首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A quantitative petrogenetic grid for pelitic schists in the system KFMASH that includes the phases garnet, chlorite, biotite, chloritoid, cordierite, staurolite, talc, kyanite, andalusite, sillimanite, and pyrophyllite (with quartz, H2O and muscovite or K-feldspar in excess) is presented. The grid is based on thermodynamic data of Berman et al. (1985) and Berman (1988) for endmember KFASH and KMASH equilibria and natural Fe-Mg partitioning for the KFMASH system. Calculation of P-T slopes and the change in Fe/(Fe+Mg) along reactions in the KFMASH system were made using the Gibbs method. In addition, the effect on the grid of MnO and CaO is evaluated quantitatively. The resulting grid is consistent with typical Buchan and Barrovian parageneses at medium to high grades. At low grades, the grid predicts an extensive stability field for the paragenesis chloritoid+biotite which arises because of the unusual facing of the reaction chloritoid+biotite + quartz+H2O = garnet+chlorite+muscovite, which proceeds to the right with increasing T in the KFMASH system. However, the reaction proceeds to the left with increasing T in the MnKFASH system so the assemblage chloritoid + biotite is restricted to bulk compositions with high Fe/(Fe+Mg+Mn). Typical metapelites will therefore contain garnet+chlorite at low grades rather than chloritoid + biotite.  相似文献   

2.
Kyanite replaces andalusite in a belt of Ordovician and Silurian pelitic rocks that form a narrow synform pinched between high-grade antiforms in NW Variscan Iberia. Kyanite occurs across the belt in Al-rich, black pelites in assemblages I: kyanite–chloritoid–chlorite–muscovite and II: kyanite–staurolite– chlorite–muscovite. In I, kyanite occurs in the matrix and in kyanite–muscovite aggregates that pseudomorph earlier andalusite porphyroblasts. The aggregates are found across the belt and can still be recognized in assemblage II and even in III: andalusite–staurolite–biotite–muscovite, this latter being a hornfelsic Silurian schist where kyanite is relic and staurolite occurs in the matrix, and is resorbed inside new massive pleochroic andalusite. KFMASH and MnKFMASH pseudosections have been constructed using Thermocalc for Al-rich and Al-poorer compositions from the belt. Chloritoid zoning in Al-rich rocks containing assemblage I, plus chloritoid–chlorite thermometry complemented with garnet–chlorite thermometry in Al-poorer lithologies, mean that the path is one of increasing pressure and temperature. Conditions prior to assemblage I, with earlier andalusite stable, are those of the andalusite–chloritoid– chlorite field as testified by chloritoid enclosed in andalusite porphyroblast rims. The passage from assemblage I to II implies a prograde path within the kyanite field. Assemblage III represents peak conditions, indicating a prograde staurolite-consuming reaction across a KFMASH field, leading eventually to a locally found andalusite–biotite–muscovite hornfels. The lowest pressure stages are recorded by cordierite–biotite in Al-poor pelites. Garnet-bearing MnKFMASH assemblages in Al-poorer pelites record conditions similar to assemblages II and III. The replacement of andalusite by kyanite in assemblage I is attributed to downdragging of andalusite-bearing rocks into a synform as testified by the strained andalusite porphyroblasts affected by a subvertical crenulation cleavage. Prograde metamorphism in the eastern contact of the belt is due to heat transferred to the belt from the ascending high grade antiform across the Vivero fault.  相似文献   

3.
The phase relations of muscovite-quartz-bearing pelitic schistscontaining combinations of garnet (Grt), staurolite (St), chloritoid(Cld), biotitt (Bt) and chlorite (Chl) are examined (1) to assessthe influence of manganese on natural assemblages, and (2) toconstrain the topologies of petrogenetic grids, particularlywith respect to the controversial assemblage Cld +Bt. Two fieldareas were studied: Stonehaven, NE Scotland (p 4•5 kbar)and the SE Tauern Window, Austria (P 7 kbar), both characterizedby the up-grade progression from typical ‘garnet-zone’Grt+Chl assemblages to ‘staurolite-zone’ St+Bt±Grtassemblages via a narrow, complex zone containing Cld+Bt assemblages.In both areas, the following commonly observed chemographicrelations hold: Mg/(Mg+Fe): Grt<St<Cld<<Bt<Chl;Mn/(Mn+Fe+Mg): Chl Bt<<St<Cld<<Grt. These compositionsyield the MnAFM-discontinuous reaction (Ms+Qtz+H2O in excess):Cld+Chl = Grt+St+Bt. The distributions of mineral assemblages in both areas are moreconsistent with the operation of MnAFM reactions than of traditionalAFM reactions. Clear correlations exist between Mn content andassemblage in rocks that crystallized at the same P and T. In the SE Tauern, low-grade Grt+Chl assemblages show a widerange of Mn contents. The crystallization of low-Mn Grt+Chlassemblages down-grade of, but at similar pressures to, low-MnGrt+Cld+Bt+Chl assemblages implies that the right-hand sideof the reaction Grt+Chl = Cld+Bt (Fe, Mg) is stabilized by increasingT. The distributions of assemblages in the areas studied alsoshow differences that are ascribed to P effects. The assemblageGrt+St+Cld+Chl is common in the SE Tauern but absent from Stonehaven.Mn contents of respective minerals in the assemblage Grt+St+Cld+Bt+Chlare higher at Stonehaven than in the SE Tauern, implying thatthe Cld+Chl = Grt+St+Bt (Mn, Fe, Mg) reaction boundary extendsto the low-P side of the [AIs, Crd] invariant point in the Mn-freesystem. Schreincmakcrs' rules are used to construct two KFMnMASH grids,in which the Cld+Bt assemblage has markedly different stabilitylimits; one is based on the KFMASH grid of Harte & Hudson(Geological Society Special Publication 8, 323–337, 1979),in which Cld+Bt is stable over a narrow T interval at relativelylow P, and the other on the KFMASH grids of Spear & Cheney(Contributions to Mineralogy and Petrology 101, 149–164,1989) and Wang & Spear (Contributions to Mineralogy andPetrology 106, 217–235, 1991), in which Cld+Bt is stableover wide ranges of P and T. It is argued that available natural-rockdata are more compatible with the former. KEY WORDS: pelites; KFMnMASH petrogenetic grid; chloritoid + biotite; Stonehaven; Tauern Window  相似文献   

4.
Garnet-bearing mineral assemblages are commonly observed in pelitic schists regionally metamorphosed to upper greenschist and amphibolite facies conditions. Modelling of thermodynamic data for minerals in the system Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O, however, predicts that garnet should be observed only in rocks of a narrow range of very high Fe/Mg bulk compositions. Traditionally, the nearly ubiquitous presence of garnet in medium- to high-grade pelitic schists is attributed qualitatively to the stabilizing effect of MnO, based on the observed strong partitioning of MnO into garnet relative to other minerals. In order to quantify the dependence of garnet stability on whole-rock MnO content, we have calculated mineral stabilities for pelitic rocks in the system MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O for a moderate range of MnO contents from a set of non-linear equations that specify mass balance and chemical equilibrium among minerals and fluid. The model pelitic system includes quartz, muscovite. albite, pyrophyllite, chlorite, chloritoid, biotite, garnet, staurolite, cordierite, andalusite, kyanite. sillimanite, K-feldspar and H2O fluid. In the MnO-free system, garnet is restricted to high Fe/Mg bulk compositions, and commonly observed mineral assemblages such as garnet–chlorite and garnet–kyanite are not predicted at any pressure and temperature. In bulk compositions with XMn= Mn/(Fe + Mg + Mn) > 0.01, however, the predicted garnet-bearing mineral assemblages are the same as the sequence of prograde mineral assemblages typically observed in regional metamorphic terranes. Temperatures predicted for the first appearance of garnet in model pelitic schist are also strongly dependent on whole-rock MnO content. The small MnO contents of normal pelitic schists (XMn= 0.01–0.04) are both sufficient and necessary to account for the observed stability of garnet.  相似文献   

5.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

6.
Abstract Biotite and cordierite occur in a 1-km wide zone of pelitic hornfelses around the McGerrigle pluton. These phases display systematic changes in X Fe that can be attributed to continuous reactions involving chlorite or andalusite in the system KFMASH. Through much of the zone biotite and cordierite were products of the 'breakdown'of chlorite. Close to the pluton this continuous reaction was terminated by a discontinuous reaction that introduced andalusite. Pelites which interdigitate with apophyses of the intrusive at the pluton margin contain assemblages that record a continuous reaction between biotite, cordierite, andalusite, muscovite, and quartz or, alternatively, the discontinuous breakdown of muscovite and quartz to K-feldspar and andalusite.
The mole fraction of Fe in biotite and cordierite increased significantly with the progress of the first continuous reaction and apparently decreased during the second continuous reaction. The K D of Fe-Mg between the minerals decreased and apparently increased, respectively, during the two reactions.
Biotite-cordierite-chlorite assemblages are interpreted to have been stable at temperatures between 525° C and 615° C and biotite-cordierite-andalusite assemblages stable at temperatures between 615° C and 635° C. The confining pressure was estimated to have been < 2 kbar.
The results of this study suggest that the K D of Fe-Mg between biotite and cordierite is a function of temperature, the Fe-Mg exchange characteristics of the controlling continuous reaction and non-ideal mixing of Fe and Mg.  相似文献   

7.
The oligoclase-biotite zone of the Bessi area, central Shikoku is characterized by sodic plagioclase (XCa= 0.10–0.28)-bearing assemblages in pelitic schists, and represents the highest-grade zone of the Sanbagawa metamorphic terrain. Mineral assemblages in pelitic schists of this zone, all with quartz, sodic plagioclase, muscovite and clinozoisite (or zoisite), are garnet + biotite + chlorite + paragonite, garnet + biotite + hornblende + chlorite, and partial assemblages of these two types. Correlations between mineral compositions, mineral assemblages and mineral stability data assuming PH2O = Psolid suggests that metamorphic conditions of this zone are about 610 ± 25°C and 10 ± 1 kbar.
Based upon a comparative study of mineralogy and chemistry of pelitic schists in the oligoclase-biotite zone of the Sanbagawa terrain with those in the New Caledonia omphacite zone as an example of a typical high-pressure type of metamorphic belt and with those in a generalized'upper staurolite zone'as an example of a medium-pressure type of metamorphic belt, progressive assemblages within these three zones can be related by reactions such as:  相似文献   

8.
A variety of uncommon garnet-grade assemblages have been foundin rocks from three outcrops in the western part of centralNew Hampshire, and include the associations Grt+MrgCld, Grt+Bt+CldMrg,and Mrg+Cld+HblGrt (all rocks contain Ms, Chl, Ilm, and Qtz).These unusual rocks coexist with more typical Grt+Bt+Chl+Plmetapelites and amphibolites. Rim P–T conditions are {smalltilde}49035C and 5•751•25 kbar. Projection of the assemblages from Qtz, H2O, and Ilm into theCa–Al'–Na–(Fe+Mg) tetrahedron, and from Qtz,Ilm, H2O, and Chl into the Ca–Al'–Fe'–Mn tetrahedronindicates that Ca/(Ca+Na) and Mn differ among the assemblagesin a systematic fashion. Common Grt+Bt+Chl+Pl assemblages arerestricted to relatively high Mn and low Ca/(Ca+Na) values,whereas Cld+Bt+Mrg and Cld+Hbl+Mrg assemblages are stable atlow Mn and high Ca/(Ca+Na). These data suggest that at thisgrade Cld+Bt is more stable than Grt+Chl in the KFMASH system,whereas in the Ca—KFMASH system, Hbl+Cld assemblages arestable. Composition space analysis using the singular value decompositionmethod indicates that compositions of minerals from individualsamples are consistent with local equilibrium, but that differentoutcrops may not have all equilibrated at the same P–T–aH2Oconditions. Thermodynamic analysis suggests that a garnet-zoneprograde sequence of ferromagnesian associations for these bulkcompositions would be Hbl+Cld+Grt+ChlBt+Cld+Grt+ChlBt+Grt+Chl. Staurolite-grade rocks from the same stratigraphic units areexposed across strike, and contain the assemblage Grt+StBtPl(all rocks contain Ms, Qtz, Chl, and Ilm). Margarite is commonlypresent as inclusions in the cores of garnets, but is absentas inclusions near garnet rims and from the matrix; conversely,staurolite inclusions are present towards the rims of the garnets,but are absent from the cores. These inclusion relations suggestthat margarite may react to form staurolite and garnet withincreasing grade via a reaction such as chlorite+margarite=staurolite+garnet+H2O. Biotite is common in the matrix but is not typically abundant,and appears to have been the last phase to join the assemblage.Biotite is inferred to have joined the Grt+St+Chl assemblagesafter margarite breakdown through the reaction Grt+Chl+Ms=St+Bt+H2O. Thus, uncommon margarite assemblages may evolve into commonGrt+Bt+St+Chl assemblages. * Present address: Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706.  相似文献   

9.
The formation of paragonite at the transition from the low-grade to the medium-grade matamorphism and its breakdown in the presence of quartz in the upper medium grade in common metapelites is investigated.The microprobe work on the white micas from the low and medium-grade rocks yields compositional differences in respect to the celadonite substitutions and the paragonite content. The low-grade white micas are phengites having Si[4] 6.25 to 6.44 and Altot 4.89 to 5.20. The paragonite component in solid solution in the phengites ranges from 11 to 17 mole %. In the transition from the low-grade to the medium-grade metamorphism, concomitant with the breakdown of chlorite, the phengites change to muscovites having Si[4] 6.07 to 6.16 and Altot 5.36 to 5.56. At the same time, the amount of paragonite in solid solution increases up to 22±2 mole % and paragonite makes its first appearance as a separate mineral. The increase of the percentage of paragonite in solid solution in the muscovites is due to the drastical modal decrease of muscovite in the course of the breakdown of chlorite. The formation of paragonite is readily explained by the muscovite-paragonite solvus. Paragonite forms thin lamellae (1–20 m) interlayered with muscovite lamellae (1–40 m). The average composition is Pg88.5Ms7Mar4.5. Paragonite occurs together with staurolite+biotite, kyanite+biotite, cordierite +biotite, and andalusite+biotite. In the presence of quartz, it breaks down in the lower part of the andalusite zone to andalusite and albite-rich plagioclase. At the same time, the amount of paragonite in solid solution in the muscovites decrease to 11–15 mole %. The basal spacings d(002) of the phengites and muscovites investigated show a clear dependence on the Na+ content and the celadonite substitutions.  相似文献   

10.
Andalusite–staurolite–biotite hornfels metamorphosed beneath the mafic layered rocks of the Bushveld Complex, South Africa, preserves a detailed record of the relative timing of porphyroblast growth and metamorphic reactions. The sequence inferred from microstructures shows considerable overlap of the period of growth of porphyroblasts of staurolite, cordierite, biotite and andalusite, and the persistence over a similar interval of the reactant porphyroblastic phase chloritoid. This is inconsistent with calculations of equilibrium phase relations, and implies that disequilibrium processes controlled the prograde reaction sequence, despite the slow heating rates involved (1 °C per 10 000 yr). The early appearance of cordierite by a metastable reaction and its subsequent disappearance indicates that delayed nucleation of porphyroblastic phases, rather than simply sluggish reaction, is required to account for the sequence of growth. The predicted reactions for the first appearance of andalusite and staurolite have low entropy of reaction, and do not occur until they have been overtaken in terms of reaction affinity by high‐entropy devolatilisation reactions involving the breakdown of chlorite. Once the porphyroblasts have nucleated, metastable chloritoid‐breakdown reactions also contribute to their growth. The implied magnitude of the critical overstepping for andalusite nucleation is around 5 kJ mole?1 (equivalent to 40 °C for the chlorite‐breakdown reaction), and that for other phases is expected to decrease in the order andalusite>staurolite>cordierite. Coupling between nucleation rate, crystal growth rates and the resulting grain size distribution suggests that the rate constants of natural reactions are at least an order of magnitude lower than those measured in the laboratory. Pseudomorphs after chloritoid and cordierite conserve volume but not Al or other species of low mobility, suggesting a breakdown mechanism controlled by an interface process such as the slow dissolution of the refractory porphyroblast phase, rather than by a transport step.  相似文献   

11.
In the Champawat area, Kumaun Himalaya, greenschist facies regionally metamorphosed rocksviz chlorite-phyllite and schist have been subjected to thermal metamorphism due to emplacement of batholithic granite/granodiorite body. As a consequence, biotite, garnet, andalusite, fibrolite, sillimanite and perthite minerals have formed in the contact rocks. The conspicuous absence of cordierite and staurolite reported from such aureole rocks is due to higher FeO/MgO ratio of the bulk rock composition in the former while the absence of staurolite is due to low Al2O3/FeO+MgO ratio in the schists. AFM diagram demonstrates that in muscovite-bearing schist, the bulk composition of chlorite- and cordierite-bearing rocks are restricted to low FeO/MgO side and thus the restricted occurrence of former and the absence of latter in the contact rocks of the area. This is further evident from the common occurrence of almandine-rich garnet in the rocks.  相似文献   

12.
Rare centimeter-sized superzoned garnets (SZGs) were discovered in two coesite-bearing whiteschists of the Brossasco-Isasca Unit (BIU), southern Dora-Maira massif (DMM), Western Alps. The superzoned garnet consists of a reddish-brown almandine core crowded with inclusions of staurolite, chloritoid, kyanite, chlorite and paragonite, and of a pinkish pyrope rim with sporadic inclusions of kyanite, and magnesian chlorite. The core–rim contact is relatively sharp and marks the termination of the inclusion-rich portion. The core composition of the superzoned garnet is almost identical to, or slightly richer in Mg, than that of the rim of porphyroblastic garnet in metapelites from the same unit. In the rim of the superzoned garnet, Mg–Fe ratio increases abruptly towards the outermost rim, whose composition is identical to that of the common pyrope in the whiteschist. At the core–rim boundary, there is no chemical gap. Chloritoid and staurolite are common inclusions in the core of the superzoned garnet in the whiteschist and in the porphyroblastic garnet in the metapelite. The staurolite composition (Si=2.00 and total R2+<2.0 for O=23 basis) and its reverse Fe–Mg distribution with respect to garnet suggest a HP origin. The Fe–Mg distribution between chloritoid and garnet is reverse in the superzoned garnet, but normal in the garnet of metapelite. Because normal Fe–Mg distribution was reported from other eclogite-facies metapelites, a model petrogenetic grid was constructed in the FMASH model system considering St, Cld, Ky, Chl, Grt, and assuming the following Fe–Mg partitioning of St>Grt>Cld>Chl. The resulting petrogenetic grid suggests that the core of the superzoned garnet contains incompatible assemblages, such as St–Cld–Chl vs. Cld–Chl–Ky. New and literature data and results of experiments in the KFASH system suggest that: (1) the superzoned garnet was formed under a single prograde high-pressure/ultra high-pressure (HP/UHP) Alpine metamorphism, (2) the almandine inclusion-rich core of the superzoned garnet crystallized at disequilibrium in a pelitic composition system at around 600°C and less than 16 kbar, probably from a former metapelite xenolith included in a Variscan granitoid, and (3) the chemical environment of the host rock suddenly changed from the normal pelite to the whiteschist composition by a metasomatic process during the rim growth, i.e., at a stage close to the UHP climax.  相似文献   

13.
Abstract In metapelitic schists of the north-eastern Weekeroo Inliers, Olary Block, Willyama Supergroup, South Australia, syn-S1 and syn-S2 assemblages involving staurolite, garnet, biotite and another mineral, most probably cordierite, were overgrown by large syn-S3 andalusite porphyroblasts, owing to isobaric heating from metamorphic conditions that existed during the development of S2. Conditions during the development of S3 probably just reached the andalusite—sillimanite transition. During the development of S4, at somewhat lower temperatures than those that accompanied the development of S3, the following reaction occurred:
staurolite + chlorite + muscovite ± biotite + andalusite + quartz + H2O.
The amount of retrogression is controlled primarily by the amount of H2O added by infiltration. As the syn-S3 matrix assemblage was stable during the development of S4, but the andalusite porphyroblasts were no longer stable with the matrix when H2O was added, the retrogression is focused in and around the porphyroblasts. With enough H2O available, and if quartz was consumed before biotite in a porphyroblast, then the following reaction occurred:
staurolite + chlorite + muscovite + corundum ± biotite + andalusite + H2O.
This reaction allowed corundum inclusions in the andalusite to grow, regardless of the presence of quartz in the matrix assemblage.  相似文献   

14.
The paragenetic relationships between sillimanite, andalusite, kyanite, chlorite, cordierite, biotite, garnet and staurolite in the Early Proterozoic Puolankajärvi Formation (PjF), together with mineral compositions, are used to construct a partial petrogenetic grid for metapelites with significant Mn content (MnO = 0.1–0.5%) by adding a six-phase invariant point over the garnet-absent invariant point for Mn-free AMF-phases.
The grid and textural relations of the PjF are used to construct part of the P–T –deformation path for the PjF. Relatively short deformation pulses and associated flow of oxidizing fluid along shear zones were responsible for the paragenetic and compositional changes during cooling and decompression at 600–500°C and 6.0–2.5 kbar. Oxidation led to decreased Fe2+ and further stressed the importance of Mn (increased Mn/divalent cations).
A tectonothermal evolution of the Kainuu Schist Belt is presented which includes crustal thinning and steepening of a previously established thermal gradient. This was followed by thrusting and folding of the isotherms into a thermal antiform on the western side of the belt.  相似文献   

15.
Abstract A detailed study of garnet–chloritoid micaschists fom the Sesia zone (Western Alps) is used to constrain phase relations in high pressure (HP) metapelitic rocks. In addition to quartz, phengite, paragonite and rutile, the micaschists display two distinct parageneses, namely garnet + chloritoid + chlorite and garnet + chloritoid + kyanite. Talc has never been observed. Garnet and chloritoid are more magnesian when chlorite is present instead of kyanite. The distinction of the two equilibria results from different bulk rock chemistries, not from P–T conditions or redox state. Estimated P–T conditions for the eclogitic metamorphism are 550–600°C, 15–18 kbar.
The presence of primary chlorite in association with garnet and chloritoid leads us to construct two possible AFM topologies for the Sesia metapelites. The paper describes a KFMASH multisystem for HP pelitic rocks, which extends the grid of Harte & Hudson (1979) towards higher pressures and adds the phase talc. Observed parageneses in HP metapelites are consistent with predicted phase relations. Critical associations are Gt–Ctd–Chl and Gt–Ctd–Ky at relatively low temperatures and Gl–Chl–Ky and Gt–Tc–Ky at relatively high temperatures.  相似文献   

16.
The results of recent investigations on the stability limitsof staurolite have been combined together with those of thepresent study to develop a semi-quantitative model of the P–T–fo2–Xrelations of staurolite±quartz±magnetite. Theproblem with respect to the hydroxyl content of staurolite hasbeen analysed; it is concluded that no evidence has yet beenmustered to discount the idealised stoichiometry proposed byNaray-Szabó & Sasvari (1958), at least as a limitingcomposition. The stability limits of staurolite±magnetitehave been calculated from the experimental data for the equilibriainvolving quartz. Also the conditions over which the assemblagecordierite+magnetite+quartz could be stable, as well as a quantitativemodel for the fo2-P stability of almandine ± quartz havebeen deduced theoretically. An analysis is presented of the paragenetic relations of staurolitein common pelitic schists. It is suggested that the formationof staurolite at the expense of either chloritoid or chlorite,rather than the unqualified first appearance of staurolite asproposed by Winkler (1970), should define a ‘staurolite-in’isograd in the range of 500–575 °C. In regional metamorphism,chloritoid, staurolite, and aluminum silicates should, underequilibrium conditions, be unstable relative to almandine ingraphitic pelitic schists involving magnetite (chloritoid/staurolite/Al2SiO6+magnetite+quartzalmandine+O2+H2O).The limits of P-T conditions over which staurolite and cordieritemay coexist in natural assemblages have been deduced; it isrestricted, almost entirely within the field of andalusite,between 500–700 °C, and 2–6 kbars, thus definingthe range of P-T conditions for the ‘low-pressure intermediate’—or ‘Buchan’–type amphibolite facies discussedby Miyashiro (1961). In assemblages involving staurolite andandalusite, cordierite rather than almandine should usuallybe stable; the reverse holds for assemblages involving stauroliteand sillimanite.  相似文献   

17.
A petrogenetic grid for metapelites in the system NKFMASH is presented. The P–T range is investigated in three sections: (1) The high‐ and ultrahigh‐pressure range is discussed in the system NFMASH because phengite is the only stable potassic phase. (2) The transition region is characterised by four NKFMASH‐invariant points that separate high‐pressure glaucophane‐bearing from medium‐pressure biotite‐bearing metapelites. (3) The medium‐pressure range contains the fifth NKFMASH‐invariant point. The univariant reactions of this point terminate the stability range of paragonite, which breaks down to form staurolite or kyanite and plagioclase during decompression and/or heating. As the growth of albitic plagioclase by decomposition of paragonite via continuous reactions may be conspicuous already before these staurolite‐ or kyanite‐producing reactions are reached, such albite porphyroblast schists are typical indicators of a former high‐pressure metamorphic history. Considering the preservation of high‐pressure metapelitic assemblages, those crossing the NKFMASH‐transition region during exhumation commonly dehydrate and preservation is unlikely. Three types of metapelites have a fairly good survival potential: (1) low‐temperature metapelites (up to c. 540 °C) with an exhumation path back into the chlorite + albite stability field, (2) assemblages with chloritoid + glaucophane, and (3) the relatively high‐temperature glaucophane + kyanite and jadeite + kyanite bearing parageneses, that are relatively dry at the onset of exhumation. A comparison with data from the literature shows that these rock types are the most abundant in nature.  相似文献   

18.
Data on mineral and rock compositions along with textural relations are used to deduce the staurolite-forming reactions in eastern Dalradian rocks in Scotland. Initially staurolite is formed as a product of the breakdown of the assemblage chloritoid +quartz in iron-rich metapelites. With increase in grade the iron-rich rocks are succeeded by more magnesium-rich ones and staurolite is formed as a product of the breakdown of the assemblage chloritoid +chlorite+muscovite.  相似文献   

19.
The unusual association of cordierite and cummingtonite (? gedrite+ chlorite + biotite + ilmenite + plagioclase + quartz) definesa metamorphic facies within aluminous, low-Ca amphibolites fromthe Proterozoic rocks of the Gold Brick District, east of Gunnison,Colorado. More Fe-rich bulk chemistries in the same facies arecharacterized by assemblages consisting of cordierite+-gedrite+ garnet + chlorite + biotite + ilmenite + plagioclase + quartz,whereas more Mg-rich compositions are characterized by cordierite+ anthophyllite + chlorite + biotite + ilmenite ? plagioclase+ quartz. The assemblage gedrite 4- cummingtonite + chlorite+ biotite + ilmenite + plagioclase + quartz was also observed.Coexisting cordierite+ anthophyllite + cummingtonite was notobserved in any rocks, apparently because this assemblage isstable over only a very narrow range of bulk compositions. Metamorphosedpelitic rocks are more iron rich than the assemblage cordierite+ gedrite + garnet + chlorite + biotite + ilmenite + plagioclase+ quartz and consist of garnet ?cordierite ?staurolite ? chlorite? andalusite + biotite + ilmenite + plagioclase + quartz? microclineor muscovite. Mineral rim compositions from cordierite-bearing amphibolitesand metapelites determined by electron microprobe analysis showsystematic Fe/Mg partitioning and define assemblages that occupynon-overlapping regions of the compositional system SiO2-TiO2-Al2O3-MnO-FeO-MgO-CaO-Na2O-K2O-H2Oas determined by algebraic and statistical methods developedby Braun & Stout (1975) and Fisher (1989). Graphical methods(projections) produced spurious overlaps not confirmed by themore rigorous algebraic tests. The spurious overlaps were generatedbecause standard projective analysis was not able simultaneouslyto account for the important effects of the components Na2O,CaO, and MnO on the AFM topologies. The results of algebraicand statistical analysis are consistent with an equilibriumorigin at constant values of temperature and pressure. The cordierite-cummingtonite facies encompasses the relativelylow-pressure and moderate-temperature conditions associatedwith the stability field of andalusite. Garnet-biotite geothermo-metry,and garnet, aluminosilicate, silica, plagioclase (GASP) geobarometrysuggest that temperatures and pressures were nearly constantacross the study area at 550( ? 70) ?C and 3 kb, respectively,near the peak of metamorphism. Other geothermometers and geobarometers,and independent pressure and temperature estimates, are compatiblewith garnet-biotite thermometry and GASP geo-barometry. Gradientsin fO2 or H2O are not required to explain the compatibilityof these assemblages at constant T and P. Cordierite + cummingtonite-bearingrocks can apparently be derived from anthophyllite +garnet-bearingrocks by increasing temperature or decreasing pressure.  相似文献   

20.
Contact metamorphism of greenschist facies Neoproterozoic turbidites by the Cretaceous Bugaboo Batholith in southeastern British Columbia has resulted in a well‐developed contact aureole. The aureole is about 1 km wide and can be divided into three main zones: (i) spotted phyllite zone, extending from the first appearance of spots of cordierite or andalusite to the last occurrence of primary chlorite; (ii) cordierite + andalusite + biotite zone, comprising hornfelses or schists with abundant porphyroblasts of cordierite and andalusite and, at higher grades, fibrolitic sillimanite; and (iii) K‐feldspar zone, characterized by hornfelses and schists that, in the inner part of this zone, are variably migmatitic. Four parts of the aureole were examined, three of which are characterized by schists, and one of which (Cobalt Lake area) is characterized by hornfelses and has exceptional exposure and comparatively unaltered rocks. Petrographic, modal, mineral‐compositional and whole rock‐compositional data were collected from the Cobalt Lake transect, allowing the prograde reaction sequence to be inferred. Notable features of the aureole at Cobalt Lake include: initial development of andalusite and plagioclase at the expense of paragonite‐rich white mica; a narrow interval across which cordierite, andalusite and biotite increase markedly at the expense of chlorite; gradual development of andalusite and biotite at the expense of cordierite and muscovite upgrade of chlorite consumption; and near‐simultaneous development of andalusite + K‐feldspar and sillimanite, the latter indicating a pressure of contact metamorphism of ~3 kbar. In other parts of the aureole, the development of sillimanite downgrade of the initial development of K‐feldspar suggests slightly higher pressures of contact metamorphism. Lack of correspondence between the observed sequence of reactions in the aureole and those predicted thermodynamically suggests that modifications to some of the thermodynamic data or activity–composition models may be required. Textural features in the aureole suggest the influence of kinetic factors on metamorphic recrystallization, including: (i) deformation‐catalysed reaction in the schists compared to the hornfelses, as indicated by different mineral‐growth sequences inferred from microstructures, and (ii) heating rate‐controlled recrystallization, as indicated by the decrease in grain size of hornfelses with increasing metamorphic grade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号