首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– Micrometeoroids with 100 and 200 μm size dominate the zodiacal cloud dust. Such samples can be studied as micrometeorites, after their passage through the Earth atmosphere, or as microxenoliths, i.e., submillimetric meteorite inclusions. Microxenoliths are samples of the zodiacal cloud dust present in the asteroid Main Belt hundreds of millions years ago. Carbonaceous microxenoliths represent the majority of observed microxenoliths. They have been studied in detail in howardites and H chondrites. We investigate the role of carbonaceous asteroids and Jupiter‐family comets as carbonaceous microxenolith parent bodies. The probability of low velocity collisions of asteroidal and cometary micrometeoroids with selected asteroids is computed, starting from the micrometeoroid steady‐state orbital distributions obtained by dynamical simulations. We selected possible parent bodies of howardites (Vesta) and H chondrites (Hebe, Flora, Eunomia, Koronis, Maria) as target asteroids. Estimates of the asteroidal and cometary micrometeoroid mass between 2 and 4 AU from the Sun are used to compute the micrometeoroid mass influx on each target. The results show that all the target asteroids (except Koronis) receive the same amount (within the uncertainties) of asteroidal and cometary micrometeoroids. Therefore, both these populations should be observed among howardite and H chondrite carbonaceous microxenoliths. However, this is not the case: carbonaceous microxenoliths show differences similar to those existing among different groups of carbonaceous chondrites (e.g., CI, CM, CR) but two sharply distinct populations are not observed. Our results and the observations can be reconciled assuming the existence of a continuum of mineralogical and chemical properties between carbonaceous asteroids and comets.  相似文献   

2.
A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study, we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near‐infrared (0.3–2.2 μm) and in the midinfrared to thermal infrared (2.5–30.0 μm or 4000 to ~333 cm−1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal‐rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high‐albedo asteroids.  相似文献   

3.
The suggestion that significant quantities of interplanetary dust are produced by both main-belt asteroids and comets is based on the Infrared Astronomical Satellite detection of dust trails or bands associated with these objects. Gravitational focusing strongly biases all near-Earth collections of interplanetary dust in favor of particles with the lowest geocentric velocities, that is the dust from main-belt asteroids spiraling into the Sun under the influence of Poynting-Robertson radiation drag.

The major dust bands in the main-belt appear to be associated with the catastrophic disruptions which produced the Eos, Themis and Koronis families of asteroids. If dust particles are produced in the catastrophic collision process, then Poynting-Robertson radiation drag is such an efficient transport mechanism from the main-belt to 1 AU that near-Earth collections of interplanetary dust should include, and perhaps be dominated by, this material. The physical, chemical and mineralogical properties of this asteroidal dust can provide constraints on the properties of the asteroidal parent bodies.

Interplanetary dust particles from 5 to 100 μm in diameter have been recovered from the stratosphere of the Earth by NASA sampling aircraft since the mid1970s. The densities of a large fraction of these interplanetary dust particles are significantly lower than the densities of their constituent silicate mineral phases, indicating significant porosities. Direct examination of ultra-microtome thin-sections of interplanetary dust particles also shows significant porosities. The majority of the particles are chemically and mineralogically similar to, but not identical to, the carbonaceous chondrite meteorites.

Most stony interplanetary dust particles have carbon contents exceeding those of Allende, a carbonaceous chondrite meteorite having a low albedo. The population of interplanetary dust does not appear to exhibit the full range of compositional diversity inferred from reflection spectroscopy of the main-belt asteroids. In particular, higher albedo particles corresponding to S-type asteroids are underrepresented or absent from the stratospheric collections, and primitive carbonaceous particles seem to be overrepresented in the stratospheric collections compared to the fraction of mainbelt asteroids classified as primitive. This suggests that much of the interplanetary dust may be generated by a stochastic process, probably preferentially sampling a few most recent collisional events.  相似文献   


4.
Linking meteorites to their asteroid parent bodies remains an outstanding issue. Space-based dust characterization using impact ionization mass spectrometry is a proven technique for the compositional analysis of individual cosmic dust grains. Here we investigate the feasibility of determining asteroid compositions via cation mass spectrometric analyses of their dust ejecta clouds during low (7–9 km s−1) velocity spacecraft flybys. At these speeds, the dust grain mass spectra are dominated by easily ionized elements and molecular species. Using known bulk mineral volume abundances, we show that it is feasible to discriminate the common meteorite classes of carbonaceous chondrites, ordinary chondrites, and howardite–eucrite–diogenite achondrites, as well as their subtypes, relying solely on the detection of elements with ionization efficiencies of ≤700 or ≤800 kJ mol−1, applicable to low (~7 km s−1) and intermediate (~9 km s−1) flyby speed scenarios, respectively. Including the detection of water ion groups enables greater discrimination between certain meteorite types, and flyby speeds ≥10 km s−1 enhance the diagnostic capabilities of this technique still further. Although additional terrestrial calibration is required, this technique may allow more unequivocal asteroid-meteorite connections to be determined by spacecraft flybys, emphasizing the utility of dust instruments on future asteroid missions.  相似文献   

5.
Abstract— High‐performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated from a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P‐ or D‐type asteroids. If the Tagish Lake meteorite was indeed derived from these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.  相似文献   

6.
Abstract— We review the meteoritical and astronomical literature to answer the question: What is the evidence for the importance of ordinary chondritic material to the composition of the asteroid belt? From the meteoritical literature, we find that currently (1) our meteorite collections sample at least 135 different asteroids; (2) out of 25+ chondritic meteorite parent bodies, 3 are (by definition) ordinary chondritic; (3) out of 14 chondritic grouplets and unique chondrites, 11 are affiliated with a carbonaceous group/clan of chondrites; (4) out of 24 differentiated groups of meteorites, only the HE iron meteorites clearly formed from ordinary chondritic precursor material; (5) out of 12 differentiated grouplets and unique differentiated meteorites, 8 seem to have had carbonaceous chondritic precursors; (6) a high frequency of carbonaceous clasts in ordinary chondritic breccias suggests that ordinary chondrites have been embedded in a swarm of carbonaceous material. The rare occurrence (only one example) of ordinary chondritic clasts in carbonaceous chondritic breccias indicates that ordinary chondritic material has not been widespread in the asteroid belt; (7) cosmic spherules, micrometeorites, and stratospheric interplanetary dust particles—believed to represent a less biased sampling of asteroidal material—show that only a very small fraction (less than ~1%) of asteroidal dust has an ordinary chondritic composition. From the astronomical literature, we find that currently (8) spectroscopic surveys of the main asteroid belt are finding more and more nonordinary chondritic primitive material in the inner main belt; (9) the increase in spectroscopic data has increased the inferred mineralogical diversity of main belt asteroids; and (10) no ordinary chondritic asteroids have been directly observed in the main belt. These lines of evidence strongly suggest a scenario in which ordinary chondritic asteroids were never abundant in the main belt. The S-type asteroids may currently be primarily differentiated, but the precursor material is more likely to have been carbonaceous chondritic, not ordinary chondritic. Historically, carbonaceous material could have dominated the entire main belt. This could explain the presence in the inner main belt of asteroids linked to the primitive carbonaceous chondrites, and the absence of asteroids linked to the ordinary chondrites. The implications of this scenario for the asteroid heating mechanism(s) are briefly discussed.  相似文献   

7.
Except for asteroid sample return missions, measurements of the spectral properties of both meteorites and asteroids offer the best possibility of linking meteorite groups with their parent asteroid(s). Visible plus near‐infrared spectra reveal distinguishing absorption features controlled mainly by the Fe2+ contents and modal abundances of olivine and pyroxene. Meteorite samples provide relationships between spectra and mineralogy. These relationships are useful for estimating the olivine and pyroxene mineralogy of stony (S‐type) asteroid surfaces. Using a suite of 10 samples of the acapulcoite–lodranite clan (ALC), we have developed new correlations between spectral parameters and mafic mineral compositions for partially melted asteroids. A well‐defined relationship exists between Band II center and ferrosilite (Fs) content of orthopyroxene. Furthermore, because Fs in orthopyroxene and fayalite (Fa) content in olivine are well correlated in these meteorites, the derived Fs content can be used to estimate Fa of the coexisting olivine. We derive new equations for determining the mafic silicate compositions of partially melted S‐type asteroid parent bodies. Stony meteorite spectra have previously been used to delineate meteorite analog spectral zones in Band I versus band area ratio (BAR) parameter space for the establishment of asteroid–meteorite connections with S‐type asteroids. However, the spectral parameters of the partially melted ALC overlap with those of ordinary (H) chondrites in this parameter space. We find that Band I versus Band II center parameter space reveals a clear distinction between the ALC and the H chondrites. This work allows the distinction of S‐type asteroids as nebular (ordinary chondrites) or geologically processed (primitive achondrites).  相似文献   

8.
Abstract— Based on reflectance spectroscopy and chemical/mineralogical remote sensing methods, it is generally assumed that asteroids are parent bodies for most meteorites reaching the Earth. However, more detailed observations indicate that differences exist in composition between asteroids and meteorites resulting in difficulties when searching for meteorite‐asteroid match. We show that among other physical parameters the magnetic susceptibility of an asteroid can be determined remotely from the magnetic induction by solar wind using an orbiting spacecraft or directly using the AC coil on the lander, or it can be measured in samples returned to the laboratory. The shape corrected value of the true magnetic susceptibility of an asteroid can be compared to those of meteorites in the existing database, allowing closer match between asteroids and meteorites. The database of physical properties contains over 700 samples and was recently enlarged with measurements of meteorites in European museums using mobile laboratory facility.  相似文献   

9.
Abstract— Various hypotheses of the origin of asteroids and comets are briefly discussed. Interaction of planetesimals in the asteroid zone (AZ) with the gas, their perturbations by proto-Jupiter, and sweeping them out by more massive Jupiter zone bodies when they penetrated the AZ are considered. If the gas was turbulent, it could prevent a settling of dust particles to the equatorial plane of the disk and formation of dust condensations due to gravitational instability. Then particles grew by sticking upon collision. Gas moved radially due to turbulent viscosity and its dissipation. Small particles moved more-or-less together with the gas. As a result of gas drag, larger particles and bodies moved relative to the gas in the direction of increasing gas pressure. Gas would remove much of the solid material from the AZ if most bodies larger than a few km disintegrated by collisions into fragments smaller than a few tens of meters. Most of these fragments would then move into the Martian zone, and the small mass of Mars would have no explanation. Resonant perturbations of asteroids by Jupiter are discussed. In the model of a small mass disk they could scan through the asteroid belt due to changes in Jupiter's distance from the Sun that occurred when this planet accreted the gas and ejected the bodies from the solar system. Such a scanning considerably accelerated the removal of asteroids from the AZ. Massive Jupiter zone bodies with large orbital eccentricities that crossed the AZ were probably efficient at sweeping out bodies. Larger bodies increased the random velocities of the remaining asteroids at close encounters to the present values ~ 5 km/s. Restrictions on the runaway growth of giant planets, on the relative velocities of bodies and the disk surface density that follow from the consideration of the origin of the asteroid belt and the cometary cloud are considered.  相似文献   

10.
《Planetary and Space Science》1999,47(3-4):363-383
The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse (i = 79°). After its Jupiter flyby in 1992 at a heliocentric distance of 5.4 AU, the spacecraftreapproached the inner solar system, flew over the Suns south polar region in September 1994,crossed the ecliptic plane at a distance of 1.3 AU in March 1995, and flew over the Suns northpolar region in July 1995. We report on dust impact data obtained with the dust detector onboardUlysses between January 1993 and December 1995. We publish and analyse the complete dataset of 509 recorded impacts of dust particles with masses between 10−16 g–10−7 g. Together with 968 dust impacts from launch until the end of 1992 published earlier (Grün et al., 1995c), information about 1477 particles detected with theUlysses sensor between October 1990 and December 1995 is now available. The impact ratemeasured between 1993 and 1995 stayed relatively constant at about 0.4 impacts per day andvaried by less than a factor of ten. Most of the impacts recorded outside about 3.5 AU arecompatible with particles of interstellar origin. Two populations of interplanetary particles havebeen recognized: big micrometer-sized particles close to the ecliptic plane and smallsub-micrometer-sized particles at high ecliptic latitudes. The observed impact rate is comparedwith a model for the flux of interstellar dust particles which gives relatively good agreement withthe observed impact rate. No change in the instruments noise characteristics or degradation of thechanneltron could be revealed during the three-year period.  相似文献   

11.
Podolak M  Bunch TE  Cassen P  Reynolds RT  Chang S 《Icarus》1990,84(1):254-260
The refractory meteorite inclusions known as CAIs (calcium-aluminum rich inclusions) display melted rims that were produced by thermal events of only a few seconds duration. We show that gas dynamic deceleration in a temporary atmosphere around an accreting parent body, produced by gas release during accretion, could provide a regime of sufficiently high gas density and small scale height to achieve partial melting of the CAIs. In addition, the presence of dust in the atmosphere would increase the gradient of pressure with height (i.e., effectively reduce the scale height), lower the rate of blowoff (thus keeping more gas around the body), as well as allow dust particles to become trapped in the partially melted material as is observed in some cases. Thus, CAIs may be regarded as probes of a primitive atmosphere by virtue of the thermal and mineralogical alteration that occurred upon their passage through the atmosphere.  相似文献   

12.
B. Schläppi  K. Altwegg  P. Wurz 《Icarus》2008,195(2):674-685
Asteroids (2867) Steins and (21) Lutetia are two flyby targets of ESA's cornerstone mission Rosetta. Since Rosetta is a cometary mission, some of the instruments are designed to investigate the surroundings of small bodies. To prepare the operation of these instruments, in our case the ROSINA instrument, for the asteroid flyby's, we adapted a Monte Carlo simulation code, initially developed to simulate the exosphere of Mercury. Modelled release processes are solar wind sputtering, micrometeorite impact vaporisation, photon stimulated desorption and in some cases thermal release. Released species were derived from estimations of the asteroid composition. This was done for both asteroids by using results from ground based observations and meteorite science. We used the estimated compositions and other known properties as input for the simulation. Our results suggest that neutral sodium and oxygen might be the best species to investigate by the means of mass spectrometry: We expect to be able to detect these species at least in the exosphere of (21) Lutetia.  相似文献   

13.
Abstract We report here analyses of olivines and pyroxenes, and petrofabrics of 27 chondritic interplanetary dust particles (IDPs), comparing those from anhydrous and hydrous types. Approximately 40% of the hydrous particles contain diopside, a probable indicator of parent body thermal metamorphism, while this mineral is rarely present in the anhydrous particles. Based on this evidence, we find that hydrous and anhydrous IDPs are, in general, not directly related, and we conclude that olivine and pyroxene major-element compositions can be used to help discriminate between IDPs that are (1) predominantly nebular condensates, and lately resided in anhydrous or icy (no liquids) primitive parent bodies, and (2) those originating from more geochemically active parent bodies (probably hydrous and anhydrous asteroids).  相似文献   

14.
The Solar System dust bands discovered by IRAS are toroidal distributions of dust particles with common proper inclinations. It is impossible for particles with high eccentricity (approximately 0.2 or greater) to maintain a near constant proper inclination as they precess, and therefore the dust bands must be composed of material having a low eccentricity, pointing to an asteroidal origin. The mechanism of dust band production could involve either a continual comminution of material associated with the major Hirayama asteroid families, the equilibrium model (Dermott et al. (1984) Nature 312, 505–509) or random disruptions in the asteroid belt of small, single asteroids (Sykes and Greenberg (1986) Icarus 65, 51–69). The IRAS observations of the zodiacal cloud from which the dust band profiles are isolated have excellent resolution, and the manner in which these profiles change around the sky should allow the origin of the bands, their radial extent, the size-frequency distribution of the material and the optical properties of the dust itself to be determined. The equilibrium model of the dust bands suggests Eos as the parent of the 10° band pair. Results from detailed numerical modeling of the 10° band pair are presented. It is demonstrated that a model composed of dust particles having mean semimajor axis, proper eccentricity and proper inclination equal to those of the Eos family member asteroids, but with a dispersion in proper inclination of 2.5°, produces a convincing match with observations. Indeed, it is impossible to reproduce the observed profiles of the 10° band pair without imposing such a dispersion on the dust band material. Since the dust band profiles are matched very well with Eos, Themis and Koronis type material alone, the result is taken as strong evidence in favor of the equilibrium model. The effects of planetary perturbations are included by imposing the appropriate forced elements on the dust particle orbits (these forced elements vary with heliocentric distance). A subsequent model in which material is allowed to populate the inner solar system by a Poynting-Robertson drag distribution is also constructed. A dispersion in proper inclination of 3.5° provides the best match with observations, but close examination of the model profiles reveals that they are slightly broader than the observed profiles. If the variation of the number density of asteroidal material with heliocentric distance r is given by an expression of the form 1/rτ then these results indicate that γ < 1 compared with γ = 1 expected for a simple Poynting-Robertson drag distribution. This implies that asteroidal material is lost from the system as it spirals in towards the Sun, owing to interparticle collisions.  相似文献   

15.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

16.
Abstract– The solid 2–10 μm samples of comet Wild 2 provide a limited but direct view of the solar nebula solids that accreted to form Jupiter family comets. The samples collected by the Stardust mission are dominated by high‐temperature materials that are closely analogous to meteoritic components. These materials include chondrule and CAI‐like fragments. Five presolar grains have been discovered, but it is clear that isotopically anomalous presolar grains are only a minor fraction of the comet. Although uncertain, the presolar grain content is perhaps higher than found in chondrites and most interplanetary dust particles. It appears that the majority of the analyzed Wild 2 solids were produced in high‐temperature “rock forming” environments, and they were then transported past the orbit of Neptune, where they accreted along with ice and organic components to form comet Wild 2. We hypothesize that Wild 2 rocky components are a sample of a ubiquitously distributed flow of nebular solids that was accreted by all bodies including planets and meteorite parent bodies. A primary difference between asteroids and the rocky content of comets is that comets are dominated by this widely distributed component. Asteroids contain this component, but are dominated by locally made materials that give chondrite groups their distinctive properties. Because of the large radial mixing in this scenario, it seems likely that most comets contain a similar mix of rocky materials. If this hypothesis is correct, then properties such as oxygen isotopes and minor element abundances in olivine, should have a wider dispersion than in any chondrite group, and this may be a characteristic property of primitive outer solar system bodies made from widely transported components.  相似文献   

17.
We present JHK colors observed for ten asteroids and synthesized JHK colors for seven meteorite groups, samples of iron and nickel metal, pyroxene, olivine, feldspar, a lunar anorthite and some terrestrial mineral samples. Pronounced differences are apparent between the chondritic and achondritic meteorite classes; the chondritic classes show less subdued trends in J-H color which reflect their metamorphic grade We find small but significant differences between the JHK colors of the predominant C and S classes of asteroids. All JHK colors of asteroids observed here fall within the limited domain defined by the various chondritic and iron-rich meteorites but are strikingly different from those of most achondritic meteorites  相似文献   

18.
The goal of this paper is to summarize 150 yr of history of a very special meteorite. The Orgueil meteorite fell near Montauban in southwestern France on May 14, 1864. The bolide, which was the size of the full Moon, was seen across Western France, and almost immediately made the news in local and Parisian newspapers. Within a few weeks of the fall, a great diversity of analyses were performed under the authority of Gabriel Auguste Daubrée, geology professor at the Paris Museum, and published in the Comptes Rendus de l'Académie des Sciences. The skilled scientists reported the presence of iron sulfides, hydrated silicates, and carbonates in Orgueil. They also characterized ammonium salts which are now gone, and observed sulfates being remobilized at the surface of the stone. They identified the high water and carbon contents, and noted similarities with the Alais meteorite, which had fallen in 1806, 300 km away. While Daubrée and his colleagues noted the similarity of the Orgueil organic matter with some terrestrial humus, they were cautious not to make a direct link with living organisms. One century later, Nagy and Claus were less prudent and announced the discovery of “organized” elements in some samples of Orgueil. Their observations were quickly discredited by Edward Anders and others who also discovered that some pollen grains were intentionally placed into the rock back in the 1860s. Orgueil is now one of the most studied meteorites, indeed one of the most studied rocks of any kind. Not only does it contain a large diversity of carbon‐rich compounds, which help address the question of organo‐synthesis in the early solar system but its chemical composition is also close to that of the Sun's photosphere and serves as a cosmic reference. Secondary minerals, which make up 99% of the volume of Orgueil, were probably formed during hydrothermal alteration on the parent‐body within the first few million years of the solar system; their study is essential to our understanding of fluid–rock interaction in asteroids and comets. Finally, the Orgueil meteorite probably originated from a volatile‐rich “cometary” outer solar system body as indicated by its orbit. Because it bears strong similarities to other carbonaceous chondrites that originated on dark asteroids, this cometary connection supports the idea of a continuum between dark asteroids and comets.  相似文献   

19.
Abstract— We review the petrology of Baszkówka, present new microprobe data on mineral constituents, and propose a model for surface properties of the parent body consistent with these data. The low shock index and high porosity of the Baszkówka L5 chondrite mean that considerable primary textural and petrographic detail is preserved, allowing insight into the structure and evolution of the parent body. This meteorite formed in a sedimentary environment resembling that in which pyroclastic rocks are deposited. The origin of the component chondrules, achondritic fragments (mostly olivine and pyroxene aggregates), chondritic‐achondritic aggregates, and compound chondrules can be explained by invoking collision of 2 melted or partially melted planetesimals, each covered with a thin crust. This could have happened at an early stage in the evolution of the solar system, between 1 and 2 Myr after its origin. The collision resulted in the formation of a cloud containing products of earlier magmatic crystallization (chondrite and achondrite fragments) from which new chondrules were created. Particle collision in this cloud produced fragmented chondrules, chondritic‐achondritic aggregates, and compound chondrules. Within this low‐density medium, these particles were accreted on the surface of the larger of the planetesimals involved in the collision. The density of the medium was low enough to prevent grain‐size sorting of the components but high enough to prevent the total loss of heat and to enable the welding of fragments on the surface of the body. The rock material was homogenized within the cloud and, in particular, within the zone close to the planetesimal surface. The hot material settled on the surface and became welded as molten or plastic metal, and sulfide components cemented the grains together. The process resembled the formation of welded ignimbrites. Once these processes on the planetesimal surface were completed, no subsequent recrystallization occurred. The high porosity of the Baszkówka chondrite indicates that the meteorite comes from a near‐surface part of the parent body. Deeper parts of the planetesimal would have been more massive because of compaction.  相似文献   

20.
Abstract— Reflectance spectra from 0.44 to 1.65 μm were obtained for three K asteroids. These objects all have spectra consistent with olivine‐dominated assemblages whose absorption bands have been suppressed by opaques. The two observed Eos family members (221 Eos and 653 Berenike) are spectral analogs to the CO3 chondrite Warrenton. The other observed object (599 Luisa) is a spectral analog for CV3 chondrite Mokoia. These asteroids are all located near meteorite‐supplying resonances with the Eos family cut by the 9:4 resonance and Luisa is found near the 5:2 resonance. However, K asteroids have been identified throughout the main belt so it is difficult to rule out other possible parent bodies for the CO3 and CV3 chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号