首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
局地海陆热力对比对南海夏季风爆发影响的数值试验   总被引:10,自引:6,他引:10  
使用P-σ区域气候模式,通过两组海温异常下的数值试验和2个理想试验来初步探讨南海与中南半岛局地海陆热力对比对南海夏季风爆发的影响。结果表明:冬春季南海海温增暖使南海高低空均呈现出有利于季风环流形成的形势,促进南海夏季风的爆发;冬春季南海海温变冷的作用则基本相反。南海地区局地海陆热力对比是南海夏季风爆发的可能原因之一,这种局地的海陆热力差异叠加在大尺度的海陆热力差异作用之上,对南海季风在南海地区突发性爆发特征的形成起了一定的促进作用。  相似文献   

2.
孟加拉湾低涡与南海季风爆发关系及其可能机理   总被引:2,自引:0,他引:2  
客观定义并统计了孟加拉湾低涡,确定了30年(1980—2009年)中的34个季风爆发性低涡(MOV),分析其与南海夏季风爆发的关系。分析结果表明:季节转换期内(4—5月)低涡以东移型和北移型为主,这些低涡对南海季风爆发起指示作用,是南海季风爆发的前兆信号,故确定为MOV;气候态下,MOV发生在南海季风爆发前十天。MOV发生在高的海表温度、小的纬向风垂直切变、强的赤道西风的背景环境中;其生成位置与孟加拉湾各区海温演变有关,同一时段内,MOV总是倾向于在海温较高的海域上生成;MOV生成的早晚与赤道西风的增强和发展有密切联系,“亚澳大陆桥”对流和南印度洋海温是影响MOV生成时间的重要因子。这些结论可为南海季风的监测、预报及预测提供参考依据。   相似文献   

3.
通过季风指数Im定义了能表征东南亚地区降水实况的东南亚夏季风指数,根据东南亚夏季风指数测算出东南亚夏季风爆发的平均时间为5月7日.利用东南亚夏季风指数分析热带海温场及垂直速度场的变化后发现,在东南亚夏季风爆发的前期秋、冬季节,中东太平洋地区以及中西印度洋地区的冷海温有利于东南亚地区夏季风的提前爆发.当中东太平洋地区是冷(暖)海温时,对应着纬向的Walker环流及季风环流圈强(弱),东南亚地区的对流也强(弱),则东南亚地区夏季风爆发早(迟).  相似文献   

4.
南海季风区地面温度变化特征及其与季风爆发的联系   总被引:8,自引:0,他引:8  
分析1979年1月至1995年12月17a南海季风区修平均地面温度资料的时空变化特征发现,中南半岛西北部和印度半岛分别为地面修平均温度标准差的大值区,其位置和强度在南海季风爆发前后月份具有显著差异。从候平均温度纬圈偏差的时间演变来看,中南半岛地区纬圈温度偏差由正转负的时间早于印度半岛地区,并分别与南海夏季风和印度夏季风爆发的时间其本对应。在夏季风爆发之前,印度半岛和中南半岛地区的地面温度是逐候增加的,季风爆发以后地面温度迅速降低,而海洋上的表面温度增温幅度明显小于与其相邻地陆地,此外,从南海季风爆发早晚年中南半岛与南海地区表面温度距平差和各自温度距平的时间演变看,中南半岛地区地面温度的变化在触发南海季风爆发及其年际变化过程中可能起主导作用。  相似文献   

5.
南海夏季风异常活动的前期特征   总被引:1,自引:4,他引:1  
应用1979~1999年NOAA卫星月平均OLR资料及1950~1999年NCEP/NCAR再分析的月平均资料,采用合成分析的方法对南海夏季风爆发前一年10月~次年4月的异常特征进行讨论,并做信度检验.结果表明,在季风爆发的前期,大气环流和海温的异常与南海夏季风的异常关系密切.不同因子与南海夏季风异常发生最佳相关的时间及持续的程度并不完全一致,从所选取与南海夏季风爆发密切相关的关键区可见:OLR在初春、纬向风速和垂直速度在整个前期的异常与南海夏季风的异常存在极强的相关性.在强(弱)南海夏季风年的前期,热带海温基本呈La Ni?a(El Ni?o)型分布,其中在12月的海温距平分布与来年南海夏季风的强弱关系最为密切.  相似文献   

6.
袁媛  李崇银 《大气科学》2009,33(2):325-336
热带印度洋海温异常两种主要的模态分别是春季最强的全区一致型海温变化和秋季发展成熟的东西反位相偶极型模态, 本文主要分析了这两种海温模态对当年南海夏季风爆发的不同影响机制。对热带印度洋全区一致增暖和变冷年份的合成分析表明: 热带印度洋的增暖 (变冷) 通过海气相互作用激发印度洋-西太平洋异常的Walker环流圈, 加强 (减弱) 西太平洋副热带高压的强度, 进而有利于南海夏季风爆发的推迟 (提早)。由于热带印度洋全区一致型海温变化滞后响应于前冬ENSO事件, 因此, 作者提出热带印度洋的这种海温模态对维持ENSO对第二年南海夏季风爆发的影响起到了重要的传递作用。作者进一步通过1994年个例研究了热带印度洋偶极型海温模态对南海夏季风爆发的可能影响。1994年的热带印度洋偶极子在初夏就表现出很强的强度, 显著削弱了印度洋的夏季风环流, 尤其是索马里急流和赤道印度洋西风气流的强度。南海上游季风气流的减弱以及热带印度洋异常反气旋的发展阻碍了印度洋西南季风向南海的推进, 从而使得这一年南海夏季风爆发偏晚大约2候。  相似文献   

7.
QBO 与南海夏季风爆发的关系   总被引:1,自引:1,他引:0  
利用1979—2001 年ECMWF 再分析资料和NOAA 海温资料,通过相关分析和合成分析等统计方法,分析了平流层准两年周期振荡(QBO)与南海夏季风建立时间的关系。结果表明,QBO 位相与南海夏季风爆发时间有显著的相关关系:超前南海夏季风爆发约18 个月的QBO 西(东)风位相对应着季风爆发时间偏早(晚)。QBO 与南海夏季风爆发的联系要比ENSO 与南海夏季风爆发的联系更密切。   相似文献   

8.
利用2001、2003年的QuikSCAT风场和中国降水的逐日资料,分析江淮流域旱、涝年南海夏季风的演变特征及其低频分量与江淮流域降水的关系。结果表明:(1) 2001、2003年南海夏季风爆发时间相当,但2003年6月中下旬季风出现明显的中断,2001年6—7月南海季风表现出明显的由南海中南部向北部推进的过程,而2003年同时期的季风则徘徊于南海中南部地区;(2) 2001、2003年的夏季(5—9月)海表面的低频纬向风场同时都存在3对低频振荡中心,且在季风爆发后均有明显的向北传播特征,南海中部和北部表现出近乎相反的低频位相,但2001年低频振荡的强度及低频波列维持的时间均大于2003年的;(3) 根据纬向风低频振荡强中心区域的位置,在南海中部和北部分别定义了南海低频夏季风指数IM-SCS和IN-SCS,发现这两个指数与我国6—7月江淮流域的降水及青藏高原中东部降水之间均存在显著的滞后负相关关系,而与云南中部、西部及华北部分地区的降水则表现出显著的滞后正相关关系。   相似文献   

9.
中南半岛地区热力特征对南海季风爆发的可能影响及机理   总被引:10,自引:1,他引:10  
利用1998年5月1日-8月31日南海季风试验(SCSMX)产1980年1月-1995年12月NCEP/NCAR候平均再分析资料,分析1998年和多年平均情况下南海夏季风爆发期间中南半岛地区热力特征,揭示该地区热状况的异常与南海夏季风爆发之间的可能联系,从而讨论引起南海夏季风爆发的可能机制。结果发现,南海季风爆发前中南半岛附近地区存在较强的持续地面感知加热并具有显的低频振荡特征,低层大气在中南半岛地区出现较强的暖中心,由此导致局地强的水平温度梯度和位势高度梯度,有利于加强该地区的西南风。南海季风爆发前中南半岛地区低层出现较强的辐合风,高层出现较强的辐散风,这种低层强的辐合,高层强的辐射散配置有利于垂直运动的发展,降水的加强,进而触发南海季风的爆发。对多年平均资料的分析也证实了1998年南海季风爆发过程中所具有的特征,并进一步发现南海季风爆发前中南半岛地区850hPa温度是逐渐增加的,且增温幅度大于南海地区上空,由此加强了中南半岛与南海之间的温差。另外,比纬圈温度偏差和位势高度偏差的分析中发现,南海季风爆发期间南海和中南半岛地区的副高东撤与中南半岛地区的增温和孟加拉湾低槽的向东扩展有关。  相似文献   

10.
利用美国NCAR/NCEP的1951—2001年全球大气日平均再分析资料,对南海区域的高低层大气长波的变化特征及其与南海夏季风爆发时间的关系进行分析。结果表明,(1) 纬向1~3波合成风场基本反映原始纬向风场的变化,南海地区处于东西风带的南北过渡区。(2) 对流层高低层(200 hPa和850 hPa)纬向1波在南海区域累加值(S1)正负转换时间与南海夏季风建立日期较吻合。高层S1由正值稳定变为负值(西风转为东风)的时间比南海夏季风爆发提前1~2候,低层S1由负值稳定转为正值(东风转为西风)的时间则几乎与南海夏季风爆发时间同期。(3) 以低层纬向1波(S1)值随时间的变化为主要指标,定义了一个南海夏季风爆发指数,该指数对南海夏季风的建立具有较好的反映能力。   相似文献   

11.
1INTRODUCTIONLocatingatthesoutheasternpartofAsia,theSouthChinaSea(SCS)linkstheIndianOceanandwesternPacificandimmediatelyborderswiththeSouthAsiamonsoonregion.ItisanimportantlocationinwhichtheEastAsiamonsoonsysteminteractswiththeIndianOceanoneandamostdirectsourceofmoistureforthesubtropicalmonsoonsysteminEastAsia.TheSCSmonsoonanomaliescandirectlyaffectonthetemporal-spatialdistributionofprecipitationinthesouthofChinaandtheChangjiangRivervalleysothatseriousfloods/droughtsarecaused.Com…  相似文献   

12.
大气环流的变化与南海夏季风活动的关系   总被引:1,自引:0,他引:1  
陈双溪  何财福 《气象》2002,28(5):11-16
通过对近20年观测资料的计算分析表明,在南海夏季风活跃与中断期,南北半球副热带西风急流和热带东风急流以及青藏高压和墨西哥高压有明显的差异。从南半球向北传播的散度场低频振荡以及从北半球高纬向南传播的西风场低频振荡等的有利位相同时传入南海并共同作用可引起南海夏季风的活跃或中断。各种低频振荡的有利位相传播到南海并发生锁相的时间决定着南海夏季风明显的活跃或中断发生的时间。  相似文献   

13.
1998年南海夏季风低频振荡特征分析   总被引:9,自引:8,他引:9  
利用NCEP/NCAR1998年再分析资料和SST资料,研究了南海夏季风的低频振荡特征。结果表明,南海夏季风的低频振荡对南海夏季风的爆发具有加强的作用;南海低频低层辐合(散)区对应低频降水正(负)值区;南海地区的大气低频振荡以向北、向东传播为主,南海地区低频散度在垂直方向呈现出相互补偿的特征。  相似文献   

14.
利用1961—2020年广西地面气象观测站逐日降水资料、NCEP/NCAR再分析资料,研究了南海夏季风爆发对广西6月暴雨的影响。结果表明,当南海夏季风爆发偏早时,东亚大槽显著偏强,中高纬度地区经向环流增强;华南沿海西南风显著偏强,配合中高纬度偏强的经向型环流引导北风南下,南北风在广西上空交汇;印度洋到海洋性大陆热带季节内振荡(MJO)处于对流活跃位相,且向东移动明显,低频对流带在西南季风引导下向广西输送;广西上升气流显著偏强,暴雨日数偏多。反之,暴雨日数偏少。  相似文献   

15.
1997年东亚夏季风异常活动在汛期降水中的作用   总被引:15,自引:5,他引:15       下载免费PDF全文
利用1997年逐日降水资料和国家气象中心提供的T63再分析资料,详细讨论了中国汛期降水及东亚夏季风活动的异常特征及其间的联系。结果表明,该年中国夏季降水及东亚夏季风活动均表现了突出的异常,东部雨带长期滞留在江南、华南一带,夏季风向北的推进很弱,主要活跃于较低纬度,最北仅至35°N,未能在黄河以北的地区建立,比起气候意义下夏季风北进的最高纬度偏南10°左右。在这一过程中,夏季风异常是主要雨带异常发展的重要影响因子,候大雨带的建立和北推均与季风的建立与活跃密切相关。进一步对大尺度水汽场的分析表明,夏季风的活动明显改变了大尺度水汽输送及辐合,进而影响和制约了主要雨带的分布。夏季风爆发后,南海及中国大陆的主要水汽输送源均发生了明显变化,来自于孟加拉湾和热带印度洋的水汽输送到南海后,再从南海输送到中国大陆。而季风的活动同时也制约了强水汽辐合带的出现,其在低纬的维持为雨带长期稳定于南方地区提供了有利条件。  相似文献   

16.
1998 SCSMEX期间亚洲30-60天低频振荡特征的分析   总被引:34,自引:0,他引:34  
对1998年 5-8月南海季风试验(SCSMEX)期间东亚地区 850 hPa中低纬环流指数、东亚季风指数和长江中下游降水进行了Morlet 小波分析,结果表明在此期间这些要素均有明显的30-60天周期低频振荡。在此基础上对 5-8月每隔 5天的 850 hPa低频流场进行分析,结果表明:(1)100°-150°E间东亚从中国东中部大陆经南海和西太平洋的南北半球中明显的存在一个以30-60天低频荡为特征的东亚季风低频环流系统,东亚季风活动主要受东亚季风系统中低频活动影响;(2)5月第5候南海热带季风爆发、6月中旬长江中下游人梅及产生大暴雨以及7月中旬以后的该地区大暴雨均与低频气旋带在该地区活动有关,而8月长江上游大暴雨则与低频反气旋伸人到大陆有关;(3)SCSMEX期间东亚低频振荡系统的源地有二个,即南海赤道和北半球中太平洋中高纬。南海低频系统向北传播,而中高纬低频系统自东北向西南传播为主。长江中下游6、7月二次大暴雨均与上述二个低频气旋系统自热带向北和中高纬向西南传播并于长江中下游汇合有关;(4)5-8月间东亚季风系统中有二次低频气旋带和二次低频反气旋带活动,这些低频环流系统的活动与印度季风低频环流系统活动并无明  相似文献   

17.
    
The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30–60 day low-frequency oscillation (LFO) exists in all of the above elements during the exper-iment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this paper. Analysis results reveal that: (1) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30–60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly af-fected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the Indian monsoon system. This means that the low-frequency circulation systems in Indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation sys-tem (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998. This work was supported by the key project A of the State Ministry of Science and Technology “South China Sea Monsoon Experiment” and the fruit of it.  相似文献   

18.
大气季节内振荡及其重要作用   总被引:26,自引:10,他引:26       下载免费PDF全文
大气季节内振荡(ISO)是上世纪80年代以来大气科学的重要前沿研究课题.作者系统地回顾和总结了十多年来在大气季节内振荡(ISO)及其对其他气候系统的重要作用方面的主要研究工作和成果,尤其是新近的研究成果.主要包括热带大气ISO的基本特征和主要活动规律;中高纬度大气ISO的基本特征和活动规律,以及与热带大气ISO的主要差别;全球大气低频(30~60天)遥相关特征;大气季节内振荡的动力学机制;大气季节内振荡对南海(亚洲)夏季风爆发,以及对南海(东亚)夏季风异常的重要作用;热带大气季节内振荡与El Nino(L  相似文献   

19.
By use of daily OLR data of eight years (1975—1977,1979—1983),the propagation features of 30—60day low-frequency oscillation (LFO) and its teleconnections are studied.The results are as follows:(1)The LFO is quite active in the regions of the South China Sea,mainland of China and subtrop-ical western-North-Pacific.(2)The zonal propagation direction of LFO is eastward along the equator and gradually changes towestward north of 10°N and south of 10°S.The westward propagation of LFO dominates in the areaof 15°N-30°N,Eastern Hemisphere.(3)In the region of east Asia (120°E),the main meridional directions are northward in tropics andsouthward in high latitudes.These two opposite propagating LFO are merged in the vicinity of subtropics.Sometimes,the northward propagating LFO can penetrate through the subtropics to high latitudes and viceversa.On the average,the northward propagation dominates in summer time.(4)The EOF analysis of the summer data shows that there are two main eiginvector centers of OLR-LFO,one is located over the Bay of Bengal and the other over the tropical western-North-Pacific.Thesign of these two centers are just opposite to each other.It should be noted that on the normal,thesetwo oscillation centers mentioned above coincide with the two strong centers of atmospheric 12eat source insummer.It means that the activities of LFO in the Indian monsoon system and the East Asian monsoonsystem are reverse.For the first component of eiginvector,a belt of LFO with the same sign stretcheswith a SW-NE direction from the tropical center in the western-North-Pacific northwestward,passing bythe point at 15°N,180°E and reaches southwestern states of the United States.To the north and southof this belt,there are other two belts with opposite sign.Again further north and south of them,there areother two belts with the same sign as the first one.Furthermore,to the NW (near Taiwan) and SE (10°S,160°W) of the tropical East Asian center,there is,respectively,another center with opposite sign.Analmost straight line can go through all three centers.The main characteristics of the second,third andfourth components of eiginvector are the same as that of the first one.It indicates that the teleconnectioncentered around the tropical East Asian center of LFO is characterized by a SW-NE oriented wave frontand the energy transport of oscillation from SE to NW.That is to say,the oscillations in the tropicalwestern-North-Pacific may be the source of those in China during summer.We call this teleconnection pat-tern the WPC (western Pacific-China) pattern so as to distinguish from the PNA pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号