首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
雷东宁  傅焰林  蔡永建  梁操 《地震研究》2012,35(2):213-219,295
通过对乌当断裂野外实际构造地貌、地质特征调查,室内断层物质测年分析,结合地球物理、化学探测方法,对乌当断裂的重点地段进行了研究,分析了该断裂第四纪以来的活动特征.初步研究表明,乌当断裂带为倾向SE的逆断层,第四纪以来有不同强度的活动.经断层泥物质测年及综合地貌特征分析,发现该断裂为一条第四纪早更新世弱活动,中更新世强活...  相似文献   

2.
青岛沧口-温泉断裂的空间展布及现代活动性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
以野外地质观察和断裂的地质剖面为依据 ,阐述了青岛沧口 -温泉断裂的空间展布和构造特征。并应用区域地貌、地震地质、第四纪地质方法和断裂活动的绝对年龄资料对青岛沧口 -温泉断裂现代活动性进行了研究 ,认为上述断裂自晚更新世以来 ,其活动趋向稳定状态 ,属于晚第四纪不活动断裂  相似文献   

3.
本文通过卫星影像解译、地质地貌调查、地质探槽开挖、断错地貌测量和样品年代学测试,对南迦巴瓦构造结西侧的里龙断裂晚第四纪活动特征进行了分析和研究,结果表明:里龙断裂是一条以右旋走滑活动为主、兼有挤压逆冲的北北西向断裂,其最新活动时代为全新世;该断裂晚第四纪以来的平均水平滑动速率为3-4mm/a,平均垂直滑动速率为0.10-0.15mm/a。研究还表明,南迦巴瓦构造结晚第四纪以来的向北俯冲运动已经停止,喜马拉雅东构造结地区的构造变形主要受阿萨姆构造结的俯冲影响。  相似文献   

4.
通过航卫片遥感数据解译、野外地质地貌调查,并结合差分GPS等测量手段,获取大柴旦断裂晚第四纪以来的地质地貌特征。结果显示:大柴旦断裂总长约135 km,整体上显示为一反“S”形,根据断裂走向的变化、地貌特征、活动强弱等,大致以温泉沟、塔塔棱河为分界点,可将大柴旦断裂分为三段。晚第四纪以来,该断裂北段和南段逆冲性质较为明显。本次工作集中在断裂中段,该段以右旋逆冲活动为主,逆冲量和右旋量在不同地貌面上是不同的,显示出明显的多期次活动特征。野外天然古地震剖面揭示出1次古地震事件,发生在(2 402.5±57.5) a.B.P之后,表明该断裂在全新世活动强烈,与该区域近年来频繁的强震活动相吻合。  相似文献   

5.
通过对汗母坝-澜沧断裂晚第四纪地质、地貌实地调查与测量,并结合前人研究成果,讨论了该断裂晚第四纪最新构造活动特征。综合分析认为,汗母坝-澜沧断裂为一条以右旋走滑为主的全新世活动断裂,长约120 km,整体走向NNW。该断裂活动习性具有明显的分段特征,北段称为汗母坝断裂,是1988年耿马7.2级地震的发震断裂;南段称为澜沧断裂,是1988年澜沧7.6级地震的发震断裂之一。晚第四纪以来其新活动形成了丰富的断错地貌现象,如冲沟和山脊右旋位错、断层沟槽、断层垭口、断层陡坎、断陷凹坑等。根据断裂断错地貌特征的相应资料估计,该断裂晚第四纪右旋走滑速率约为(4.7±0.5) mm/a。  相似文献   

6.
2013年芦山7.0级地震发生后,宝兴县作为地震灾区,在灾后重建工作中划设了穆坪镇和五龙乡两个规划区。由于两个规划区均位于龙门山断裂带南段中央断裂附近,中央断裂的晚第四纪活动特征研究可以为宝兴县的的灾后重建工作提供科学依据。通过野外地质调查、地球物理探测及钻探等手段,对中央断裂的两个分支断裂即盐井断裂和五龙断裂的地质地貌及活动特征进行了揭示。研究结果显示五龙断裂线性特征较为清晰,为晚第四纪活动断裂,穿过五龙乡规划区,考虑到未来发生地震造成的地表断错问题,应进行地震活断层避让。盐井断裂线性特征较弱,断层规模较小,为早-中更新世活动断裂,可以不考虑其对穆坪镇规划区的影响。  相似文献   

7.
西淋岗第四纪错断面位于佛山市顺德区陈村镇,有研究者认为这是晚第四纪活动断裂。为了进一步探明该错断面形成的机理,进行了大比例尺地质地貌填图、探槽开挖、浅层地震探测和第四纪地层年代测定等工作。结果表明,该点及其周边地貌上没有最新构造活动的迹象,但符合重力活动的特征。第四纪地层的错断和基岩中的断裂不能配套,不是统一构造应力场的产物。两侧物探反射特征表明,基岩断裂并未错断第四纪地层。根据基础地质条件、工程地质类比和高陡稳定性计算结果判断,该错断面的产生具备重力活动的条件,是重力失衡的结果,而并非由构造作用形成。  相似文献   

8.
常祖峰  常昊  毛泽斌  罗林  王琦 《地震地质》2021,43(3):559-575
苏典断裂呈近SN向延伸,跨越中缅边境,长约100km,历史上沿断裂多有地震发生.但受交通、气候等因素制约,长期以来有关断裂的晚第四纪活动性几乎没有研究.据野外地质地貌调查、探槽和年代学测试结果,文中对此断裂的晚第四纪运动特征、最新活动时代进行分析.苏典断裂的新构造活动明显,沿断裂发育有苏典、勐典、黄草坝、陇中等串珠状第...  相似文献   

9.
大盈江断裂西南段晚第四纪活动研究   总被引:9,自引:1,他引:8  
根据断裂地质、地貌特征和卫星影象资料,阐述了大盈江西南段晚第四纪的活动特征和运动方式.结果表明:大盈江西南段主要表现为左旋走滑运动,为晚更新世活动断裂,沿断裂历史上发生过6级左右地震.  相似文献   

10.
则木河断裂晚第四纪位移及滑动速率   总被引:5,自引:3,他引:5       下载免费PDF全文
则木河断裂晚第四纪位移及滑动速率任金卫(国家地震局地质研究所,北京100029)则木河断裂是青藏高原东边缘鲜水河~小江断裂带中段的一条走向北北西的活动断裂。第四纪以来具有左旋走滑为主的运动特征。通过野外调查,则木河断裂北段发现了51个左旋水平位移点  相似文献   

11.
根据1:10000条带状地质填图所获资料,分析了育王山山前断层的几何结构和新活动时代。断层北起岙张水库大坝东北,向南经河头蕉-竺家-陈家-钱家-俞家-王家一线以西,止于詹家西南,由2条次级段呈羽列式展布,北段为岙张水库-红岩水库段,南段为红岩水库东南-詹家段。剖面上断层地貌显示清楚,西侧为侏罗系构成的育王山低山,东侧为大楔盆地。各条断层皆由多个断面构成宽几米-几十米的断层带。根据探槽、天然剖面特征和OSL、ESR样品年龄测试结果综合分析,断层至少有两期活动,早期活动性质为逆断层,时间为早更新世,晚期活动性质为右旋走滑兼正断或逆断层,时间为中更新世,最新活动时代为中更新世晚期。通过探槽揭露,确定育王山山前洪积扇陡坎是人类活动造成,而非断层陡坎。  相似文献   

12.
新疆阜康-吉木萨尔断裂带的几何特征与活动性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
尤惠川  任利生  张玉梅 《地震地质》2003,25(3):375-T002
根据详实的野外资料对新疆阜康 -吉木萨尔断裂带的构造几何特征和活动性进行了分析与研究 ,结果表明 :断裂带由东、西两大段组成 ,西段由 4条次级S倾逆断裂左行斜列组成 ,东段由 3条次级S倾逆断裂右行斜列组成 ,总体上呈向北微凸的近EW向展布 ,长达 14 0km ,控制着东天山北缘的第四纪构造演化和地貌发育 ;组成断裂往往是低角度的逆断层 ,与褶皱共生 ,切割深度 5~ 6km ,第四纪晚期多期 (次 )活动 ,以间歇性稳定滑动为特征 ;断裂带端部段落倾角较大 ,活动量较小 ,全新世平均垂直滑动速率为 0 .10~ 0 4 0mm/a ,中部段落以低倾角的推覆为特征 ,活动强烈 ,全新世平均垂直滑动速率达 0 80~ 1 0 0mm/a以上  相似文献   

13.
太行山山前断裂带的构造特征   总被引:64,自引:1,他引:63       下载免费PDF全文
徐杰  高战武  宋长青 《地震地质》2000,22(2):111-122
据近年来的地质和地球物理资料对太行山山前断裂带做了研究 ,得到一些新的认识。断裂带开始出现于中生代 ,主要形成于早第三纪 ,由一系列NE -NNE向断裂左型斜列组成。断裂带的结构构造和活动具有鲜明的分段性 ,中北段的保定 -石家庄等断裂为大型拆离断裂 ,在倾向上水平延伸 70km左右 ,早第三纪水平拉张断距约 17km ,垂直断距 50 0 0~ 60 0 0m。断裂带基本上是发育于上地壳的拆离滑脱构造 ,不属深大断裂。它第四纪活动性不强 ,与强震活动没有直接成因关系 ,但断裂带南、北两部分与其它走向的地震构造带交汇 ,对区域地震构造和地震预测研究仍有重要意义  相似文献   

14.
祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定   总被引:14,自引:0,他引:14  
何文贵  袁道阳  葛伟鹏  罗浩 《地震》2010,30(1):131-137
冷龙岭活动断裂是青藏高原东北缘祁连山断裂带的重要组成部分, 位于祁连山断裂带中东段。 根据野外考察结果认为, 该断裂全新世以来活动强烈, 主要表现为左旋走滑运动, 并伴有正倾滑性质, 断错地貌特征明显。 通过高分辨率SPOT卫星数字影像和大比例尺航空照片处理确定断层的位置, 利用断错地貌测图、 热释光(TL)和碳十四(14C)测年方法, 厘定了冷龙岭断裂的晚第四纪滑动速率, 冷龙岭断裂晚更新世以来的平均水平滑动速率为(4.3±0.7)mm/a, 全新世晚期以来的平均水平滑动速率为(3.9±0.36)mm/a。  相似文献   

15.
In order to acquire a better velocity structure of the crustal and uppermost mantle beneath Shanxi area, we obtain the group and phase velocities of Rayleigh wave of the periods 8s to 50s in Shanxi and adjacent area using ambient seismic noise recorded at 216 broad-band stations. All available vertical-component time series for 2014 have been cross-correlated to yield estimates of empirical Rayleigh wave Green's function. Group and phase velocity dispersion curves for Rayleigh wave are measured for each interstation path by applying frequency-time analysis. It describes finer velocity structure of the crust and upper mantle in Shanxi, which reflects the geological structure characteristics at different depths. The resolution is within 50km and the resolution of part periods can reach 40km.The Rayleigh wave group and phase speed maps at short periods(8~18s and 10~22s)show clear correlations with shallow geological structures. Mountain areas on both sides of Shanxi depression zone show apparent high-velocity anomaly, except for low-velocity anomaly in the Taiyuan Basin, Linfen-Yuncheng Basin and Weihe Basin. Especially, the areas of Youyu County-Pianguan County-Kelan County-Shuozhou City and Jingle County-Lishi District of Lüliang City in Lüliang Mountains, and Yu County-Fuping County-Yi County and Yangcheng County-Licheng County in Taihang Mountains, present higher velocity anomaly. In addition, the velocity is lowest in the Weihe Basin, and the amplitude of low velocity decreases gradually from the south to the north of the basins in Shanxi, which probably is related to the process of gradual stretching and development of the Shanxi rift zone from the southwest to the northeast. The obvious velocity difference across the latitude of 38°N exists at 18~30s period of phase and 24~35s period of group velocity maps, which is probably related to the deep and shallow Moho depth variation in the south and north of Shanxi and the suture zone of ancient blocks including "hard" southern block and "soft" northern block. At the same time, the research result of receiver function reveals that partial melting of the lower crust occurs in the northern Taihang Mountains, while the southern section remains stable(Poisson's ratio is above 0.3 in the northern Taihang Mountains and 0.25~0.26 in the southern section). The phase velocity map at 30~50s period clearly shows NW velocity gradient belt, and the low velocity anomaly in the northeast side may be related to Cenozoic volcanism. Meanwhile, the eastern border of Ordos block is the western faults of central basins in Shanxi depression zone. However, some research results indicate that the above border is Lishi Fault in the surface, inferring that the Ordos block shows a shape of wide in the upper and narrow in the lower part from the surface to deep. The Datong volcanic area at 18~45s period of phase and 24~35s period of group velocity maps shows low velocity of trumpet shape from shallow to deep, related to the upwelling of hot material from lower mantle in the Cenozoic causing a large area of intense magmatic activity. It indicates the more specific upwelling channel of Datong volcanoes simultaneously.  相似文献   

16.
汤阴地堑位于太行山脉与华北平原的过渡带,是太行山前重要的地质构造单元。为研究汤阴地堑上地壳结构和断裂特征,利用安阳市与新乡市活断层探测获得的深、浅地震反射剖面,结合研究区已有地震、地质资料,对汤阴地堑浅部结构、汤东断裂特征进行分析研究。结果表明,汤阴地堑北部与南部地壳结构差异明显。地堑北部是由汤东断裂控制的半地堑,地堑内反射震相丰富、反射波层组关系清晰,多组新生代、古生代沉积层强反射不整合地覆盖在自西向东倾伏的结晶基底反射Tg上,且随着深度增加,地层倾角增大,显示出明显的多期掀斜运动特征。地堑南部表现为由汤东、汤西断裂共同控制的断陷型地堑,地堑内新近系底界面反射波TN自西向东倾伏,其下为一些横向呈水平或东倾、延续性较短的反射震相。地堑南部与北部不同的反射震相特征表明,测线控制区域内的汤阴地堑沉积环境与运动特征可能有所差异。汤东断裂为走向NE,倾向NW的铲型正断层,汤西断裂为走向NE、倾向SE的正断层,北部中深层地震反射剖面上未发现该断层的存在。  相似文献   

17.
太行山山前断裂带中北段晚第四纪活动性研究   总被引:4,自引:2,他引:2  
本文通过浅层地震勘探和钻孔联合剖面探测,对太行山山前断裂中北段内相关断裂的空间位置和晚第四纪活动性进行了探测和研究。综合认为,保定-石家庄断裂和徐水断裂的最新活动时代为晚更新世早期,而徐水南断裂晚更新世以来没有活动。上述断裂的最大潜在地震震级为6.5级。  相似文献   

18.
在从事多年野外地质调查研究的基础上,对隐伏断层的野外地质调查提出了跨断层综合地质剖面法。该方法主要是依据断层错动造成两侧相同地层(主要是第四系)相应地貌面产生垂直向高差或水平向的不连续,从而使两侧相应地层地貌面的高程和地层的相对运动发生变化。依据这些信息判断断层活动时代与运动性质。分析了该方法的适用条件和影响因素,指出研究场地第四系发育齐全是跨断层综合地质剖面法的关键。最后将该方法在瑞昌-武宁断裂研究中的实际应用得到的结果与传统隐伏断层研究方法的结果进行对比分析,其结果的一致性表明了该方法在研究及工程应用中的可靠性和实用性。  相似文献   

19.
Based on detailed field investigations,this paper describes the geometrical characteristics and tectonic activities of the Zhangjiakou fault at the northwest of Beijing. This fault strikes mainly northwest to west,short parts of which strike near east to west,dipping north,and extends over a length of 70km. It is a major geological and geomorphological margin,controlling the neotectonic movement in this region. On the south side of the Zhangjiakou fault are the Late Quaternary unconsolidated deposits,forming basins; while on the other side are Mesozoic volcano debris and Pre-Mesozoic metamorphic rocks, forming lower mountains and hills. The Zhangjiakou fault consists mainly of high-angle inverse strike-slip fault and partially of normal strike-slip fault. Among these,the north-dipping NW-NWW-trending secondary faults,constituting the main fracture of the fault,have inverse characteristics; those near the EW-trending secondary faults are links of the former faults,with a smaller length and normal faulting characteristics. Thus,the Zhangjiakou fault is a north-dipping inverse and partially south-dipping normal strike-slip fault. The Zhangjiakou fault has been continuously active since the Quaternary. With the exception of the western end extension,which has been active since the late Pleistocene, the main part of the fault has been active since the Holocene. The central main segment of the Zhangjiakou fault is more active. Since the mid-late period of the late Pleistocene,the average vertical slip rate of a single fault has been over 0. 07mm /a ~ 0. 30mm /a. The Zhangjiakou fault has multi-slip surfaces,and the total vertical slip rate reaches 1. 33mm /a,estimated from the Qingshuihe river terraces and the relevant drilling data.  相似文献   

20.
Based on geological and geomorphologic characteristics of the surface faults acquired by field investigations and subsurface structure from petroleum seismic profiles, this paper analyzes the distribution, activity and formation mechanism of the surface faults in the east segment of Qiulitage anticline belt which lies east of the Yanshuigou River and consists of two sub-anticlines:Kuchetawu anticline and east Qiulitage anticline. The fault lying in the core of Kuchetawu anticline is an extension branch of the detachment fault developed in Paleogene salt layer, and evidence shows it is a late Pleistocene fault. The faults developed in the fold hinge in front of the Kuchetawu anticline in a parallel group and having a discontinuous distribution are fold-accommodation faults controlled by local compressive stress. However, trenching confirms that these fold-accommodation faults have been active since the late Holocene and have recorded part of paleoearthquakes in the active folding zone. The fault developed in the south limb near the core of eastern Qiulitage anticline is a low-angle thrust fault, likely a branch of the upper ramp which controls the development of the eastern Qiulitage anticline. The faults lying in the south limb of eastern Qiulitage anticline are shear-thrust faults, which are developed in the steeply dipping frontal limb of the fault-propagation folds, and also characterized by group occurrence and discontinuous distribution. Several fault outcrops are discovered near Gekuluke, in which the Holocene diluvial fans are dislocated by these faults, and trench shows they have recorded several paleoearthquakes. The surface anticlines of rapid growth and associated accommodation faults are the manifestations of the deep faults that experienced complex folding deformation and propagated upward to the near surface, serving as an indicator of faulting at depth. The fold-accommodation faults are merely local deformation during the folding process, which are indirectly related with the deep faults that control the growth of folds. The displacement and slip rate of these surface faults cannot match the kinematics parameters of the deeper fault, which controls the development of the active folding. However, these active fold-accommodation faults can partly record paleoearthquakes taking place in the active folding zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号