将研究区概化为6个含水层组,地下水流考虑三维非稳定流,地面沉降选用一维固结压缩模型,运用地下水流模型Modflow 2005和地面沉降模拟模块 Sub,建立了天津市平原区地下水流-地面沉降数值耦合模型,模型面积为1.1×104 km2,利用1998-2008年地下水位等值线、过程线、地面沉降过程线等资料对模型进行了识别。模拟期的地下水均衡分析表明,在多年开采条件下,越流补给、压缩释水、侧向边界流入分别占深层含水层补给量的41.84%、32.15%和24.17%。将调试后的模型应用于南水北调实施后地下水控采条件下的地面沉降趋势预测,显示出停采或减少地下水的开采,有利于减缓地面沉降下降速度,且表现出开采层位越往下,地面沉降恢复难度越大的变化趋势。  相似文献   

9.
天津平原地下水可开采量与确定依据   总被引:4,自引:0,他引:4       下载免费PDF全文
根据深层地下水开采对地面沉降的影响比较,天津中部平原和滨海平原第二、三含水层组深层地下水开采对地面沉降影响较小,为适宜开采层位。地面沉降控制在10 mm/a,第二、三含水层组深层地下水可开采量为2.68亿m3/a。中部平原浅层地下淡水、微咸水,在技术经济上鼓励开采,可开采量为1.64亿m3/a;山前平原地下水现状开采强度未引起明显的环境地质问题,开采强度适当,可开采量为2.79亿m3/a。天津平原生态环境保持良好,地下水总的可开采量为7.11亿m3/a。  相似文献   

10.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

11.
北京市永定河流域地下水^14C年龄的初步分析   总被引:1,自引:0,他引:1  
王新娟  周训 《地质论评》2006,52(2):283-288
应用同位素方法初步分析北京郊区永定河流域地下水的演化特点。沿永定河冲洪积扇地下水流动方向布置取样剖面,共有取样点14个,对采集的水样进行^14C和氚含量分析,并确定地下水同位素年龄。浅层孔隙水的^14C年龄的变化范围为730~4900a,深层孔隙水为13420-22480a;^14C年龄在垂直方向上由浅部至深部逐渐增大,最大变化幅度为从3010a增至22480a;浅层孔隙水的氚含量都在14.99~30.56TU之间,深层孔隙水大部分在0.51~4.71TU之间。运用地下水^14C和氚年龄在垂向和水平方向变化的结果,验证了地下水的流向并计算了地下水的流速变化范围为5.02~62.63m/a,从山前至平原浅层地下水径流速度逐渐变小,反映了地下水水平径流强度逐渐减弱,地下水交替逐渐变差,浅层孔隙水以垂向交替为主,深层孔隙水以水平径流为主。  相似文献   

12.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

13.
Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency’s maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however.  相似文献   

14.
Deuterium, oxygen-18 and chloride were analyzed for 84 samples from deep and shallow wells, precipitation and the river White Nile to investigate groundwater recharge/discharge relations in the semi-arid central Sudan. Spatial and vertical variation in isotopic signature and chloride concentration in the groundwater show similar patterns and indicate local recharge and evaporative discharge. Progressive decrease in isotopic composition along the regional groundwater flow path demonstrates aquifer continuity down the NW–SE recharge-discharge path. Isotope-heavy recharged water progressively mixes with lighter older groundwater formed during cooler and humid conditions in the late Pleistocene. However, evaporative fractionation in the flow path’s final reach in the southeast re-enriches the isotopic composition and suggests evaporative loss of groundwater as the plausible discharge mechanism. Chloride concentration increases down the gradient from the recharge area and reaches its peak in the discharge zones indicating: lack of recharge from direct infiltration down the gradient, evaporation and prolonged rock/water interaction. Head differences and increased isotopic concentration in the vicinity of the White Nile suggest recharge from the river from subsurface flow. Reduced chloride content and relatively heavier isotopic composition in the deep groundwater beneath the wadi of Khor Abu Habil indicate recharge from the streambed into the deep aquifer.  相似文献   

15.
Significant upward movement of mineralized water takes place in the Puebla aquifer system. Preferential groundwater flow paths related to the geological structure and the lowering of the potentiometric surface are suspected to be the prime factors for this intrusion. A combined approach of geochemical and isotope analyses was used to assess the sources of salinity and processes that are controlling the changes in groundwater chemical composition in the Puebla aquifer. Geochemical and isotope data indicate that the likely source of increased solutes is mineralized water from the dissolution of evaporites of the Cretaceous age at the base of the Upper deep aquifer, which is deeper than the intakes of the shallow wells. Dedolomitization and cation exchange seems also to occur along flow paths where sulphate concentrations tend to increase. The deep regional flow paths controls the chemical stratification of groundwater in response to decreased heads through interconnecting vertical and horizontal pathways, such as in the Fosa Atlixco. The results also suggest that high sulphate concentrations originating in the Lower deep aquifer are currently affecting shallow production wells. It is concluded that hydrodynamic aspects together with hydrogeochemical characteristics need to be taken into account to correctly explain the hydrochemical evolution in the stratified aquifer.  相似文献   

16.
Water levels measured at multiscreened wells in unconfined aquifers may not coincide, in general, with the elevation of the water table. The presence of vertical gradients (as often is the case in recharge areas) or the existence of confining layers may cause the water levels to differ from local hydraulic heads in the aquifer. In these cases, a misinterpretation of water levels may lead to the erroneous conclusion that observed drawdowns are provoked by overpumping. In this paper, we analyze the effect that a natural vertical gradient has on water levels in wells screened over their entire saturated thickness. As one would expect, it is observed that, even without pumping, the water level in the wells lies below the water table. Type curves relating the steady-state drawdown to the vertical gradient and to the hydraulic conductivity anisotropy are presented. These curves were obtained using a groundwater flow numerical model (FREESURF: Neuman and Witherspoon, 1970). The theoretical results are checked with field data from deep wells in the detrital Madrid aquifer. In this particular aquifer, it is observed that the effect of vertical gradients is important both in terms of drawdowns and flow rates.
  相似文献   

17.
Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997–2006, followed by validation (2007–2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.  相似文献   

18.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   

19.
为查明神东矿区地下水质量状况和补给来源,分析测试了不同含水层(第四系松散层、白垩系洛河组、侏罗系直罗组和延安组含水层)的一般化学指标、毒理学指标和环境同位素(D、18O、3H)的值,利用环境同位素(D、18O、3H)分析该区地下水的补给来源和更新能力,利用单指标综合评价和影响因素识别相结合的方法研究了区内地下水的质量现状和影响因素,采用四步法计算出毒理学指标的饮水途径健康风险值。结果表明:(1)第四系松散层地下水、白垩系洛河组地下水和侏罗系风化带水主要为现代大气降水补给,更新快。侏罗系深层基岩裂隙水主要为晚更新世冰期降水补给,与现代降水基本无水力联系;(2)侏罗系延安组地下水水质较差,Ⅳ-Ⅴ类水所占比例较高,达到47.9%,其他含水层地下水水质较好。总体上,对Ⅳ-Ⅴ类水单指标贡献率较大的指标为钠氟化物TDS氯化物硫酸盐;(3)毒理学指标中氟化物的健康风险值最大,其他毒理学指标健康风险基本都在可接受范围内。因此,氟化物应作为水污染监测和防治中的优先控制物。本次研究成果将为矿区水源地的选择和污染物防控提供科学依据。  相似文献   

20.
The groundwater reserves in Kharga Oases have been studied for the long-term socioeconomic development in the area. The Nubian Sandstone, which consists of a thick sequence of coarse clastic sediments of sandstone, sandy clay interbedded with shale, and clay beds, forms a complex aquifer system. The Nubian Aquifer has been providing water to artesian wells and springs in the Kharga Oases for several thousand years. Groundwater in the Kharga Oases is withdrawn from springs and shallow and deep artesian wells Nearly all the wells originally flowed, but with the exploitation of ground-water from deep wells for irrigation beginning about 1959. the natural flows declined as more and more closely spaced deep wells were drilled By 1975 many deep wells had ceased to flow The water demand in the area has been met by pumping both shallow and deep wells The total annual extraction from deep wells has fluctuated over the year, however, the annual withdrawal from deep wells has exceeded extraction from shallow wells About 17 billion m3 of water was withdrawn from the combination of shallow and deep wells during the period 1960–1980 The Nubian complex aquifer in the Kharga Oases has a very large groundwater potential that could be exploited and beneficially used for a long-term agricultural development in the area, provided proper well spacing and management are implemented Other major environmental considerations for which precise hydrogeologic data are needed include
  1. Determination of the long-term yield available from properly constructed and producing artesian wells that will support a planned migration of population from the overcrowded Nile delta and flood plain areas
  2. Development of an effective management program and adequate staff to maintain groundwater production over an extended period of years
  3. The impact on climate caused by extensive irrigation in the oases of the Western Desert of Egypt
  4. Protection against water logging of soils from irrigation practices
  5. Protection against salinization of soils from irrigation practices
  6. Development of effective surface and subsurface drainage practices
  7. The impact of farming and pest control practices on the shallow groundwater of the oases
  8. Determination of the long-term development of the artesian water on the quality of the water from the aquiter systems in the Western Desert
This paper addresses items 1, 2 and 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号