首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two key requirements in conducting 3-D simultaneous traveltime tomography on real data at the regional and global scale with multiple classes of arrival time information are (1) it needs an efficient and accurate arrival tracking algorithm for multiply transmitted, reflected (or refracted) and converted waves in a 3-D variable velocity model with embedded velocity discontinuities (or subsurface interfaces), and (2) a subdimensional inversion solver is required which can easily search for different types of model parameters to balance the trade-off between the different types of model parameter updated in the simultaneous inversion process. For these purposes, we first extend a popular grid/cell-based wavefront expanding ray tracing algorithm (the multistage irregular shortest-path ray tracing method), which previously worked only in Cartesian coordinate at the local scale, to spherical coordinates appropriate to the regional or global scale. We then incorporated a fashionable inversion solver (the subspace method) to formulate a simultaneous inversion algorithm, in which the multiple classes of arrivals (including direct and reflected arrivals from different velocity discontinuities) can be used to simultaneously update both the velocity fields and the reflector geometries. Numerical tests indicate that the new inversion method is both applicable and flexible in terms of computational efficiency and solution accuracy, and is not sensitive to a modest level of noise in the traveltime data. It offers several potential benefits over existing schemes for real data seismic imaging.  相似文献   

2.
It is now common practice to perform simultaneous traveltime inversion for the velocity field and the reflector geometry in reflection/refraction tomography, or the velocity field and the hypocenter locations in regional earthquake tomography, but seldom are all three classes of model parameters updated simultaneously. This is mainly due to the trade-off between the different types of model parameters and the lack of different seismic phases to constrain the model parameters. Using a spherical-coordinate ray tracing algorithm for first and later(primary reflected) arrival tracing algorithm in combination with a popular linearized inversion solver, it is possible to simultaneously recover the three classes of model parameters in regional or global tomographic studies. In this paper we incorporate the multistage irregular shortest-path ray tracing algorithm(in a spherical coordinate system) with a subspace inversion solver to formulate a simultaneous inversion algorithm for triple model parameters updating using direct and later arrival time information.Comparison tests for two sets of data(noise free and added noise) indicate that the new triple-class parameter inversion algorithm is capable of obtaining nearly the same results as the double-class parameter inversion scheme. Furthermore,the proposed multi-parameter type inversion method is not sensitive to a modest level of picking error in the traveltime data, and also performs well with a relatively large uncertainty in earthquake hypocentral locations. This shows it to be a feasible and promising approach in regional or global tomographic applications.  相似文献   

3.
TTI介质是石油地震勘探领域最常用的各向异性介质,快速计算TTI介质射线路径和走时信息有重要的研究意义.TTI介质传统运动学射线追踪方法一般基于任意弹性介质射线方程,利用Bond变换或者四阶张量变换来处理复杂的21个弹性参数,因而非常耗时.实际野外对称轴统一的TTI介质模型,一般可以看成VTI介质模型旋转一定角度获得.为此,本文推导了三维VTI介质射线追踪方程,提出先在本构坐标系中进行VTI介质射线追踪,再通过坐标旋转将射线路径旋转至观测坐标系中,获得TTI介质射线路径.数值模型计算表明该方法高效和精确,较传统方法效率提高了近4倍.在强各向异性等特殊情况下,体波波前面都与理论群速度面一致.  相似文献   

4.
地震走时层析成像是反演地层各向异性参数分布的有效方法,但是关于地震各向异性介质走时层析成像的研究并不多,其技术远远没有达到成熟的阶段.在野外数据采集时,地表反射波观测方式相对井间和垂直地震剖面观测方式的成本更低,利用qP反射波走时反演各向异性参数具有更加广泛的实用价值.本文实现的TI介质地震走时层析成像方法结合了TI介质反射波射线追踪算法、走时扰动方程和非线性共轭梯度算法,它可以对任意强度的TI介质模型进行反演,文中尝试利用qP反射波走时重建TI介质模型的参数图像.利用qP反射波对层状介质模型和块状异常体模型进行走时反演,由于qP波相速度对弹性模量参数和Thomsen参数的偏微分不同,所以可以分别反演弹性模量参数和Thomsen参数.数值模拟结果表明:利用qP反射波可以反演出TI介质模型的弹性模量参数与Thomsen参数,不同模型的走时迭代反演达到了较好的收敛效果,与各向同性介质走时反演结果相比较,各向异性介质走时反演结果具有较好的识别能力.  相似文献   

5.
三维地质模型中地震波共轭梯度非线性走时反演   总被引:2,自引:0,他引:2  
地震体波走时层析成像是探测地球内部速度结构的重要方法之一。基于三维块状建模以及三角形拼接的界面描述方式,结合快速高效的逐段迭代射线追踪方法,获得三维复杂地质模型中的地震射线路径与走时信息,采用共轭梯度非线性反演算法,进行地震波走时反演。实验结果表明共轭梯度反演算法在三维层状模型中具有较高的有效性。  相似文献   

6.
The linear traveltime interpolation (LTI) method is a suitable ray‐tracing technique for modelling first‐arrival times in isotropic media. LTI is extended to elliptical anisotropic media and applied to a tomographic inversion procedure. A theoretical formulation is first derived and then LTI implementation is discussed in terms of source–receiver arrays and cell size. The method is then combined with the tomographic inversion procedure adopted. The matching of the ray tracing with inversion in elliptical anisotropic media posed a double non‐linear problem. Thus two assumptions were made: the velocity in each cell is uniform and the main directions of anisotropy are known. To take into account the geometrical characteristics of the area under investigation (depth and velocity of the weathering, and thickness of the inner media), cells of varying size were considered. No hypothesis was made on anisotropy weakness.
The algorithm was first tested on synthetic models and then applied to a field survey. On comparing the results of the synthetic models and the field survey with those obtained with a linear raypath approximation, it was found that there were fewer data misfits.  相似文献   

7.
模拟退火方法在三维速度模型地震波走时反演中的应用   总被引:5,自引:3,他引:2  
采用块状建模以及三角形拼接的界面描述方式,并通过立方体速度网格线性插值获得块体内部的速度分布。正演过程中采用逐段迭代射线追踪方法计算三维复杂地质模型中的射线走时,并采用模拟退火方法进行了三维模型中的地震波走时反演研究。模型测试结果表明,使用的射线追踪和走时反演算法有效。  相似文献   

8.
We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.  相似文献   

9.
多震相走时联合三参数同时反演成像   总被引:3,自引:3,他引:0       下载免费PDF全文
黄国娇  白超英 《地球物理学报》2013,56(12):4215-4225
采用新近研制的分区多步不规则最短路径多震相地震射线追踪正演技术,结合流行的子空间反演算法,提出了一种联合多震相走时资料进行地震三参数 (速度、反射界面和震源位置) 同时反演的方法技术.数值模拟反演实例、以及与双参数 (速度和反射界面或速度和震源位置) 同时反演的对比分析表明:三参数同时反演成像结果大体接近双参数同时反演成像的结果.另外,噪声敏感性试验表明:所提算法对到时数据中可容许的随机误差并不敏感,结果说明多震相走时的联合三参数同时反演成像方法技术不失为一种提高走时成像空间分辨率、进而降低重建模型参数失真度、行之有效的方法技术.  相似文献   

10.
In this paper we present an approach for 3-D travel-time tomography, which works well in reconstructing high contrast velocity anomalies in both location and strength. It uses a revised ‘irregular’ approach to the shortest-path method as the ray tracer and a damped minimum norm, and constrained least-squares CG approach as the inversion solver. In ray tracing, the advantages of the revised ‘irregular’ over the ‘regular’ approach are that the secondary nodes introduced on the cell surfaces significantly improve accuracy of computed travel times, without dramatically increasing the total number of cells and nodes; the tri-linear velocity function defined across the cell guarantees accurate ray tracing in a high velocity contrast medium; and the capacity to calculate a relatively large 3-D model, due to the fast run speed (at least one order of magnitude over the ‘regular’ approach) and less number of total nodes. The introduction of ‘soft’ and ‘hard’ bounds into the inversion process changes the conditioning and makes the solution meaningful in a physical sense. Thus the artifacts caused by noise and high velocity contrasts are substantially suppressed and the image quality is considerably improved, making the solution realistic with noisy or inconsistent travel-time data. Several numerical tests indicate that we can obtain good quality images even for high velocity contrast anomalies (say more than 20%) in the target region. This means the inversion algorithm is an efficient and effective procedure. Meanwhile, the inversion procedure is not very sensitive to the quality of the travel-time data, which is promising for practical usage.  相似文献   

11.
Introduction3-Dseismictomographyhasbeenappliedtovariousgeophysicalproblems.AkiandLee(1976)andHawleyetal.(1981)inverted3-Dmode...  相似文献   

12.
In downhole microseismic monitoring, accurate event location relies on the accuracy of the velocity model. The model can be estimated along with event locations. Anisotropic models are important to get accurate event locations. Taking anisotropy into account makes it possible to use additional data – two S-wave arrivals generated due to shear-wave splitting. However, anisotropic ray tracing requires iterative procedures for computing group velocities, which may become unstable around caustics. As a result, anisotropic kinematic inversion may become time consuming. In this paper, we explore the idea of using simplified ray tracing to locate events and estimate medium parameters. In the simplified ray-tracing algorithm, the group velocity is assumed to be equal to phase velocity in both magnitude and direction. This assumption makes the ray-tracing algorithm five times faster compared to ray tracing based on exact equations. We present a set of tests showing that given perforation-shot data, one can use inversion based on simplified ray-tracing even for moderate-to-strong anisotropic models. When there are no perforation shots, event-location errors may become too large for moderately anisotropic media.  相似文献   

13.
一种改进的地震反射层析成像方法   总被引:4,自引:4,他引:4       下载免费PDF全文
针对复杂介质的地震反射走时层析成像存在数据拾取困难问题,本文提出了一种新的地震反射层析成像速度模型建立方法,该方法用速度和地震射线走时描述模型,用地震反射波走时、地震波在源点和接收点处的传播方向信息反演模型.为提高反演的稳定性和计算效率,引入了Hamilton函数描述射线,在相空间计算反演所需的射线路径和目标函数对模型参数的导数,对理论模型和实际地震资料进行了试算,试算表明该方法对复杂介质具有较强的适应能力.  相似文献   

14.
The first-order perturbation theory is used for fast 3D computation of quasi-compressional (qP)-wave traveltimes in arbitrarily anisotropic media. For efficiency we implement the perturbation approach using a finite-difference (FD) eikonal solver. Traveltimes in the unperturbed reference medium are computed with an FD eikonal solver, while perturbed traveltimes are obtained by adding a traveltime correction to the traveltimes of the reference medium. The traveltime correction must be computed along the raypath in the reference medium. Since the raypath is not determined in FD eikonal solvers, we approximate rays by linear segments corresponding to the direction of the phase normal of plane wavefronts in each cell. An isotropic medium as a reference medium works well for weak anisotropy. Using a medium with ellipsoidal anisotropy as a background medium in the perturbation approach allows us to consider stronger anisotropy without losing computational speed. The traveltime computation in media with ellipsoidal anisotropy using an FD eikonal solver is fast and accurate. The relative error is below 0.5% for the models investigated in this study. Numerical examples show that the reference model with ellipsoidal anisotropy allows us to compute the traveltime for models with strong anisotropy with an improved accuracy compared with the isotropic reference medium.  相似文献   

15.
本文提出-种利用有偏VSP资料反射波旅行时信息重建椭圆各向异性介质中水平向与垂直向速度的方法。其中,地下介质假定为层状椭圆各向异性介质。反射波旅行时间采用射线追踪理论及几何关系计算得到,反演中的线性方程组采用奇异值分解(SVD)技术进行求解。 方法检测时,我们对各向同性介质及椭圆各向异胜介质情况下有限差分法正演模拟的深井有偏移距VSP地震资料分别进行各向同性和各向异性方法反演成像。结果表明,本文所述方法较之各向同性介质模型反演方法对介质类型有很好的适用性,同时也说明了本方法的司行性。最后,我们分别介绍了对实际有偏VSP资料反演得到的地下介质的速度结构图像。  相似文献   

16.
复杂介质中地震波前及射线追踪综述   总被引:1,自引:0,他引:1  
本文较为系统综述了国内外在不均匀介质中各种主要和实用的射线追踪方法,例如:基于射线理论的打靶法、弯曲法(伪弯曲法)、高斯射线束算法等;基于网格单元扩展的有限差分解程函方程法(FD)、最短路径算法(SPM);以及结合射线和网格单元扩展的波前构造法等.同时对目前出现的多次波射线追踪技术、以及多值波前追踪技术(如:相空间算法、水平集算法)也进行了分析讨论.同时对基于网格单元扩展算法的优缺点进行了评述,其基本结论是:基于单元模型的SPM要优于FD算法,而基于网格的SPM算法则次之.就传统的射线追踪算法(如:打靶法和弯曲法)而言,其未来的发展方向是实现完全非线性的相应算法,而基于网格单元的算法则主要是扩展功能(如:后续波、多值波前的追踪).射线追踪方法技术未来需要解决的问题主要有:块状模型中多次波的追踪;多值波前及多值射线追踪;走时与振幅的同时追踪计算;以及其它领域新方法的引入.  相似文献   

17.
We present a new ray bending approach, referred to as the Eigenray method, for solving two‐point boundary‐value kinematic and dynamic ray tracing problems in 3D smooth heterogeneous general anisotropic elastic media. The proposed Eigenray method is aimed to provide reliable stationary ray path solutions and their dynamic characteristics, in cases where conventional initial‐value ray shooting methods, followed by numerical convergence techniques, become challenging. The kinematic ray bending solution corresponds to the vanishing first traveltime variation, leading to a stationary path between two fixed endpoints (Fermat's principle), and is governed by the nonlinear second‐order Euler–Lagrange equation. The solution is based on a finite‐element approach, applying the weak formulation that reduces the Euler–Lagrange second‐order ordinary differential equation to the first‐order weighted‐residual nonlinear algebraic equation set. For the kinematic finite‐element problem, the degrees of freedom are discretized nodal locations and directions along the ray trajectory, where the values between the nodes are accurately and naturally defined with the Hermite polynomial interpolation. The target function to be minimized includes two essential penalty (constraint) terms, related to the distribution of the nodes along the path and to the normalization of the ray direction. We distinguish between two target functions triggered by the two possible types of stationary rays: a minimum traveltime and a saddle‐point solution (due to caustics). The minimization process involves the computation of the global (all‐node) traveltime gradient vector and the traveltime Hessian matrix. The traveltime Hessian is used for the minimization process, analysing the type of the stationary ray, and for computing the geometric spreading of the entire resolved stationary ray path. The latter, however, is not a replacement for the dynamic ray tracing solution, since it does not deliver the geometric spreading for intermediate points along the ray, nor the analysis of caustics. Finally, we demonstrate the efficiency and accuracy of the proposed method along three canonical examples.  相似文献   

18.
董兴朋  杨顶辉 《地球物理学报》2017,60(12):4671-4680
谱元法已成为区域性乃至大陆性尺度地震波场模拟的重要工具.对于区域或大陆尺度层析成像而言,地球曲率不可忽略,此时模拟地震波传播采用球坐标系更为合适.本文从球坐标系下弹性波动方程弱形式出发,基于球坐标系变分原理给出了球坐标系下求解三维地震波方程的谱元法.另一方面,计算Fréchet敏感核是进行全波形反演的关键,本文借助伴随原理,推导了全波走时层析成像三维Fréchet敏感核表达式.为了验证球坐标系下谱元法的精度,我们将数值模拟结果与normal mode方法得到的解析解在1-D PREM模型下进行了对比.同时,我们将此方法应用到华北克拉通区域,以期获得地球内部结构精确成像.基于3-D全球径向各向异性地幔模型S362ANI和3-D地壳模型Crust1.0,我们建立了华北克拉通初始3-D背景模型,并将数值模拟结果与实际观测台站记录波形资料进行对比分析,利用互相关方法提取走时残差,最后给出了Fréchet敏感核在3-D空间中的分布,这些工作为下一步开展球坐标系下三维大尺度全波形反演奠定了基础.  相似文献   

19.
— A P-wave tomographic method for 3-D complex media (3-D distribution of elastic parameters and curved interfaces) with orthorhombic symmetry is presented in this paper. The technique uses an iterative linear approach to the nonlinear travel-time inversion problem. The hypothesis of orthorhombic anisotropy and 3-D inhomogeneity increases the set of parameters describing the model dramatically compared to the isotropic case. Assuming a Factorized Anisotropic Inhomogeneous (FAI) medium and weak anisotropy, we solve the forward problem by a perturbation approach. We use a finite element approach in which the FAI medium is divided into a set of elements with polynomial elastic parameter distributions. Inside each element, analytical expressions for rays and travel times, valid to first-order, are given for P waves in orthorhombic inhomogeneous media. More complex media can be modeled by introducing interfaces separating FAI media with different elastic properties. Simple formulae are given for the Fréchet derivatives of the travel time with respect to the elastic parameters and the interface parameters. In the weak anisotropy hypothesis the P-wave travel times are sensitive only to a subset of the orthorhombic parameters: the six P-wave elastic parameters and the three Euler angles defining the orientation of the mirror planes of symmetry. The P-wave travel times are inverted by minimizing in terms of least-squares the misfit between the observed and calculated travel times. The solution is approached using a Singular Value Decomposition (SVD). The stability of the inversion is ensured by making use of suitable a priori information and/or by applying regularization. The technique is applied to two synthetic data sets, simulating simple Vertical Seismic Profile (VSP) experiments. The examples demonstrate the necessity of good 3-D ray coverage when considering complex anisotropic symmetry.  相似文献   

20.
球坐标系下多震相走时三参数同时反演成像   总被引:2,自引:1,他引:1       下载免费PDF全文
黄国娇  白超英  钱卫 《地球物理学报》2015,58(10):3627-3638
球坐标系下多震相走时三参数(速度、震源位置和反射界面)同时反演需要解决两个关键问题:(1)球坐标系下3D速度模型中多次透射、反射(折射)及转换波精确、快速的射线追踪;(2)同时反演时三种不同参数间的强耦合问题.为此,我们将直角坐标系下分区多步不规则最短路径算法推广至球坐标系中,进行区域或者全球尺度的多震相射线追踪.然后将其与适合多参数同时反演的子空间算法相结合,形成一种球坐标系下联合多震相走时三参数同时反演的方法技术.与双参数(速度和反射界面或速度和震源位置)同时反演的数值模拟对比分析显示:三参数与双参数的同时反演结果大体接近,并且它们对到时数据中可容许的随机噪声不太敏感.结果说明本文中的同时反演成像为一种提高成像分辨率,同时反演速度、震源位置和反射界面的有效方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号