首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Photoluminescence spectra show that silicon impurity is present in lattice of some nanodiamond grains (ND) of various chondrites as a silicon‐vacancy (SiV) defect. The relative intensity of the SiV band in the diamond‐rich separates depends on chemical composition of meteorites and on size of ND grains. The strongest signal is found for the size separates enriched in small grains; thus, confirming our earlier conclusion that the SiV defects preferentially reside in the smallest (≤2 nm) grains. The difference in relative intensities of the SiV luminescence in the diamond‐rich separates of individual meteorites are due to variable conditions of thermal metamorphism of their parent bodies and/or uneven sampling of nanodiamond populations. Annealing of separates in air eliminates surface sp2‐carbon; consequently, the SiV luminescence is enhanced. Strong and well‐defined luminescence and absorption of the SiV defect is a promising feature to locate cold (<250 °C) nanodiamonds in space.  相似文献   

2.
The kinetics of the release of the Xe‐P3 component from coarse‐grained fractions of Orgueil (CI) meteorite nanodiamonds has been investigated using stepped and isothermal pyrolysis. It has been shown that a first‐order chemical reaction diffusion model with a single activation energy cannot provide a satisfactory explanation for the observed retention of Xe‐P3 during parent body thermal metamorphism and the kinetics of Xe‐P3 release from nanodiamonds during isothermal pyrolysis. Using the activation energy and frequency factor calculated according to this model, it is shown that in the course of thermal metamorphism of the Orgueil meteorite almost the entire Xe‐P3 component must have been lost in a very short time (<4 yr at approximately 100 °C). However, the calculated retention of Xe‐P3 increases significantly if a diffusion model with a spectrum of activation energies is used. In this case, the model can explain not only a high retention of Xe‐P3 in the Orgueil nanodiamonds but also the release pattern of the Xe‐P3 from Semarkona and Bishunpur nanodiamonds that have experienced a significant gas loss during parent body metamorphism as well as the release of Xe‐P3 during isothermal pyrolysis of the Orgueil nanodiamonds. The energetically complicated Xe‐P3 distribution is most likely caused by structural damage to the nanodiamond grains or a complex phase composition of carbon in the surface layer of the diamond grains. It is supposed that the structural damage of the diamond grains can have a radiation origin, while the variations of the carbon phase composition in the grain's mantle can be caused by the radiation‐induced reactions and/or a thermal effect.  相似文献   

3.
Abstract— A new olivine‐pigeonite ureilite containing abundant diamonds and graphite was found in the United Arab Emirates. This is the first report of a meteorite in this country. The sample is heavily altered, of medium shock level, and has a total weight of 155 g. Bulk rock, olivine (Fo79.8–81.8) and pyroxene (En73.9–75.2, Fs15.5–16.9, Wo8.8–9.5) compositions are typical of ureilites. Olivine rims are reduced with Fo increasing up to Fo96.1–96.8. Metal in these rims is completely altered to Fehydroxide during terrestrial weathering. We studied diamond and graphite using micro‐Raman and in situ synchrotron X‐ray diffraction. The main diamond Raman band (LO = TO mode at ?1332 cm?1) is broadened when compared to well‐ordered diamond single crystals. Full widths at half maximum (FWHM) values scatter around 7 cm?1. These values resemble FWHM values obtained from chemical vapor deposition (CVD) diamond. In situ XRD measurements show that diamonds have large grain sizes, up to >5 μm. Some of the graphite measured is compressed graphite. We explore the possibilities of CVD versus impact shock origin of diamonds and conclude that a shock origin is much more plausible. The broadening of the Raman bands might be explained by prolonged shock pressure resulting in a transitional Raman signal between experimentally shock‐produced and natural diamonds.  相似文献   

4.
This work is the first detailed study of carbon phases in the ureilite Almahata Sitta (sample #7). We present microRaman data for diamond and graphite in Almahata Sitta, seven unbrecciated ureilites, and two brecciated ureilites. Diamond in Almahata Sitta was found to be distinct from that in unbrecciated and brecciated ureilites, although diamond in unbrecciated and brecciated ureilites is indistinguishable. Almahata Sitta diamond shows a peak center range of 1318.5–1330.2 cm?1 and a full width at half maximum (FWHM) range of 6.6–17.4 cm?1, representing a shock pressure of at least 60 kbar. The actual peak shock pressure may be higher than this due to postshock annealing, if shock synthesis is the source of ureilite diamonds. Diamond in unbrecciated and brecciated ureilites have peak center wave numbers closer to terrestrial kimberlite diamond, but show a wider range of FWHM than Almahata Sitta. The larger peak shift observed in Almahata Sitta may indicate the presence of lonsdaleite. Alternatively, the lower values in brecciated ureilites may be evidence of an annealing step either following the initial diamond‐generating shock or as a consequence of heating during reconsolidation of the breccia. Graphite in Almahata Sitta shows a G‐band peak center range of 1569.1–1577.1 cm?1 and a G‐band FWHM range of 24.3–41.6 cm?1 representing a formation temperature of 990 ± 120 °C. Amorphous carbon was also found. We examine the different theories for diamond formation in ureilites, such as chemical vapor deposition and shock origin from graphite, and explore explanations for the differences between Almahata Sitta and other ureilites.  相似文献   

5.
Abstract— The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post‐shock annealing, and 4) post‐annealing shock. Period 1 occurred ?4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali‐rich fine‐grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact‐induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral‐appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb‐Sr internal isochron age of ?4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, ?7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact‐melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary‐type noble gases from the ureilitic melts. Incomplete separation of metal from silicates during impact melting left ureilites with relatively high concentrations of trace siderophile elements.  相似文献   

6.
Abstract— Using the isotopic compositions derived in Huss and Lewis, 1994a (Paper I), abundances of the P3, HL, and P6 noble-gas components were determined for 15 diamond separates from primitive chondrites of 8 chondrite classes. Within a meteorite class, the relative abundances of these components correlate with the petrologic subtype of the host meteorite, indicating that metamorphism is primarily responsible for the variations. Relative abundances of P3, HL, and P6 among diamond samples can be understood in terms of thermal processing of a single mixture of diamonds like those now found in CI and CM2 chondrites. With relatively gentle heating, primitive diamonds first lose their low-temperature P3 gases and a “labile” fraction of the HL component. Mass loss associated with release of these components produces an increase in the HL and P6 content of the remaining diamond relative to unprocessed diamond. Higher temperatures initiate destruction of the main HL carrier, while the HL content of the surviving diamonds remains essentially constant. At the same time, the P6 carrier begins to preferentially lose light noble gases. Meteorites that have experienced metamorphic temperatures ?650 °C have lost essentially all of their presolar diamond through chemical reactions with surrounding minerals. The P3 abundance seems to be a function only of the maximum temperature experienced by the diamonds and thus is independent of the nature of the surrounding environment. If all classes inherited the same mixture of primitive diamonds, then P3 abundances would tie together the metamorphic scales in different meteorite classes. However, if the P3 abundance indicates a higher temperature than do other thermometers applicable to the host meteorite, then the P3 abundance may contain information about heating prior to accretion. Diamonds in the least metamorphosed EH, CV, and CO chondrites seem to carry a record of pre-accretionary thermal processing.  相似文献   

7.
We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon‐bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334–1345 cm?1 and 1591–1619 cm?1. The full‐width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.  相似文献   

8.
The origin of diamond in ureilites has been frequently debated. We investigated carbon phase assemblages (CPAs) in five ureilitic samples of the brecciated asteroid 2008 TC3, found within the Almahata Sitta (AHS) strewn field, by transmission electron microscopy, Raman spectroscopy, synchrotron X-ray diffraction, and cathodoluminescence. Samples MS-MU 006, MS-187, and MS-170, are of low to moderate shock degree (U-S2 and U-S3), and samples MS-MU 027 (U-S4) and MS-MU 045 (U-S5) have a higher shock degree. In MS-MU 006 and MS-187, we did not find any diamond grains. MS-170 contains disordered and distorted graphite with diamond grains up to 12 μm in size and containing inclusions of Fe,Ni-metal, FeS, Fe-phosphide, and Cr,Fe-oxide. These diamond grains formed under relatively low (5–15 GPa) shock pressures through a catalytic process in the presence of a Fe,Ni,Cr,S,P-rich melt. The highly shocked and fine-grained ureilites MS-MU 027 and MS-MU 045 have three different types of CPAs, namely a nanopolycrystalline assemblage of diamond and defect-rich diamond/lonsdaleite, disordered and distorted graphite, and polycrystalline diamond with abundant Fe-rich mineral inclusions. The CPAs that have only diamond and planar defect-rich diamond (e.g., MS-MU 027) most likely formed through martensitic transformation of graphite to diamond and lonsdaleite at >15 GPa and >2000 K. The assemblage of diamond, defect-rich diamond, and disordered and distorted graphite (e.g., MS-MU 045) formed by martensitic transformation of graphite to diamond and lonsdaleite, followed by back-transformation to disordered graphite. We did not find any conclusive evidence to support the formation of diamond grains under high static pressure.  相似文献   

9.
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2‐5 surrounded by fine‐grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine‐grained matrix employing carbon and nitrogen X‐ray absorption near‐edge structure (C‐XANES and N‐XANES) spectroscopy using a scanning transmission X‐ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2‐5 contains C‐rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C‐XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen‐bearing functional groups were observed with N‐XANES. One of the possible diamond grains contains a Ca‐bearing inclusion that is not carbonate. C‐XANES features of the diamond‐edges suggest that the diamond might have formed by the CVD process, or in a high‐temperature and ‐pressure environment in the interior of a much larger parent body.  相似文献   

10.
This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon‐rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They contained 1.2–2.3 wt% carbon; most showed the major carbon release at temperatures of 600–700 °C with peak values of δ13C from ?7.3 to +0.4‰, similar to literature values for unbrecciated (“monomict”) ureilites. They also contained a minor low temperature (≤500 °C) component (δ13C = ca ?25‰). Bulk nitrogen contents (9.4–27 ppm) resemble those of unbrecciated ureilites, with major releases mostly occurring at 600–750 °C. A significant lower temperature release of nitrogen occurred in all samples. Main release δ15N values of ?53 to ?94‰ fall within the range reported for diamond separates and acid residues from ureilites, and identify an isotopically primordial nitrogen component. However, they differ from common polymict ureilites which are more nitrogen‐rich and isotopically heavier. Thus, although the parent asteroid 2008TC3 was undoubtedly a polymict ureilite breccia, this cannot be deduced from an isotopic study of individual ureilite fragments. The combined main release δ13C and δ15N values do not overlap the fields for carbonaceous or enstatite chondrites, suggesting that carbon in ureilites was not derived from these sources.  相似文献   

11.
Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single‐domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650–450 °C interval for higher petrographic types (consistent with an onion‐shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock‐related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging targets for paleomagnetic study.  相似文献   

12.
Abstract— Mokoia is a CV3 chondrite that contains abundant phyllosilicate mineralization. We present a detailed petrographic and scanning electron microscopic study of 24 dark inclusions (DIs) that we found in Mokoia. The overall texture and constituent minerals of the DIs resemble those in the host meteorite. Fe‐bearing saponite and Na‐rich phlogopite, the same phyllosilicates as in the host meteorite, occur in the DIs, which strongly suggests that the DIs have a similar alteration history to the host meteorite. However, the DIs show several distinct differences from the host meteorite. Olivine grains in the DI matrices are more homogeneous in Fe/(Fe + Mg) ratio than those in the host meteorite matrix. Phyllosilicates in the DIs are less abundant than in the host meteorite, and they have been dehydrated to various extents. These characteristics suggest that the DIs have experienced higher degree of thermal metamorphism than the host meteorite. In addition, the matrices in the DIs are more compacted than those in the host meteorite. Most olivine grains in the DIs show undulatory extinction in transmitted crossed‐polarized light and some show planar fractures, while such olivine grains are rare in the host meteorite. Two of the DIs contain Si‐, Mg‐, Fe‐ and O‐rich melt veins. These characteristics indicate that most DIs have been shocked to shock stage S3‐S4, while the host meteorite is shock stage S1 (virtually unshocked). Thermal metamorphism of the DIs was likely caused by shock heating. These results are consistent with the contention previously proposed for the DIs in CV3 chondrites (i.e., the DIs have experienced aqueous alteration and subsequent dehydration on the CV parent body). We suggest that thermal and shock metamorphism occurred locally to various extents after pervasive aqueous alteration in the Mokoia parent body.  相似文献   

13.
Abstract– We performed micro‐Raman spectroscopic analyses of the carbon vein in five ureilites: Allan Hills (ALH) A77257, Northwest Africa (NWA) 3140, Shi?r 007, Yamato 790981 (Y‐790981), and Yamato 791538 (Y‐791538). The graphite peaks showed that the graphite structure in ureilite is well developed, especially compared with the carbonaceous material in carbonaceous chondrite. The domain sizes of the graphite were 45–110 Å. We observed shifts in the diamond peak positions to higher wave numbers with a large full width at half maximum (FWHM), especially for NWA 3140. Although the FWHM of a diamond peak is not a crucial diagnostic test for a chemical vapor deposition (CVD) origin of diamond, the shift of the diamond peaks to higher wave numbers could be a strong indicator that supports the CVD origin as these shifts have only been observed in CVD diamonds. We discuss the origin of diamond from various aspects, and confirm that the CVD model is the most plausible. We conclude that all carbon material (graphite, amorphous carbon, diamond, etc.) condensed on the early condensates in the primitive solar nebula.  相似文献   

14.
Abstract– None of the well‐established nitrogen‐related IR absorption bands, common in synthetic and terrestrial diamonds, have been identified in the presolar diamond spectra. In the carbonado diamond spectra, only the single nitrogen impurity (C center) is identified and the assignments of the rest of the nitrogen‐related bands are still debated. It is speculated that the unidentified bands in the nitrogen absorption region are not induced by nitrogen, but rather by nitrogen‐hydrides because in the interstellar environment, nitrogen reacts with hydrogen and forms NH+; NH; NH2; NH3. Among these hydrides, the electronic configuration of NH+ is the closest to carbon. Thus, this ionized nitrogen‐mono‐hydride is the best candidate to substitute carbon in the diamond structure. The bands of the substitutional NH+ defect are deduced by redshifting the irradiation‐induced N+ bands due to the mass of the additional hydrogen. The six bands of the NH+ defects are identified in both the presolar and the carbonado diamond spectra. The new assignments identify all of the nitrogen‐related bands in the spectra, indicating that presolar and carbonado diamonds contain only single nitrogen impurities.  相似文献   

15.
Abstract— Northwest Africa (NWA) 1500 is an ultramafic meteorite dominated by coarse (?100–500 μm) olivine (95–96%), augite (2–3%), and chromite (0.6–1.6%) in an equilibrated texture. Plagioclase (0.7–1.8%) occurs as poikilitic grains (up to ?3 mm) in vein‐like areas that have concentrations of augite and minor orthopyroxene. Other phases are Cl‐apatite, metal, sulfide, and graphite. Olivine ranges from Fo 65–73, with a strong peak at Fo 68–69. Most grains are reversezoned, and also have ?10–30 μm reduction rims. In terms of its dominant mineralogy and texture, NWA 1500 resembles the majority of monomict ureilites. However, it is more ferroan than known ureilites (Fo ≥75) and other mineral compositional parameters are out of the ureilite range as well. Furthermore, neither apatite nor plagioclase have ever been observed, and chromite is rare in monomict ureilites. Nevertheless, this meteorite may be petrologically related to the rare augite‐bearing ureilites and represent a previously unsampled part of the ureilite parent body (UPB). The Mn/Mg ratio of its olivine and textural features of its pyroxenes are consistent with this interpretation. However, its petrogenesis differs from that of known augite‐bearing ureilites in that: 1) it formed under more oxidized conditions; 2) plagioclase appeared before orthopyroxene in its crystallization sequence; and 3) it equilibrated to significantly lower temperatures (800–1000 °C, from two‐pyroxene and olivine‐chromite thermometry). Formation under more oxidized conditions and the appearance of plagioclase before orthopyroxene could be explained if it formed at a greater depth on the UPB than previously sampled. However, its significantly different thermal history (compared to ureilites) may more plausibly be explained if it formed on a different parent body. This conclusion is consistent with its oxygen isotopic composition, which suggests that it is an ungrouped achondrite. Nevertheless, the parent body of NWA 1500 may have been compositionally and petrologically similar to the UPB, and may have had a similar differentiation history.  相似文献   

16.
Abstract— Metal‐troilite textures are examined in metamorphosed and impact‐affected ordinary chondrites to examine the response of these phases to rapid changes in temperature. Complexly intergrown metal‐troilite textures are shown to form in response to three different impact‐related processes. (1) During impacts, immiscible melt emulsions form in response to spatially focused heating. (2) Immediately after impact events, re‐equilibration of heterogeneously distributed heat promotes metamorphism adjacent to zones of maximum impact heating. Where temperatures exceed ~850 ° C, this post‐impact metamorphism results in melting of conjoined metal‐troilite grains in chondrites that were previously equilibrated through radiogenic metamorphism. When the resulting Fe‐Ni‐S melt domains crystallize, a finely intergrown mixture of troilite and metal forms, which can be zoned with kamacite‐rich margins and taenite‐rich cores. (3) At lower temperatures, post‐impact metamorphism can also cause liberation of sulfur from troilite, which migrates into adjacent Fe‐Ni metal, allowing formation of troilite and occasionally copper within the metal during cooling. Because impact events cause heating within a small volume, post‐impact metamorphism is a short duration event (days to years) compared with radiogenic metamorphism (>106 years). The fast kinetics of metal‐sulfide reactions allows widespread textural changes in conjoined metal‐troilite grains during post‐impact metamorphism, whereas the slow rate of silicate reactions causes these to be either unaffected or only partially annealed, except in the largest impact events. Utilizing this knowledge, information can be gleaned as to whether a given meteorite has suffered a post‐impact thermal overprint, and some constraints can be placed on the temperatures reached and duration of heating.  相似文献   

17.
Abstract— The x‐ray powder diffraction patterns of 50–100 μm C‐rich grains from five ureilitic meteorites—Kenna, Allan Hills (ALH) 78019, Yamato (Y)‐82100, Y‐791538, and ALH 77257—were obtained by using a Gandolfi camera. The results reveal that the basal spacing of part of the graphite coexisting with diamond is slightly smaller compared to the normal spacing. Compressed graphite is experimentally known to occur at the initial stage of the direct transformation from graphite to diamond structures at high pressures and temperatures. The presence of the compressed graphite in ureilites, therefore, gives clear evidence that the diamond formed by high‐pressure conversion of graphite. The modes of occurrence of C minerals observed with reflected light through an optical microscope reveal that graphite coexisted with olivine and pyroxene during igneous or metamorphic processes and, furthermore, that part of the graphite was converted to diamond by impact. The relative x‐ray intensity of diamond to graphite increases in the following order: ALH 78019 and Y‐82100 < Y‐791538 < Kenna < ALH 77257. This correlates with the shock level that is estimated mainly on the basis of the shock features of silicates. Therefore, the relative amounts of diamond to graphite suggested by x‐ray intensities may be useful as a measure of the degree of shock.  相似文献   

18.
Abstract— We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O‐isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine‐grained matrix suggests that Fountain Hills formed in a dust‐poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near‐CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10?3bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine‐spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type‐4 ordinary chondrites.  相似文献   

19.
Abstract— We studied the petrography and mineralogy of two monomict ureilites, Hammadah al Hamra 064 (HH064) and Jalanash, by using reflected light and scanning electron microscopy. Quantitative analyses were performed by electron microprobe and the microstructures were investigated with transmission electron microscopy (TEM). HH064 features two different textures, a poikilitic and a typical one, whereas Jalanash shows only the typical ureilite texture. Our synergetic chemical and microstructural investigations reveal a complex cooling history for both ureilites. The temperature for the first equilibrium deduced from the pigeonite‐augite assemblage in HH064 is ~1200°C. The presence of antiphase domains in low‐Ca pyroxenes proves that they are clearly pigeonite. The occurrences of tweed micro structure and orthopyroxene lamellae, which are incompletely developed, imply a faster cooling rate from the first equilibrium with a sudden end. Although both ureilites contain shock induced diamonds, dislocations in silicates are rare. This observation suggests that the meteorites were hot at the time of strong shock metamorphism or that they were heated after strong shock metamorphism. After this event, new microstructural features were generated by different cooling processes and were frozen by a final rapid decrease in temperature possibly due to excavation from the ureilite parent body, or bodies.  相似文献   

20.
Abstract— Mid‐infrared absorption spectra for all types of carbonaceous chondrites were obtained in this study to establish a versatile method for spectroscopic classification of carbonaceous chondrites. Infrared spectra were measured using a conventional KBr pellet method and diamond press method. Spectra of hydrous carbonaceous chondrites exhibit intense O‐H stretching vibrations. CI chondrites are identifiable by a characteristic sharp absorption band appearing at 3685 cm?1, which is mainly attributable to serpentine. X‐ray diffraction analysis showed the presence of serpentine. However, Yamato (Y‐) 82162 (C1) does not have the band at 3685 cm?1 because of its thermal metamorphism. CM and CR chondrites have an intense absorption band at approximately 3600 cm?1. This absorption tends to appear in CM chondrites more strongly than CR chondrites because the intensity ratios of an OH stretching mode at 3520 cm?1 compared to 3400 cm?1 for CM chondrites are in the range of 0.95–1.04, which is systematically higher than those of CR chondrites (0.86–0.88). Therefore, the two types of chondrites are distinguishable by their respective infrared spectra. The spectrum feature of the Tagish Lake meteorite is attributable to neither CI nor CM chondrites. CO chondrites are characterized by weak and broad absorption at 3400 cm?1. CV chondrites have weak or negligible absorption of water. CK chondrites also have no water‐induced absorption. CH and CB chondrites have a sharp absorption at 3692 cm?1 indicating the presence of chrysotile, which is also supported by observations of X‐ray diffraction and TEM. The combination of spectroscopic classification and the diamond press method allows classification of carbonaceous chondrites of very valuable samples with small quantities. As one example, carbonaceous chondrite clasts in brecciated meteorites were classified using our technique. Infrared spectra for a fragment of carbonaceous clasts (<1 μg) separated from Willard (b) and Tsukuba were measured. The 3685 cm?1 band found in CI chondrites was clearly detected in the clasts, indicating that they are CI‐like clasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号