首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为获得地下水渗流作用下桩埋管参数对能量桩热-力耦合特性的影响,建立了不同埋管参数的能量桩数值模型,分析了桩埋管数量、埋管布置形式、埋管管径对单位桩深换热量、日换热量、桩截面平均温升、桩身位移增量及桩身附加温度荷载的影响。结果表明:增加埋管数量可以增大能量桩换热量,但也会加剧桩内不同埋管间的热干扰,导致换热性能下降及桩身...  相似文献   

2.
多年冻土区桩基温度场研究   总被引:5,自引:1,他引:4  
熊炜  刘明贵  张启衡  王志铭 《岩土力学》2009,30(6):1658-1664
为了解决多年冻土区桥梁桩基浇筑混凝土对冻土层地温的影响,把握后续工程施工,需要对多年冻土区桩基温度场进行认真分析与研究。结合冻土桩的特点,根据冻融循环条件下土体热量迁移的基本规律,基于多孔介质和热力学理论,建立了多年冻土区桩基温度场控制方程。该控制方程不仅包括了热传导和相变潜热对温度分布的影响,而且考虑了混凝土水化热的释放规律,并将研究成果与的西藏某大直径灌注桩温度场现场试验结果进行对比分析。结果表明:所建立的冻土区桩基温度场控制方程计算结果与实测结果吻合较好。在此基础上,应用该模型作数值分析,着重分析了不同深度处桩侧土层温度随时间变化规律和混凝土浇注后不同时期温度沿桩径方向的变化规律,于解决西部多年冻土地区公路运营安全和行车性能,准确掌握多年冻土地区已建桥涵和新建桥涵基础稳定性,具有非常重要的理论和实际意义。  相似文献   

3.
《岩土力学》2017,(2):333-340
预埋钢管能量桩是一种新型桩埋管形式的地源热泵技术,然而,针对其特殊埋管形式下传热特性的研究却相对较少。针对预埋钢管单U型埋管能量桩的传热管-钢管-混凝土-桩周土的传热特性开展模型试验和数值模拟研究,测得在热-冷循环温度荷载作用下预埋钢管单U型埋管能量桩桩体及桩周土体的温度变化规律;为了对比分析,同时开展了传统绑扎单U型埋管能量桩的传热特性模型试验,并分析了预埋钢管能量桩的适用性。研究结果表明,预埋钢管能量桩的传热性能略低于绑扎埋管能量桩的传热性能;夏季工况两种埋管形式能量桩桩体温度和桩周土体温度最终变化量分别相差23%和16%左右;冬季工况该数值约为14%和18%左右。  相似文献   

4.
裂隙岩体流-热耦合传热的三维数值模拟分析   总被引:1,自引:0,他引:1  
通过对潘西煤矿水文地质条件的分析,基于裂隙岩体的流-热耦合数学模型,描述了裂隙岩体渗流场分布和水流及岩体的温度场分布,并结合边界条件及计算参数对裂隙岩体的流-热耦合传热进行了数值模拟和分析。数值模拟结果表明,岩体内裂隙水流所引发的热量迁移,对裂隙岩体的温度场分布有重要影响。断裂带及地下水流的存在改变了岩体的原有温度场分布。在渗流初期,温度梯度矢量沿渗流方向向两侧岩体方向流动,由于两侧岩体的渗透性系数低于断裂带处的渗透性系数,右侧等温线及温度梯度矢量方向逐渐向渗流方向移动,改变了两侧岩体的温度场分布。通过对断裂带内裂隙水流渗透性系数的折减,分析渗透性系数发生变化时对岩体温度场分布的影响,渗透性系数越大,伴随的热量迁移增大,对岩体的温度场分布的影响也越大。  相似文献   

5.
现用于浅层地能热量输运的地下传热模型忽略了地下水迁移对传热的影响。依据TOUGHRE-ACT模拟程序中质量与能量守恒原理,建立了多相流热渗耦合条件下地下热能输运数学模型。在此基础上建立了换热井群模型,模拟了导热及渗流作用下换热井群夏季制冷工况的瞬态温度场。模拟结果显示,地下水渗流流速及方向对热量传输影响较大。渗流流速为0.1 m/s时,温度场的瞬态特征显著;渗流流速达到0.5 m/s以上时,温度场的瞬态特征逐渐消失。渗流流速的方向性使换热井群温度场分布也呈现出显著的方向性,在布置换热井群时应在平行地下水渗流方向上增加井间距,而在垂直于地下水渗流方向上减小井间距。2种传热作用相比:在导热作用下换热井群产生热堆积,温度场整场接近饱和;在渗流作用下各换热井的能效系数在20 d后基本处于稳定状态。  相似文献   

6.
裂隙岩体渗流耦合传热分析   总被引:2,自引:0,他引:2  
以地下裂隙岩体在裂隙水—孔隙水和温度场之间耦合作用为研究对象,对热和流体流动控制方程采用有限容积数值方法进行离散求解,设置了六种裂隙水—孔隙水流速方案,给出了部分无量纲温度场,并分析了传热与流动原因。分析结果表明:岩体内裂隙水—孔隙水引发的热质迁移对裂隙岩体的温度场分布有重要影响;当裂隙岩体内发生地下裂隙水—孔隙水渗流、及热量的转移时,会产生渗流场、温度场之间的耦合作用;裂隙内水流渗透速度是影响岩体温度的主要因素,孔隙内水流渗透速度是影响岩体温度的次要因素,温差主要发生在裂隙水边界层处。  相似文献   

7.
研究地热储层裂隙岩体中的渗流传热过程对干热岩地热资源的开采具有重要的意义。本文以干热岩地热工程为背景,采用COMSOL Multiphysics数值模拟软件对地热储层单裂隙岩体中渗流传热机理进行了研究,并分析了流体注入速度和温度对岩体温度场的影响及其对干热岩地热工程的影响。研究发现流体参数对岩体温度场的影响主要体现在两个方面:一方面是对岩体温度场受扰动区域以及幅度的影响,另一方面是对岩体温度场达到稳态所需要时间的影响。流体注入速度的提升会降低系统的寿命和寿命期的出口法向总热量值,当考虑出口法向总热通量时,存在最佳流体注入速度,本研究中最佳流体注入速度为0.011m/s。流体注入温度的提升会增加系统的寿命和系统的出口法向总热通量和总热量。研究为干热岩自热资源的开发与利用提供了理论依据,为工程运行参数的设计提供了参考依据。  相似文献   

8.
米尺度裂隙岩体模型水流-传热试验的数值模拟分析   总被引:1,自引:0,他引:1  
刘学艳  项彦勇 《岩土力学》2012,33(1):287-294
为了研究高放射性核废物地下处置库近场的水流-传热耦合问题,采用国内高放废物地下处置库预选场址--甘肃北山地区的花岗岩石块体,加工组合成米尺度的规则裂隙岩体模型,设置边界热源和裂隙水流,试验模拟裂隙水水流与传热之间的相互作用。作为该室内模型试验的前期理论研究,采用等效孔隙介质数值模型,着重分析了裂隙开度、裂隙流量和热源功率对流场和温度场的影响。在设定条件下,计算分析表明:热传导和裂隙水水流由热源作用初期的不耦合很快转化为耦合;不流动的裂隙水主要表现为热存储和热传导,而流动的裂隙水还引起流动传热和水与岩石之间的对流换热,使岩体温度场明显不同于单纯热传导的情况;如果保持裂隙水流量不变,则裂隙开度的变化对水流-传热影响不大;如果保持裂隙水流速不变,则裂隙开度的变化对水流-传热影响显著;热源功率越大,通过裂隙水的热流量越大,裂隙水压强越大,而当温度超过100 ℃时,裂隙水会因汽化而压强显著增大;加热7 d时,热量的输入和输出几乎相等,裂隙水流带走的热量接近热源供给的热量,模型系统基本达到了热平衡。  相似文献   

9.
费康  钱健  洪伟  刘汉龙 《岩土力学》2018,39(7):2651-2661
能量桩是将地源热泵系统中的换热管埋置在桩体内部,桩同时起到承载和换热的作用,是一种新型的基础型式。为了合理分析黏土地基中能量桩的力学特性,需要了解能量桩运行过程中桩和地基土的温度响应,并考虑温度变化对土体力学性能的影响。基于有限元软件ABAQUS建立了能量桩传热分析三维有限元模型,把能量桩的传热简化为换热管内液体与管壁之间的对流传热、桩体中的热传导和地基中的热传导,将计算结果与常规理论和实测数据进行了对比验证。对热力耦合边界面本构模型进行了二次开发,通过算例验证了模型对土体压缩和剪切性状温度效应的模拟能力。利用所提出的能量桩传热分析方法和热边界面模型,考虑不同的桩顶工作荷载水平,对正常固结黏土地基中能量桩单桩的长期性能进行了研究,分析了温度循环对桩顶沉降、桩侧摩阻力和桩身轴力的影响。结果表明,工作荷载越高,温度循环次数越多,桩顶累积沉降越大。  相似文献   

10.
为了揭示滩涂对近岸水温影响,开展潮间带滩涂沉积物与海水之间热量交换研究。以韩国西南海岸的滩涂为例,建立滩涂沉积物温度模型,模拟不同潮汐状态下沉积物垂向剖面温度以及沉积物与水体间的热通量,并分析了季节、滩涂位置、潮位-太阳辐射相位对热通量的影响。研究表明:模拟出的沉积物温度与实测值吻合较好。沉积物与水体存在大量热量交换,且集中在淹没后的前3 h,最大热通量可达398.7 W/m2。冬季月份海水向滩涂净传热。夏季月份滩涂向水体净传热,且当滩涂淹没时刻发生在当地正午或正午过后3 h内,滩涂传递给水体的热量相对较大,达2.0 MJ/(m2·d);累积热通量随滩涂干滩率的减小而减小。研究成果为进一步深入研究滩涂影响下近岸水温变化提供了技术支撑。  相似文献   

11.
汤炀  刘干斌  郑明飞  史世雍 《岩土力学》2022,43(Z2):282-290
长期非稳态的桩土热交换使得桩周土温度不断上升,产生热堆积效应,影响桩土换热效率,甚至也可使能源桩系统失效。为此,利用复合相变材料制备了相变混凝土能源桩,并在饱和粉土中开展了相变桩和普通桩热力响应模型试验,对比研究了相变桩的桩周温度分布、桩身应力−应变、桩顶位移和桩身换热效率的变化规律。结果表明:相变桩土热交换方向以径向交换为主,影响区域在2D范围以内,土体温度变化表现出滞后效应;相变桩的桩土温度变化幅度小于普通桩,具有缓解桩周土体热堆积效应的作用;在温度循环过程中,相变桩体累积了不可恢复的塑性应变。经过多次温度循环后,相变桩比普通桩的塑性累积位移更小;在夏季工况相变桩换热功率比普通桩增长约20%,冬季工况两者换热功率基本一致,随着运行时间增加,两者换热效率趋同。  相似文献   

12.
典型地埋管系统模拟工况地温场特征研究   总被引:1,自引:1,他引:0       下载免费PDF全文
地埋管热泵是开发利用浅层地温能的一种方式,土壤温度场在地源热泵运行前后的分布情况,是地埋管热泵计中考虑的重要因素。文章在南京典型地埋管热泵工程布设监测孔,分别在能源桩和距离能源桩1.2 m、2.1 m、3 m处不同层位埋设监测设备,分析地温场的时空演变规律,得到热量的传递情况和温度的变化规律,并采用多元回归分析方法拟合地温场的变化方程,得到了能源桩地温随时间和深度的变化方程以及地温随时间和距离的变化方程。结果显示,随着距能源桩水平距离的增加,温度变化减小;随着深度的增加,土壤温度的影响范围减小,热量传递速率逐渐降低。  相似文献   

13.
施工过程中混凝土的入模温度和水化热对多年冻土区桩基施工期间的热稳定性具有重要影响. 针对该问题,利用有限元方法定量研究了±400 kV青藏直流输电线路冻土区锥柱基础入模温度、水化热和含冰量对桩基回冻过程、温度场变化和桩底融化深度的影响规律. 结果表明:水化热影响下,桩基中心温度在第3天达到最高,桩底滞后1 d,基坑表面受其影响较小,主要受环境温度影响;第24天,桩底出现最大融化层,随着入模温度增加,融化层厚度相应增加,入模温度为6℃时融化层厚度为34 cm,15℃时为55 cm;入模温度越高,回冻时间越长,当入模温度为6℃时,完全回冻需经历52 d,15℃时,回冻时间将增加7 d. 含冰量对桩底融化深度有影响,含冰量越大底部融化深度越小;冻土年平均地温是影响桩底融化深度的重要因素,少冰高温(-0.52℃)、低温(-1.5℃和-2.5℃)冻土条件下,最大融化层厚度分别为38 cm、34 cm和25 cm. 基于上述结果,在多年冻土地区的桩基工程,建议混凝土入模温度为6~8℃,底部碎石垫层至少40 cm.  相似文献   

14.
循环温度场作用下PCC能量桩热力学特性模型试验研究   总被引:5,自引:0,他引:5  
PCC能量桩是河海大学岩土所开发的一种新型能量桩技术。在常规桩基静载荷模型试验基础上,将PCC能量桩放置在南京典型砂土中,并通过导热管内水体的循环对模型桩体施加温度场,以模拟PCC能量桩在实际运行过程中的承载力特性与受力机制,PCC能量桩先加载至工作荷载(极限荷载的一半),再施加热-冷循环一次,最后加载至极限荷载,测得不同温度下PCC能量桩的荷载-位移关系曲线、桩身应力-应变关系曲线等变化规律。试验结果表明,能量桩换热过程中,热量更容易从桩体传向土体(即夏季模式的热循环);热循环及制冷循环都明显改变了桩顶位移值,且往复循环作用下产生的塑性变形不能完全恢复,其积累变形可能危害上部结构安全;桩身受温度场作用产生的热应力相对较大,且不同约束条件下其变化值有所差异;在制冷循环下,桩底部甚至可能产生较大拉应力。  相似文献   

15.
青藏铁路多年冻土区电力杆塔热桩基础的降温效果分析   总被引:1,自引:0,他引:1  
在热棒外围浇筑混凝土形成的热桩基础在冻土区电力杆塔中常被应用。热棒的工作功率随着大气温度、蒸发段土体温度的变化而变化。基于冻土传热学相关知识,结合青藏铁路望昆~不冻泉段电力杆塔基础的现场地温测试试验,建立热桩基础的三维有限元模型。考虑全球气候变暖、冻土相变、混凝土水化放热、热棒功率变化等因素,运用迭代的方法进行热棒功率和桩周土体温度计算。计算结果表明:计算结果与实测结果吻合程度较高,能较好的模拟现场情况。热棒的功率呈非连续波浪式变化,受混凝土入模温度及水化放热的影响,初始阶段功率达到最大160.6 W,第2年的平均功率比第1年低7.0 W。热桩基础能够有效增加基础冷储量,最大降低桩侧土体地温2.1~3.0℃,年平均地温降低0.8~1.5℃,能缩短桩周土体回冻时间约34%,第30 a可提高冻土上限49 cm。  相似文献   

16.
多年冻土区桥梁工程钻孔灌注桩温度场研究   总被引:2,自引:1,他引:1  
针对多年冻土区钻孔灌注桩施工中混凝土水化热对冻土温度扰动问题,以青藏公路214沿线查拉坪旱桥桩基为实例,结合桩基施工完成后现场地温观测数据,进行了钻孔灌注桩水化热对桩周土体温度的影响研究,并分析桩周土回冻过程中地温场的变化规律.结果表明:混凝土水化热对距桩0.6 m与0.9 m处冻土温度影响较大.距桩2 m的测温孔温度曲线受混凝土水化热的影响较小,可以忽略.桩基施工完成后33天后桩侧开始出现负温,119天后桩侧各土层均降至负温,134天后桩侧土形成稳定冻土,201天后桩侧各土层温度与天然孔较接近.  相似文献   

17.
基于水化放热原理和室内外试验,发现混凝土拌合物层和浮浆层两者有明显的温差,显示可通过温度变化来确定混凝土拌合物灌注高度。据此设计了一种便携式用于判定混凝土拌合物面是否到达设计高度的温控式装置:在设计桩顶高度位置及其下方50 cm处分别埋置一个温度传感器,在设计桩顶高度下方50 cm的温度传感器获得混凝土拌合物的温度峰值,利用设计桩顶高度位置的温度传感器的温度峰值判定混凝土拌合物顶。建议混凝土拌合物超灌在设计桩顶高度位置即第2个温度传感器上方50 cm,比规范要求少超灌0.3 m,能节约混凝土。  相似文献   

18.
The use of concrete geostructures for energy extraction and storage in the ground is an environmentally friendly and easy way of cooling and heating buildings. With such energy geostructures, it is possible to transfer energy from the ground to buildings by means of fluid-filled pipes cast in concrete. By injecting thermal energy in summer and extracting it in winter, the ground in the area of a building’s piles can be used for seasonal energy storage, as long as the underground water flow in the storage remains low. This paper is a contribution to the improvement of the knowledge in the field of energy geostructures. The behaviour of a multi-pile seasonal storage system subjected to thermo-mechanical loading is examined numerically from both thermal and mechanical perspectives. The purpose of this paper is (i) to propose a thermo-hydro-mechanical 2D solution to the 3D problem, (ii) to explore the thermal behaviour of this type of storage and (iii) to evaluate its structural consequences. Coupled multi-physical finite element modelling is conducted. The efficiency of the storage is not dramatically affected by an increase in the annual mean temperature of the storage. It is shown that induced mechanical loads are less important when considering a wholly heated pile structure than when considering a single heated pile in a foundation. The evolution of stresses in the piles and in the soil during heating–cooling cycles also reveals possible critical phenomena.  相似文献   

19.
混凝土早期水化作用不仅释放大量热量、而且会引起桩基先期变形与约束应力,影响桩基承载性能。目前针对地层温度对早期混凝土水化作用引起的桩基热力学特性(尤其是群桩效应)影响的研究仍相对较少。开展3×3群桩在早期混凝土水化作用下的桩基热力学特性现场试验,实测了桩身温度、应变等变化规律,着重分析了地层温度对桩基水化热消散、桩身约束应力的影响规律;并开展了相同条件下单桩热力学特性对比试验,探讨水化热作用群桩效应。研究结果表明,水化热作用下,群桩中温度叠加效应并不明显;地层中恒温带的水化热消散速度慢于变温带;混凝土残余应力沿桩深方向分布不均,呈现中间大、两头小的特点,最大残余应力出现在0.6倍桩深处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号