首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Demands for public outdoor recreation and urbanization are a potential source of environmental disturbances, particularly on sandy beaches. These habitats have therefore experienced rapid degradation worldwide. Talitrid amphipods, which are common inhabitants of sandy beaches, are probably good indicators of such disturbances. In this study, we evaluated the responses of the two amphipods Talitrus saltator and Atlantorchestoidea brasiliensis to human pressure on Spanish and a Brazilian beach, hypothesizing that disregarding species differences, their population sizes will decline under urbanized conditions. The Barra da Tijuca (Brazil) and Levante (Spain) beaches have mixed landscapes with varying levels of development, and each has a protected area (MPA) adjacent to urbanized sites. Numbers of talitrids as well as visitors were compared among sites on each beach. Talitrids were most abundant at the protected sites. This was true of both beaches, even though temporal patterns of human activity were quite different, with Levante experiencing sharp declines in the number of visitors during its harsh winter. Urbanized sites did not experience high Talitrid densities even during a period of low human pressure. On this basis, T. saltator and A. brasiliensis were considered good indicators of urbanization and recreational activities on sandy beaches. MPAs were found to be very important for the successful conservation of the talitrid populations. A feasible method of managing human pressure and thereby conserving beach biodiversity therefore seems to be the establishment of beach MPAs.  相似文献   

2.
In this paper we present a process-based numerical model for the prediction of storm hydrodynamics and hydrology on gravel beaches. The model comprises an extension of an existing open-source storm-impact model for sandy coasts (XBeach), through the application of (1) a non-hydrostatic pressure correction term that allows wave-by-wave modelling of the surface elevation and depth-averaged flow, and (2) a groundwater model that allows infiltration and exfiltration through the permeable gravel bed to be simulated, and is referred to as XBeach-G. Although the model contains validated sediment transport relations for sandy environments, transport relations for gravel in the model are currently under development and unvalidated. Consequently, all simulations in this paper are carried out without morphodynamic feedback. Modelled hydrodynamics are validated using data collected during a large-scale physical model experiment and detailed in-situ field data collected at Loe Bar, Cornwall, UK, as well as remote-sensed data collected at four gravel beach locations along the UK coast during the 2012–2013 storm season. Validation results show that the model has good skill in predicting wave transformation (overall SCI 0.14–0.21), run-up levels (SCI < 0.12; median error < 10%) and initial wave overtopping (85–90% prediction rate at barrier crest), indicating that the model can be applied to estimate potential storm impact on gravel beaches. The inclusion of the non-hydrostatic pressure correction term and groundwater model is shown to significantly improve the prediction and evolution of overtopping events.  相似文献   

3.
Inbreeding depression strongly affects the biological fitness of organisms throughout their life cycle. These negative effects are more pronounced in species with low dispersal potentials, where mating among relatives is more likely. However, in some species, an outbreeding depression could be expressed when local adaptive and genetic beneficial interactions are disrupted when mating occurs between individuals from different localities. The amphipod Orchestoidea tuberculata inhabits the upper level of sandy beaches. This species has direct development and adults are poor swimmers, resulting in low dispersal potential. We herein evaluated potential inbreeding and outbreeding depression responses in O. tuberculata estimated in fecundity, egg size, and mate choice. Artificial families were used with individuals from different sites within a single beach and from distinct beaches. Results showed that the highest fecundity (66.7%) and the largest egg size (50.1 mm3) were recorded in females that mated with males from the same site, rather than males from other sites and beaches. We also observed potential recognition mechanisms that clearly favored inbreeding (81.8% of males chose females from the same site). These results suggest a potential outbreeding depression in O. tuberculata. Additional studies are needed to elucidate underlying adaptive mechanisms favoring inbreeding in this species.  相似文献   

4.
Most of the islands in the Lakshadweep are marked by storm beaches on the eastern seaward shores and sandy beaches on the western lagoonal shores. The storm beaches consist of up to 3–4 sets almost at the same level and extend up to a distance of 5–12 km on some of the islands. They largely comprise uncemented pebbles, shingles, cobbles and boulders. The tracks for cyclones (1891–1960) show that the islands are normally hit by post-monsoon (November) cyclones from the east. The waves generated by these cyclones have formed the storm beaches. Radiocarbon dates of the storm beaches range from modern to 2975 ± 100 BP and indicate clustering between 3000 to 2000 BP and present to 500 BP. The younger storm beaches towards the shore suggest that parts of the islands have grown by about 30 m in the last 2780 years (Chetlat), 120 m in 1620 years (Kiltan) and even 100 m in 470 years (Minicoy). The absence of the storm beaches on some of the islands, younger beaches towards the shore and the clustering of ages, and the lack of lateral and chronological continuity may be explained by periodic stormy conditions rather than by the changes in the sea level. The number of storms in the Arabian Sea has varied from a minimum of 1 in 1949 to 10 in 1893, 1926 and 1930. It is very likely that such changes would have occurred in the past also.  相似文献   

5.
The results summarized herein are based on subaerial beach profiles taken on the Atlantic Ocean at Sandbridge, Virginia (USA). The shoreline has experienced an average, historic recession rate of about 2 m/yr for more than 120 years before seawall construction began in 1978. The purpose of this study is to determine whether or not the 16 walled sections increase the existing erosional trend at adjacent, non-walled beaches. Fifteen years of survey data are employed with 8–9 years of data taken before wall construction peaked in 1989. The main focus of these results is on five full wave years of monthly and post-storm survey data taken at 28 locations (16 walled, 4720 m, 62% and 12 non-walled, 2950 m, 38%) since October 1990. Three time scales (historic, seasonal, storms) and three analysis methods were used to address three questions concerning the effects of seawalls on adjacent beaches.It has been determined that volume erosion rates are not higher in front of seawalls (Question No. 1). However, the seasonal variability of the sand volume in front of walls is generally greater than at non-walled locations. Winter season waves drag more sand offshore in front of walls but also summer swell waves pile more sand up against walls in beach rebuilding.Walled beaches were found to recover about the same time as non-walled beaches for both seasonal transitions (winter to summer) and following erosional storm events (Question No. 2).At a few non-walled locations, the sand volume landward of adjacent walls was found to be eroding at a faster rate after wall construction. At some other non-walled locations, the sand volume landward remained constant or increased in time after nearby walled construction. The evidence for Sandbridge beach as a whole was considered inconclusive for Question No. 3.After wall construction, sand trapped behind the wall is not available for transport to adjacent beaches during and after storm events. The loss of this sand volume is felt to be in the initial stage of detection at Sandbridge. More full years of profile data are needed to confirm and quantify the effect. Sand is also trapped beneath the road (baseline) at non-walled locations. The study is continuing.  相似文献   

6.
This study evaluated the effect of human trampling on the benthic macrofauna of two beaches in Southeast Brazil with different levels of intensity of tourism, Grussaí (more impacted) and Manguinhos (less impacted), during periods of high and low tourism activity. The macrofauna of urbanized (U) and non‐urbanized (NU) sectors of the inter‐tidal zone was sampled and the number of visitors was recorded. General linear models revealed a decreasing in abundance of macrofauna species in the urbanized sectors of analyzed beaches, which are exposed to higher trampling impact than in non‐urbanized areas. At Manguinhos Beach, trampling did not affect the macrofauna (<1 visitors ? m?²), except for the polychaete Scolelepis sp., which was less abundant in the U sector. Considering the benthic community, Atlantorchestoidea brasiliensis, Hemipodia californiensis and Scolelepis sp. were more sensitive to human trampling pressure and may be used as potential bioindicators of tourism impact. Management plans should consider mitigation of the effects of tourism, such as the control of the visitor number and their decentralization.  相似文献   

7.
Large sections of the western Irish coast are characterised by a highly compartmentalised series of headland-embayment cells in which sand and gravel beaches are backed by large vegetated dune systems. Exposure to modally high-energy swell renders most of these beaches dissipative in character. A mesotidal range (c. 3.5–4.5 m) exists along much of the coast. Analysis of instrumental wind records from three locations permitted the identification of a variety of storm types and the construction of storm catalogues. Few individual storms were recorded at all three stations indicating a lack of regional consistency in storm record. Of the total storms recorded, only a small percentage are potentially damaging (onshore directed) and even fewer span a high tide and thus potentially induce a measurable morphological response at the coast.

Through a combination of historical records, meteorological records, field observations and wave modelling we attempt to assess the impact of storms. Quantifiable records of coastal morphology (maps, air photos and beach profiles) are few in number and do not generally record responses that may be definitely attributed to specific storms. Numerical wave simulations and observations at a variety of sites on the west Irish coast, however, provide insights into instantaneous and medium term (decadal) storm responses in such systems.

We argue that beaches and dunes that are attuned to modally high-energy regimes require extreme storms to cause significant morphological impact. The varying orientation of beaches, a spatially nonuniform storm catalogue and the need for a storm to occur at high water to produce measurable change, impart site-specific storm susceptibility to these embayments. Furthermore, we argue that long-period wave energy attenuation across dissipative shorefaces and beaches reduces coastal response to distant storms whereas short-period, locally generated wind waves are more likely to cause major dune and beach erosion as they arrive at the shoreline unrefracted.

This apparently variable response of beach and dune systems to storm forcing at a decadal scale over a coastline length of 200 km urges caution in generalising regarding regional-scale coastal responses to climatic change.  相似文献   


8.
9.
Ten exposed sandy sites covering a range from reflective to dissipative beaches were sampled in south-central Chile to evaluate: (1) spatial changes in species richness, abundance and biomass of the intertidal macroinfauna in response to changes in mean grain size, beach face slope and beach type, and (2) spatial changes in abundance, biomass and body sizes of the most abundant species in response to changes in the physical factors. The number of species, abundance and biomass per beach in general decreased with increasing particle size and beach face slope (steeper beaches) and increased from reflective to dissipative conditions. The best fit for number of species was with Dean's parameter, a measure of beach type, whereas for abundance and biomass the best fits were found with particle size. The isopod Excirolana braziliensis and the anomuran Emerita analoga increased in abundance and biomass towards dissipative conditions, whereas Excirolana hirsuticauda showed the opposite trend in biomass and was significantly larger in beaches with steeper profiles. It is concluded that responses to changes in beach type are more pronounced at community level than within species populations.  相似文献   

10.
The aim of the present study was to test sun orientation and rhythmic activity of two sandhopper populations from two Atlantic macro-tidal beaches. A population from Le Verger beach (orientated to 346°, Ille et Vilaine, Brittany, France) and a population from Damgan (orientated to 195°, Morbihan, Brittany, France), were tested on the beach under clear sky discriminating for landscape vision. For both populations locomotor activity rhythm was recorded in the laboratory. The two beaches differed for climatic features, tidal range and for human use. Both talitrid populations resulted very well orientated toward the shoreline, and both used solar position and landscape vision to orient. However the multiple regression analysis of orientation with climatic features showed a different use of local cues by the two populations and a slight influence of tidal regime (ebbing and rising tide), in spite of the supralittoral zonation of sandhoppers. In the laboratory they showed a well defined rhythmic behaviour as well as a bimodal rhythmicity, explained as a tidal one. These results are a new brick in the complex picture of orientation and rhythm studies on sandy beach invertebrates.  相似文献   

11.
Turbot (Psetta maxima Linnaeus) is a high value commercially exploited marine flatfish which occurs in European waters, from the Northeast Atlantic to the Arctic Circle, the Baltic and Mediterranean Sea. In Ireland, turbot are the most valuable commercial non-quota species. Very little is known about their population dynamics in the wild, in particular during the sandy beach nursery phase of the life history. In 2000, a survey was established to assess flatfish species on nursery grounds on the west coast of Ireland. Eleven sandy beaches were assessed for 0+ turbot by beach seining, over an eight year period (2000–2007) during the months of August and September. The objective of the study was to estimate juvenile turbot abundance and size structure to determine if any spatial and annual trends existed. Large scale variability in the recruitment of fish to nursery grounds may be indicative of fluctuations in the adult stock. Turbot were found to recruit to five beaches consistently over the eight year period. Temporal and spatial variability in the relative abundance and length of turbot was discerned, with no apparent overall trend. However, certain nursery grounds were shown in most of the years examined to support higher abundances of turbot in comparison to other areas over the eight year period. Turbot abundances on nursery grounds were significantly correlated with mean spring sea temperatures during the pelagic stage. The condition of turbot did not significantly differ on an annual or spatial scale. Mean densities of 0+ turbot along the Irish coast were found to be similar and at times higher than other areas in Europe, ranging from 0.1 (± 0.3) individuals 1000 m− 2 to 18.5 (± 6.9) individuals 1000 m− 2. Mean turbot total length on beaches ranged from 3.8 cm (± 0.6) to 6.6 cm (± 4.3). The observed spatial and temporal variability in abundance and length highlights the need for long-term studies when assessing juvenile flatfish populations. Results from the present study have provided much needed baseline data on wild juvenile turbot populations which is severely lacking for this species both on an Irish and on a European scale.  相似文献   

12.
Within the frame of different research projects, a large number of sites at the Belgian Continental Shelf (BCS) have been sampled for the macrobenthos between 1994 and 2000. These samples cover a diverse range of habitats: from the sandy beaches to the open sea, from the gullies between the sandbanks to the tops of the sandbanks, and from clay to coarse sandy sediments. To investigate the large-scale spatial distribution of the macrobenthos of the Belgian Continental Shelf, the data of all these research projects—728 samples—were combined and analysed. By means of several multivariate techniques, 10 sample groups with similar macrobenthic assemblage structure were distinguished. Each sample group is found in a particular physico-chemical environment and has a specific species composition. Four sample groups differ drastically, both in habitat and species composition, and are considered to represent four macrobenthic communities: (1) the muddy fine sand Abra albaMysella bidentata community is characterized by high densities and diversity; (2) the Nephtys cirrosa community occurs in well-sorted sandy sediments and is characterized by low densities and diversity; (3) very low densities and diversity typify the Ophelia limacinaGlycera lapidum community, which is found in coarse sandy sediments and (4) the Eurydice pulchraScolelepis squamata community is typical for the upper intertidal zone of sandy beaches. These macrobenthic communities are not isolated from each other, but are linked through six transitional species assemblages. The transition between the A. albaM. bidentata community and the N. cirrosa community is characterized by a reduction in the mud content and is dominated by Magelona johnstoni. The transition between the N. cirrosa and the O. limacinaG. lapidum community is distinctive by decreasing densities and coincides with a gradual transition between medium and coarse sandy sediments. From the N. cirrosa to the E. pulchraS. squamata community, transitional species assemblages related to the transition from the subtidal to the intertidal environment were found. Each community or transitional species assemblages was found over a specific range along the onshore–offshore gradient, four types can be discerned: (1) almost restricted to the near-shore area, but possible wider distribution; (2) distributed over the full onshore–offshore gradient; (3) restricted to the near-shore area and (4) restricted to the sandy beach environment. The diversity pattern on the BCS follows this division, with species rich and poor assemblages in the near-shore area to only species poor assemblages more offshore. The distribution and diversity patterns are linked to the habitat type, distinguished by median grain size and mud content.  相似文献   

13.
The effects of extreme atmospheric forcing on the export flux of particulate organic carbon (POC) in the warm oligotrophic nitrogen-limited northwest Pacific Ocean were examined in 2007 during the spring Asian dust storm period. Several strong northeast monsoon events (maximum sustained wind speeds approaching 16.7 m s? 1, and gusts up to 19.0 m s? 1) accompanied by dust storms occurred during a 1-month period. The cold stormy events decreased surface water temperature and induced strong wind-driven vertical mixing of the water column, resulting in nutrient entrainment into the mixed layer from subsurface waters. As a result, the export flux of POC ranged from 49 to 98 (average value = 71 ± 16) mg m? 2 day? 1, approximately 2–3 times greater than average values in other seasons. As dry and wet deposition of nitrogen attributable to Asian dust storm events does not account for the associated increases in POC stocks in this N-limited oligotrophic oceanic region, the enhancement of POC flux must have been caused by nutrient entrainment from subsurface waters because of the high winds accompanying the dust storm events.  相似文献   

14.
Estimation of erosion volumes for adequate dry beach buffer zones is commonly estimated on the basis of a single extreme event, such as the 1 in 100 year storm. However, the cumulative impact of several smaller, closely spaced storms can lead to equal, if not more, dry beach loss, but this is often not quantified. Here we use a calibrated model for dune erosion, XBeach, to hindcast the cumulative erosion impact of a series of historical storms that impacted the Gold Coast, Queensland region in 1967. Over a 6-month period, four named cyclones (Dinah, Barbara, Elaine, and Glenda) and three East Coast Lows caused a cumulative erosion volume greater than the predicted 1 in 100 year event. Results presented here show that XBeach was capable of reproducing the measured dry beach erosion volume to within 21% and shoreline retreat to within 10%. The storms were then run in 17 different sequences to determine if sequencing influenced final modeled erosion volumes. It is shown that storm sequencing did not significantly affect the total eroded volumes. However, individual storm volumes were influenced by the antecedent state of the beach (i.e. prior cumulative erosion). Power-law relationships between cumulative energy density (∑ E) and eroded volume (∆V) as well as cumulative wave power ((∑ P)) and eroded volume (∆V) both explained more than 94% of the modeled dry beach erosion for the 1967 storm sequences. When the relationship was compared with observed and modeled erosion volumes for similar beaches but different storm forcing, the inclusion of pre-storm beach swash slope (βswash) in the parameterization was found to increase the applicability of the power-law relationship over a broader range of conditions.  相似文献   

15.
Nowadays, beach nourishment is widely considered as a better alternative compared to the construction of hard structures to protect a sandy coast against detrimental erosive effects, both from an ecological and an engineering perspective. The rare studies conducted on the ecological impact of beach nourishment are short-term, post hoc monitoring investigations of the benthic macrofauna. Little is known of the biological processes during and after nourishment. To allow swift recolonization after nourishment, the characteristics of the nourished beach have to match the habitat demands of the benthic macrofauna. The sediment preference of the key intertidal species Scolelepis squamata, Eurydice pulchra, Bathyporeia pilosa and Bathyporeia sarsi, which dominate many West European sandy beaches, was investigated through laboratory experiments, both in single-species as well as combined-species treatments. While the former aimed at developing guidelines for impact mitigation of beach nourishment, the latter aimed at elucidating the role of biotic interactions in sediment preference. Results of the experiments indicated that B. pilosa and E. pulchra prefer the finest sediment, while B. sarsi had a broader preference and also occurred in medium-coarse sediments. However, the sediment preference of E. pulchra for fine sediments was not confirmed by other field and experimental studies. The polychaete S. squamata had the broadest preference and even showed a high occurrence in coarse sediments that are not naturally occurring on the sandy beaches where the animals were caught for this experiment. However, this polychaete is a cosmopolitan species, not only occurring on fine-grained beaches, but also on coarse-grained beaches worldwide. The preferences imply that beach nourishment with coarse sediment will have a major effect on B. pilosa while effects of coarse sediments on S. squamata will be minor. Finally, interspecific competition with the sympatrically occurring amphipod B. sarsi was found to change the sediment selection of the amphipod B. pilosa towards the coarser sediments where B. sarsi occurred in lower frequencies.  相似文献   

16.
We investigated genetic diversity and population genetic structure of two common benthic nematode species, Ptycholaimellus pandispiculatus and Terschellingia longicaudata, from sandy beaches in the area of Bandar Abbas (Iran), Persian Gulf. Based upon partial mitochondrial cytochrome oxidase c subunit 1 (COI) gene data, 17 and two haplotypes were found for P. pandispiculatus and Te. longicaudata, respectively. Analysis of molecular variance did not reveal a significant population genetic structure for either species. The absence of genetic structuring indicates substantial dispersal and gene flow in our study area. To assess the species structure of Te. longicaudata at a larger geographic scale, we compared 18S rDNA and COI sequences from Iran and the Scheldt Estuary in The Netherlands to ascertain whether they truly belong to the same species. Our data confirmed previous studies that Te. longicaudata likely constitutes a complex of multiple cryptic species, with one of these species having a (near) cosmopolitan distribution.  相似文献   

17.
The spatial and temporal patterns within the surf zone epibenthic assemblages were studied in a coastal fringe of Argentina to determine whether assemblage compositions, abundance, species richness and diversity vary spatially and temporarily. Sampling was conducted seasonally in two sandy beaches over 2 years with a benthic sledge used to collect the fauna in the upper centimeters of soft bottom sediments and the epifauna on the sediment surface. Physical variables were measured in the same coastal sites where biological sampling was conducted. A total of 58 morphospecies were collected. Peracarid crustaceans were the most abundant group. The mysid Pseudobranchiomysis arenae (new genus–new species) (29.73 ± 17.79 ind. per sample) and the isopod Leptoserolis bonaerensis (51.54 ± 22.35 ind. per sample) were the most abundant and common species and were present regularly throughout the sampling period. Differences in the surf zone community composition were found between the beaches; these differences could be related to variation in physical parameters such as sand grain size and wave climate, indicating the possible influence of the morphodynamic state of the beaches on the epibenthic assemblages. A seasonal abundance trend was detected, reflecting the changes in abundance of the two dominant species; the richness pattern was not easily detectable due to the sporadic appearance of non‐resident species in the surf zone, probably due to different causes, including dispersion by entry of water from surrounding areas, littoral currents and storms. The surf zone studied presents a complex and dynamic epibenthic community that appears to be influenced by the morphodynamic state of the beach and the dynamic of non‐resident species.  相似文献   

18.
Interest in Colombia’s offshore industry has increased over the past years. Therefore a detailed characterization of extreme wind and waves, in terms of return periods, numbers of events and its duration during the annual cycle, is needed. Two sets of high-resolution data are used in the statistical extreme value analysis (EVA). The significant wave height data (0.125°, 6 h) are from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis available for the past 35 years (1979–2014). Surface winds (0.25°, 6 h) from the Cross-Calibrated Multi-Platform Ocean Surface Wind Vector Analyses (CCMP) of NASA/GSFC/NOAA (NASA/Goddard Space Flight Center/National Oceanic and Atmospheric Administration) are available for the past 24 years (1987–2011). Three well-known methods are applied to the data: the Block Maxima (BM), the Peak-Over-Threshold (POT) and the Method of Independent Storm (MIS). Several probabilistic models (Gumbel, Generalized Extreme Value, Weibull and Pareto) are evaluated for the BM and different threshold values for the POT and MIS. The results show that waves can reach up to 3.8 m and winds can be as strong as 31 m/s when considering the 50–100-year return periods. However, the wave model could underestimate values by up to one meter; hence, there is a probability of higher values in the region. Seasonally, most extreme events occur during the dry season (December–March) and during the Mid-Summer-Drought (MDS) or Veranillo months (June–July). Local conditions, including the reinforcement of the Caribbean Low Level Jet (CLLJ) and the occurrence of cold atmospheric fronts, are important drivers of extreme metoceanic variability. The total number of extreme wind events varied spatially and temporally from 15 to 65 and the mean duration from 15 to 25 h. A total number of extreme wave events ranging from <10 to 80 were computed during the annual cycle in the areas of interest, with a mean duration of less than 40 h.  相似文献   

19.
Sandy beaches face increasing anthropogenic pressures, with vehicle traffic being ecologically highly harmful. Ghost crabs (Fam. Ocypodidae) are conspicuous on many beaches, and they have been used as a bio‐monitoring tool to measure the ecological responses to human disturbance. However, the mechanisms causing declines in crab numbers are unknown, yet conservation must target the actual impact mechanisms. Therefore, we quantified the magnitude and mechanisms of off‐road vehicle (ORV) impacts on ghost crabs, addressing three key questions: (i) Does abundance of ghost crabs respond to traffic intensity?; (ii) Can burrows protect crabs from vehicles? and (iii) Can mortalities caused by vehicles contribute to population declines? ORV‐impacts were measured on North Stradbroke Island (Australia) for Ocypode cordimanus and Ocypode ceratophthalma. Crab densities were significantly lower in areas subjected to heavy beach traffic, suggesting direct crushing by vehicles. Burrows only partially protect crabs against cars: all individuals buried shallow (5 cm) are killed by 10 vehicle passes. Mortality declines with depth of burrows, but remains considerable (10–30% killed) at 20 cm and only those crabs buried at least 30 cm are not killed by ORVs: these ‘deep‐living’ crabs represent about half of the population. After crabs emerge at dusk they are killed in large numbers on the beach surface. A single vehicle can crush up to 0.75% of the intertidal population. While conservation measures should primarily regulate night traffic, our results also emphasise that the fossorial life habits of sandy beach animals cannot off‐set the impacts caused by ORVs.  相似文献   

20.
To analyze the grain size and depositional environment of the foreshore sediments, a study was undertaken on wave refraction along the wide sandy beaches of central Tamil Nadu coast. The nearshore waves approach the coast at 45° during the northeast(NE) monsoon, at 135° during the southwest(SW) monsoon and at 90° during the non-monsoon or fair-weather period with a predominant wave period of 8 and 10 s. A computer based wave refraction pattern is constructed to evaluate the trajectories of shoreward propagating waves along the coast in different seasons. The convergent wave rays during NE monsoon, leads to high energy wave condition which conveys a continuous erosion at foreshore region while divergent and inept condition of rays during the SW and non-monsoon, leads to moderate and less energy waves that clearly demarcates the rebuilt beach sediments through littoral sediment transport. The role of wave refraction in foreshore deposits was understood by grain size and depositional environment analysis. The presence of fine grains with the mixed population, during the NE monsoon reveals that the high energy wave condition and sediments were derived from beach and river environment. Conversely, the presence of medium grains with uniform population, during SW and non-monsoon attested less turbulence and sediments were derived from prolong propagation of onshore-offshore wave process.These upshots are apparently correlated with the in situ beach condition. On the whole, from this study it is understood that beaches underwent erosion during the NE monsoon and restored its original condition during the SW and non-monsoon seasons that exposed the stability of the beach and nearshore condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号