首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
地形起伏度也称为地势起伏度,是区域地貌分析研究和地貌类型划分的重要参考指标。本文利用广东省第一次全国地理国情普查生产的DEM数据成果,以乐昌市为例,对广东省区域地貌形态进行研究分析。通过动态调整圆形分析模板窗口,利用高差显著性变化分析方法,求得乐昌市地形起伏度的最佳统计单元,统计单元面积为0.75km~2。在综合考虑乐昌市的最大地形起伏的情况下,采用统一的地貌分类标准将乐昌市的地形起伏度划分为5级,在此基础上,制作生成了乐昌市的地形起伏度分级图,并对乐昌市的地貌形态进行了简单划分。论文采用了大比例尺数字高程模型,对区域地貌形态的划分也更为细致,将为地形起伏度在地理国情普查统计分析中的应用提供参考。  相似文献   

2.
基于SRTMDEM与变点分析法的云南省富宁县地貌形态研究   总被引:1,自引:0,他引:1  
以位于云贵高原至广西丘陵倾斜面上的云南省富宁县为研究区,提出了适合研究区地形特点的地貌形态分类指标体系;基于 SRTM DEM 90 m 分辨率的地形数据,用均值变点分析法,确定8像元×8像元(0.5184 km2)的格网为该县地形起伏度的最佳统计单元,据此提取了该县地形起伏度(0~707 m);最后,叠加分析了该县绝对海拔和地形起伏度数据,得到12种基本地貌形态,并得出结论:小起伏较低山、小起伏中山是该县最主要的地貌形态。  相似文献   

3.
邓岳川  周亮广 《测绘科学》2019,44(10):21-28
为研究地形起伏度与全球定位系统(GPS)多路径误差的相关性,该文采用邻域统计、均值变点分析、相关性分析等方法,以ArcGIS为平台,基于某校区1m分辨率的数字高程模型(DEM)数据,运用均值变点分析确定最佳分析区域,并提取地形起伏度,再通过SPSS相关分析,获得地形起伏度与多路径误差M_(p1)、M_(p2)的Spearman秩相关系数。结果表明:最佳分析区域为11m×11m,对应的地形起伏度与多路径误差M_(p1)、M_(p2)在P<0.01下显著相关;测站周围5.5m范围内的地形起伏度对多路径误差有直接影响,尤其在地形起伏度大于3 m时,与多路径误差M_(p2)显著相关。  相似文献   

4.
宁婷  崔伟  马晓勇 《测绘通报》2022,(2):159-163
地形起伏度因子在宏观尺度生态评估中具有重要作用。均值变点法是确定地形起伏度最佳分析窗口的常用方法,但其影响因素尚缺乏研究。本文以黄河流域(山西段)为例,基于DEM数据和均值变点法提取了研究区地形起伏度,并探讨了分析窗口样本数量、DEM分辨率和地貌类型3种因素的影响。结果表明:(1)分析窗口样本数量对最佳分析窗口取值有明显影响。随着样本数量的增加,变点所在的最佳分析窗口面积也不断增加。(2)DEM分辨率对最佳分析窗口取值有一定影响。分析窗口面积取值范围一致时,基于30 m ASTER GDEM计算得到的最佳分析窗口面积小于基于90 m SRTM DEM的最佳分析窗口面积。(3)地貌类型对最佳分析窗口取值的影响不大。当分析窗口样本数量一致时,不同地貌类型区及整个研究区最佳分析窗口相同或接近。总体而言,分析窗口样本数量是最关键的影响因素。  相似文献   

5.
赵晋陵 《测绘科学》2013,(2):50-52,46
本文基于ArcMap数据处理和分析平台,以90m分辨率的SRTM-4 DEM为数据源,对大湄公河次区域GMS的宏观地貌形态类型进行定性和定量分析。参考坡度分类标准和《1∶400万中国及其毗邻地区地貌图》地貌形态类型划分的海拔高度和地势起伏度标准,结合GMS东南亚5国和中国2省的特殊地貌形态,采用海拔高度和地势起伏度组合的阈值划分方法,生成包含7种地貌形态类型的分类图。结果显示:海拔1900m以下的地貌类型所占比例最大;GMS以山地地貌为主。  相似文献   

6.
大湄公河次区域宏观地貌形态类型划分研究   总被引:1,自引:0,他引:1  
本文基于ArcMap数据处理和分析平台,以90m分辨率的SRTM-4 DEM为数据源,对大湄公河次区域GMS的宏观地貌形态类型进行定性和定量分析。参考坡度分类标准和《1∶400万中国及其毗邻地区地貌图》地貌形态类型划分的海拔高度和地势起伏度标准,结合GMS东南亚5国和中国2省的特殊地貌形态,采用海拔高度和地势起伏度组合的阈值划分方法,生成包含7种地貌形态类型的分类图。结果显示:海拔1900m以下的地貌类型所占比例最大;GMS以山地地貌为主。  相似文献   

7.
基于多基线影像匹配的高分辨率遥感影像DEM的自动生成   总被引:2,自引:1,他引:1  
以青南高原三江源试验区为例,采用SPOT-5 HRS立体影像和HRS/HRG三立体像对生成试验区1:5万25 m间隔DEM,并利用大量外业和内业检查点对自动提取的DEM进行精度分析.试验结果表明,利用所提出的影像匹配方法可以从SPOT-5 卫星影像中全自动生成1:5万DEM.另外,SPOT-5 HRS/HRG三影像立体条带数据适用于地势起伏较大的深切割山地区域.采用此方法,可以同时保持自动生成的DEM的精度和可靠性,大大减少自动生成的DEM中存在的粗差和人工后处理的工作量.  相似文献   

8.
湖南省地势图编制关键技术研究   总被引:1,自引:0,他引:1  
地势图是一种着重表示地势起伏、植被分布、水系特征与分布规律的专题地图,强调表现地面的高低起伏、倾斜程度及与其他地理要素的对比关系,以及水系的分布特征和形态特征,并适当表示其地表的植被与土质。本文以湖南省为例,在基于DEM数据上,收集研究区域的资料并进行分析,采用分层设色法表示地势图,关键技术在于如何确定设色原则和建立色层表。  相似文献   

9.
地形起伏度最佳分析区域预测模型   总被引:3,自引:0,他引:3  
张锦明  游雄 《遥感学报》2013,17(4):728-741
地形起伏度指分析区域内最高点和最低点之差,反映宏观区域内地形的起伏特征,是描述地貌形态的定量指标。确定最佳分析区域是地形起伏度提取算法的核心步骤,以及决定地形起伏度提取结果有效性的关键。本文以全国范围内随机选取的78个实验区域、三种不同尺度的DEM数据作为实验对象,分别进行系列分析区域尺度的地形起伏度计算,建立了基于微观地形特征因子的地形起伏度最佳分析区域预测模型。实验表明:相同区域、不同尺度的DEM数据提取的地形起伏度存在差异,DEM尺度相差较小时,地形起伏度的差异也较小;地形起伏度和实验区域的最大高程、区域高差、平均坡度和平均坡度变率等地形特征因子存在强相关关系;当置信水平为0.05时,预测模型拟合参数的准确率达到95%以上,证明预测模型可以有效地确定最佳分析区域的取值范围。  相似文献   

10.
为揭示我国SRTM3DEM数据高程精度质量,结合已开展过SRTM3DEM高程精度质量评价工作的局部地区的研究,考虑空间分布情况,选取新疆、辽宁、山东、浙江、海南5个地区的平原、丘陵、盆地、山地等地形区域作为典型研究区,并以1∶5万DEM为假定真值、以1∶25万DEM为参照,通过DEM面误差可视化分析、DEM面误差信息熵模型、中误差模型等方法对SRTM3DEM数据高程精度质量做了分析。计算结果表明我国SRTM3DEM数据高程精度质量受地形影响并存在一定的空间差异性,同时我国范围内SRTM3DEM数据高程精度质量整体上要高于1∶25万DEM。  相似文献   

11.
利用分形随机算法建立平地、丘陵和山地3种精细地形仿真场景,将DEM逐级重采样为不同网格间距,分析不同DEM网格间距对3种地形的重力近区地形改正误差影响。发现随着DEM网格间距的增加,近区地形改正误差随之增大。对于平地,使用1∶10 000的DEM,网格间距为5m仍能够满足规范要求;对于丘陵地,使用1∶5 000的DEM,网格间距为2.5m能够满足规范要求;对于山地,使用1∶1 000的DEM,网格间距1m能够满足规范要求。通过消费级无人机获取丘陵地精细地形,验证地形仿真的结论,同时说明消费级无人机能够应用于重力近区地形改正。  相似文献   

12.
基于ArcGIS平台,利用DEM数据资料,选择位于四川西北部的彭州市作为研究区域,提取了区内高程、地形起伏等地形因子;统计了5.12震后区内39个滑坡点,58个崩塌点,建立了地形地貌与崩塌滑坡地质灾害之间的关系:这类地区对应的地貌类型主要是海拔高程较高的山坡地带。实验证明,利用GIS技术,结合数字地面模型,进行崩塌、滑坡等地质灾害的地形因子相关性分析,结果可靠,对防灾减灾具有重要的借鉴意义。  相似文献   

13.
不同比例尺DEM地形信息容量的探讨   总被引:1,自引:0,他引:1  
本文以福建省11个地区作为实验样区,利用Python脚本进行批量提取地形因子,从中选取坡度、粗糙度两个地形因子,并引入信息论中的信息熵、自信息相关理论进行研究。以1∶10 000比例尺DEM提取的地形因子为真值,与1∶50 000比例尺DEM所提取的地形因子信息容量进行对比分析,研究两种比例尺DEM所提取的地形因子引起的信息容量的损失和纠正方法,以及通过线性回归分析寻找两种比例尺DEM的相同地形因子面积定量信息对应的转换公式。  相似文献   

14.
IKONOS image has been wildly used in city planning, precision agriculture and emergence response. However, the accuracy of IKONOS Geo product is limited due to distortion caused by terrain relief. Orthorectification was performed to remove the distortion and the impact of different DEM on orthorectification were evaluated. 38 ground control points (GCPs) and 25 independent check points (ICPs) were collected. DEMs were generated from 1 : 10 000 and 1 : 50 000 topographic maps. Results show that RMS error at the check points is 1. 554 0 m using DEM generated from 1 : 10 000 topographic map, which can meet the accuracy requirement of IKONOS Precision product (1.9 m RMSE). While RMS error is 2. 572 4 m using DEM generated from 1 : 50 000 topographic map.  相似文献   

15.
以浙江省瓯江流域为例,基于SWBD修复的SRTM DEM数据,采用Arc Hydro Tools水文分析工具自动提取瓯江水系,并分地貌、分河流等级地定量评价水系数据精度,开展1∶250 000水系自动更新的可行性研究。结果表明:①SWBD修复的SRTM DEM的空白区域面积为54.78 km2,有效地弥补了SRTM DEM的数据缺失,进而提高了水系提取的准确度和精度;②与1∶250 000水系数据相比,基于SWBD修复后的SRTM DEM,在小起伏山、中起伏低山、低海拔丘陵上提取的水系数据精度高于其他地貌,而干流、一级支流、二级支流的精度又高于三级支流;③以资源三号卫星ZY-3遥感影像为参照,从水系上采集同名点反复比较点位精度后发现,利用SRTM DEM提取的水系符合制图规范和测绘内业规范(限差1 mm),可以满足1∶250 000水系自动更新的要求。  相似文献   

16.
介绍了具有同轨立体测图能力的ASTER传感器观测系统,及其立体影像生成DEM的算法和DEM的编辑方法,展示了ASTER立体影像生产DEM的实验结果,并以试验结果说明,其精度可以满足绘制1:100000~1:250000比例尺地形图要求。  相似文献   

17.
坡度是描述地表形态的基本指标。利用ArcGIS软件对已有的1∶10 000 DEM数据进行坡度分析,能够正确高效地识别地形特征,确定对应图幅所属的地形类别。研究成果已正式应用于河北省第一次全国地理国情普查和其他测绘地理信息管理工作。  相似文献   

18.
最佳DEM分辨率的确定及其验证分析   总被引:2,自引:0,他引:2  
在玛尔挡地区格网DEM的数据上选择实验样区,以不同分辨率情况下DEM数据对地表模拟表达的逼近程度为研究对象,最优逼近时的栅格单元大小的临界值就是所求的最佳分辨率。在分析坡度中误差法和公式法等常见方法的基础上,借鉴坡度中误差的思想,选取区域地形粗糙度K、剖面线长度SL两个定量指标来综合分析确定该地区格网DEM的最佳分辨率。在ArcGIS平台上对方法进行了实验验证,得出分别以2m和8m作为玛尔挡地区1∶10 000和1∶50 000 DEM生产时是最佳分辨率的结论。研究表明这种解决办法不仅可以克服GIS空间分析中DEM分辨率确定的盲目性和随意性,而且能确保基于DEM的各种空间分析的精度,为相关研究提供重要的参考价值。  相似文献   

19.
坡度随水平分辨率变化及其空间格局研究   总被引:1,自引:0,他引:1  
以黄土丘陵沟壑区的县南沟流域为研究区,基于1∶1万地形图,利用ANUDEM软件生成5m到200m分辨率DEM,并利用Arc/Info中计算坡度的方法提取了各种分辨率的坡度。研究表明,随着DEM分辨率的降低,单个样点坡度值表现出不确定性,但同一坡度级所有栅格点的坡度均值呈现一定的规律性,低坡度段表现为先升高后降低,中坡度段呈现微弱变化,陡坡度段呈现对数降低趋势;沟沿线上坡度值呈比较剧烈的下降趋势、分水线和流水线上坡度缓慢下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号