首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The well‐preserved state and excellent exposure at the 39 Ma Haughton impact structure, 23 km in diameter, allows a clearer picture to be made of the nature and distribution of hydrothermal deposits within mid‐size complex impact craters. A moderate‐ to low‐temperature hydrothermal system was generated at Haughton by the interaction of groundwaters with the hot impact melt breccias that filled the interior of the crater. Four distinct settings and styles of hydrothermal mineralization are recognized at Haughton: a) vugs and veins within the impact melt breccias, with an increase in intensity of alteration towards the base; b) cementation of brecciated lithologies in the interior of the central uplift; c) intense veining around the heavily faulted and fractured outer margin of the central uplift; and d) hydrothermal pipe structures or gossans and mineralization along fault surfaces around the faulted crater rim. Each setting is associated with a different suite of hydrothermal minerals that were deposited at different stages in the development of the hydrothermal system. Minor, early quartz precipitation in the impact melt breccias was followed by the deposition of calcite and marcasite within cavities and fractures, plus minor celestite, barite, and fluorite. This occurred at temperatures of at least 200 °C and down to ?100–120 °C. Hydrothermal circulation through the faulted crater rim with the deposition of calcite, quartz, marcasite, and pyrite, occurred at similar temperatures. Quartz mineralization within breccias of the interior of the central uplift occurred in two distinct episodes (?250 down to ?90 °C, and <60 °C). With continued cooling (<90 °C), calcite and quartz were precipitated in vugs and veins within the impact melt breccias. Calcite veining around the outer margin of the central uplift occurred at temperatures of ?150 °C down to <60 °C. Mobilization of hydrocarbons from the country rocks occurred during formation of the higher temperature calcite veins (>80 °C). Appreciation of the structural features of impact craters has proven to be key to understanding the distribution of hydrothermal deposits at Haughton.  相似文献   

2.
Fluid inclusions studies in quartz and calcite in samples from the ICDP‐Chicxulub drill core Yaxcopoil‐1 (Yax‐1) have revealed compelling evidence for impact‐induced hydrothermal alteration. Fluid circulation through the melt breccia and the underlying sedimentary rocks was not homogeneous in time and space. The formation of euhedral quartz crystals in vugs hosted by Cretaceous limestones is related to the migration of hot (>200 °C), highly saline, metal‐rich, hydrocarbon‐bearing brines. Hydrocarbons present in some inclusions in quartz are assumed to derive from cracking of pre‐impact organic matter. The center of the crater is assumed to be the source of the hot quartz‐forming brines. Fluid inclusions in abundant newly‐formed calcite indicate lower cyrstallization temperatures (75–100 °C). Calcite crystallization is likely related to a later stage of hydrothermal alteration. Calcite precipitated from saline fluids, most probably from formation water. Carbon and oxygen isotope compositions and REE distributions in calcites and carbonate host rocks suggest that the calcite‐forming fluids have achieved close equilibrium conditions with the Cretaceous limestones. The precipitation of calcite may be related to the convection of local pore fluids, possibly triggered by impact‐induced conductive heating of the sediments.  相似文献   

3.
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite–marcasite‐bearing vug at the ~23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65–1.1 μm) and samples in the laboratory (0.4–2.5 μm), point spectroscopy (0.35–2.5 μm), major element chemistry, and X‐ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat‐lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite‐rich host rock formed gypsum‐bearing red coatings. These results have implications for understanding water–rock interactions and habitabilities at this site and on Mars.  相似文献   

4.
Abstract— The impact‐induced hydrothermal system in the well‐preserved, 4 km‐diameter Kärdla impact crater on Hiiumaa Island, western Estonia, was investigated by means of mineralogical, chemical, and stable C and O isotope studies. The mineralization paragenetic sequence, with gradually decreasing temperature, reveals at least three evolutionary stages in the development of the post‐impact hydrothermal system: 1) an early vapor‐dominated stage (>300 °C) with precipitation of submicroscopic adularia type K‐feldspar; 2) the main stage (300 to 150/100 °C) with the development of a two‐phase (vapor to liquid) zone leading to precipitation of chlorite/corrensite, (idiomorphic) euhedral K‐feldspar, and quartz; and 3) a late liquid‐dominated stage (<100 °C) with calcite I, dolomite, quartz, calcite II, chalcopyrite/pyrite, Fe‐oxyhydrate, and calcite III precipitation.  相似文献   

5.
Cover          下载免费PDF全文
View of impactites surrounding the Haughton River valley from atop an impact melt rock outcrop at the Haughton impact structure, Nunavut, Canada. The inset on the left is a calcite‐marcasite vug formed in the post‐impact hydrothermal system and later weathered at low temperatures. A Landsat context image in the lower left shows the location of the vug within the impact structure. For details, see the article by Rebecca Greenberger et al. on p. 2274.  相似文献   

6.
Abstract— The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post‐impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X‐ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact‐induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface. Furthermore, the Fe‐rich alteration minerals produced by post‐impact hydrothermal processes could contribute to the minor iron enrichment associated with the formation of the martian soil.  相似文献   

7.
Abstract— The well‐preserved Kärdla impact crater, on Hiiumaa Island, Estonia, is a 4 km diameter structure formed in a shallow Ordovician sea ?455 Ma ago into a target composed of thin (?150 m) unconsolidated sedimentary layer above a crystalline basement composed of migmatite granites, amphibolites and gneisses. The fractured and crushed amphibolites in the crater area are strongly altered and replaced with secondary chloritic minerals. The most intensive chloritization is found in permeable breccias and heavily shattered basement around and above the central uplift. Alteration is believed to have resulted from convective flow of hydrothermal fluids through the central areas of the crater. Chloritic mineral associations suggest formation temperatures of 100–300 °C, in agreement with the most frequent quartz fluid inclusion homogenization temperatures of 150–300 °C in allochthonous breccia. The rather low salinity of fluids in Kärdla crater (<13 wt% NaCleq) suggests that the hydrothermal system was recharged either by infiltration of meteoric waters from the crater rim walls raised above sea level after the impact, or by invasion of sea water through the disturbed sedimentary cover and fractured crystalline basement. The well‐developed hydrothermal system in Kärdla crater shows that the thermal history of the shock‐heated and uplifted rocks in the central crater area, rather than cooling of impact melt or suevite sheets, controlled the distribution and intensity of the impact‐induced hydrothermal processes.  相似文献   

8.
Haughton is a ~24 Myr old midsize (apparent diameter 23 km) complex impact structure located on Devon Island in Nunavut, Canada. The center of the structure shows a negative gravity anomaly of ?12 mGal coupled to a localized positive magnetic field anomaly of ~900 nT. A field expedition in 2013 led to the acquisition of new ground magnetic field mapping and electrical resistivity data sets, as well as the first subsurface drill cores down to 13 m depth at the top of the magnetic field anomaly. Petrography, rock magnetic, and petrophysical measurements were performed on the cores and revealed two different types of clast‐rich polymict impactites: (1) a white hydrothermally altered impact melt rock, not previously observed at Haughton, and (2) a gray impact melt rock with no macroscopic sign of alteration. In the altered core, gypsum is present in macroscopic veins and in the form of intergranular selenite associated with colored and zoned carbonate clasts. This altered core has a natural remanent magnetization (NRM) four to five times higher than materials from the other core but the same magnetic susceptibility. Their magnetization is still higher than the surrounding crater‐fill impact melt rocks. X‐ray fluorescence data indicate a similar proportion of iron‐rich phases in both cores and an enrichment in silicates within the altered core. In addition, alternating‐field demagnetization results show that one main process remagnetized the rocks. These results support the hypothesis that intense and possibly localized post‐impact hydrothermal alteration enhanced the magnetization of the clast‐rich impact melt rocks by crystallization of magnetite within the center of the Haughton impact structure. Subsequent erosion was followed by in situ concentration in the subsurface leading to large magnetic gradient on surface.  相似文献   

9.
Abstract— After the impact that formed Haughton crater, 22.4 ± 1.4 Ma ago (early Miocene), the cavity filled with water and began to accumulate lacustrine sediments. These preserve detailed evidence of pre-impact stratigraphy and post-impact morphology and development of the crater, as well as of the climatic and biotic regime in which it lay. In this report we formally designate these sediments as the Haughton Formation, of which only a 48 m thick remnant covering approximately 7 km2 still exists. Dolomite-rich, poorly-sorted silt, fine sand, and mud are the principal lithologies. The formation unconformably overlies a blanket of allochthonous impact breccia forming the floor of the original crater. Presence of a debris-flow deposit in the base of the sequence indicates that lacustine deposition began very shortly after crater formation. The Haughton Formation contains a moderately diverse and highly endemic vertebrate fauna as well as palynomorphs and plant macrofossils that indicate a cool-temperate climatic regime. A small percentage of reworked Late Cretaceous and early Tertiary palynomorphs point to the former existence of the Eureka Sound Formation in the drainage area of the crater. In addition, the distribution of the lake beds indicates the absence of an inner ring on the west side of the crater, and the 3° to 3.5° inward dip of Haughton strata implies that the central mass has subsided approximately 300 to 350 m since deposition began.  相似文献   

10.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

11.
Abstract The 65 Ma Chicxulub impact crater formed in the shallow coastal marine shelf of the Yucatán Platform in Mexico. Impacts into water‐rich environments provide heat and geological structures that generate and focus sub‐seafloor convective hydrothermal systems. Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled by the Chicxulub Scientific Drilling Project (CSDP), allowed testing for the presence of an impact‐induced hydrothermal system by: a) characterizing the secondary alteration of the 100 m‐thick impactite sequence; and b) testing for a chemical input into the lower Tertiary sediments that would reflect aquagene hydrothermal plume deposition. Interaction of the Yax‐1 impactites with seawater is evident through redeposition of the suevites (unit 1), secondary alteration mineral assemblages, and the subaqueous depositional environment for the lower Tertiary carbonates immediately overlying the impactites. The least‐altered silicate melt composition intersected in Yax‐1 is that of a calc‐alkaline basaltic andesite with 53.4–56 wt% SiO2(volatile‐free). The primary mineralogy consists of fine microlites of diopside, plagioclase (mainly Ab 47), ternary feldspar (Ab 37 to 77), and trace apatite, titanite, and zircon. The overprinting alteration mineral assemblage is characterized by Mg‐saponite, K‐montmorillonite, celadonite, K‐feldspar, albite, Fe‐oxides, and late Ca and Mg carbonates. Mg and K metasomatism resulted from seawater interaction with the suevitic rocks producing smectite‐K‐feldspar assemblages in the absence of any mixed layer clay minerals, illite, or chlorite. Rare pyrite, sphalerite, galena, and chalcopyrite occur near the base of the impactites. These secondary alteration minerals formed by low temperature (0–150°C) oxidation and fixation of alkalis due to the interaction of glass‐rich suevite with down‐welling seawater in the outer annular trough intersected at Yax‐1. The alteration represents a cold, Mg‐K‐rich seawater recharge zone, possibly recharging higher temperature hydrothermal activity proposed in the central impact basin. Hydrothermal metal input into the Tertiary ocean is shown by elevated Ni, Ag, Au, Bi, and Te concentrations in marcasite and Cd and Ga in sphalerite in the basal 25 m of the Tertiary carbonates in Yax‐1. The lower Tertiary trace element signature reflects hydrothermal metal remobilization from a mafic source rock and is indicative of hydrothermal venting of evolved seawater into the Tertiary ocean from an impact‐generated hydrothermal convective system.  相似文献   

12.
Abstract— The Haughton impact structure has been the focus of systematic, multi‐disciplinary field and laboratory research activities over the past several years. Regional geological mapping has refined the sedimentary target stratigraphy and constrained the thickness of the sedimentary sequence at the time of impact to ?1880 m. New 40Ar–39Ar dates place the impact event at ?39 Ma, in the late Eocene. Haughton has an apparent crater diameter of ?23 km, with an estimated rim (final crater) diameter of ?16 km. The structure lacks a central topographic peak or peak ring, which is unusual for craters of this size. Geological mapping and sampling reveals that a series of different impactites are present at Haughton. The volumetrically dominant crater‐fill impact melt breccias contain a calcite‐anhydrite‐silicate glass groundmass, all of which have been shown to represent impact‐generated melt phases. These impactites are, therefore, stratigraphically and genetically equivalent to coherent impact melt rocks present in craters developed in crystalline targets. The crater‐fill impactites provided a heat source that drove a post‐impact hydrothermal system. During this time, Haughton would have represented a transient, warm, wet microbial oasis. A subsequent episode of erosion, during which time substantial amounts of impactites were removed, was followed by the deposition of intra‐crater lacustrine sediments of the Haughton Formation during the Miocene. Present‐day intra‐crater lakes and ponds preserve a detailed paleoenvironmental record dating back to the last glaciation in the High Arctic. Modern modification of the landscape is dominated by seasonal regional glacial and niveal melting, and local periglacial processes. The impact processing of target materials improved the opportunities for colonization and has provided several present‐day habitats suitable for microbial life that otherwise do not exist in the surrounding terrain.  相似文献   

13.
Abstract— Contrary to the previous interpretation of a single allochthonous impactite lithology, combined field, optical, and analytical scanning electron microscopy (SEM) studies have revealed the presence of a series of impactites at the Haughton impact structure. In the crater interior, there is a consistent upward sequence from parautochthonous target rocks overlain by parautochthonous lithic (monomict) breccias, through allochthonous lithic (polymict) breccia, into pale grey allochthonous impact melt breccias. The groundmass of the pale grey impact melt breccias consists of microcrystalline calcite, silicate impact melt glass, and anhydrite. Analytical data and microtextures indicate that these phases represent a series of impact‐generated melts that were molten at the time of, and following, deposition. Impact melt glass clasts are present in approximately half of the samples studied. Consideration of the groundmass phases and impact glass clasts reveal that impactites of the crater interior contain shock‐melted sedimentary material from depths of >920 to <1880 m in the pre‐impact target sequence. Two principal impactites have been recognized in the near‐surface crater rim region of Haughton. Pale yellow‐brown allochthonous impact melt breccias and megablocks are overlain by pale grey allochthonous impact melt breccias. The former are derived from depths of >200 to <760 m and are interpreted as remnants of the continuous ejecta blanket. The pale grey impact melt breccias, although similar to the impact melt breccias of the crater interior, are more carbonate‐rich and do not appear to have incorporated clasts from the crystalline basement. Thus, the spatial distribution of the crater‐fill impactites at Haughton, the stratigraphic succession from target rocks to allochthonous impactites, the recognition of large volumes of impact melt breccias, and their probable original volume are all analogous to characteristics of coherent impact melt layers in comparatively sized structures formed in crystalline targets.  相似文献   

14.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

15.
Abstract— The rocks exposed in the rim of the 2.5‐km‐wide and 3.7‐Ma‐old Roter Kamm crater in southwest Namibia are cut by breccia veins that macroscopically resemble, and were originally described as, pseudotachylytes. The veins were later shown to be cataclasites with no evidence for melting. 40Ar/39Ar data for vein and host rock samples indicate a low‐grade metamorphic event at around 300 Ma, but provide no evidence for an impact age. The samples have suffered 5–7% Ar loss, which we associate with the impact event. All the samples record similar ranges of possible time‐temperature conditions and there are no resolvable differences between the results for the vein and the host rock samples, as would be expected if frictional heating played an important role in breccia formation. Modeling the 40Ar/39Ar data, assuming instantaneous impact heating followed by extended cooling, and coupling these results to published data on fluid inclusions, quartz precipitation, shock effects, and crater degradation, suggest that the veins reached maximum temperatures of 230–290 °C during impact and never approached melting temperatures of the precursor rocks.  相似文献   

16.
Abstract— The central allochthonous polymict breccia of the Haughton impact structure is up to about 90 m thick and as much as 7.3 km in radial extent. It has been analyzed with respect to modal composition, grain-size characteristics, and degree of shock metamorphism for the grain-size ranges 10–~ 50, 1–10, 0.03–1, and <0.03 mm. The mineralogy of the breccia matrix is dominated by dolomite and calcite, with minor amounts of quartz, other silicate minerals, and rare melt particles. The following lithic clasts have been identified in the 1–10 mm size fraction (averages of vol.% given in parentheses): dolomitic rocks (51), limestones (29), crystalline rocks (10), sandstones and siltstones (3.7), chert (0.7), melt particles (1.9). The mineral clasts (1–0.03 mm) comprise (with decreasing frequency) dolomite, quartz, calcite, feldspar, biotite, amphibole, garnet, opaques, rounded quartz derived from sandstones and accessory minerals. Lithic and mineral clasts display various degrees of shock. Fragments of crystalline rocks are shocked in the 0–60 GPa range; whole rock melts from the crystalline basement are lacking and unshocked rocks are very rare. In contrast, shock-melted sandstones, shales, and chert were found in most samples. Large clasts of these melt rocks are highly concentrated near the center of the crater. Otherwise, no distinct change of the modal composition with radial range has been observed except that the frequency of limestone clasts increases slightly with radial range. The breccia near the center is more fine-grained than that beyond about 1 km radius and the sorting parameter increases somewhat with radial range. Except for the high concentration of shock-melted sedimentary rocks and highly shocked crystalline rocks near the center of the crater, the distribution of shock stages within the lithic clast population is quite uniform throughout the breccia formation. We conclude that the breccia constituents are derived from the lower part of the target stratigraphy (deeper than about 800 m) and that the total depth of excavation at Haughton is in the order of 2000 m. The mixing of sedimentary rocks of the Eleanor River Formation, Lower Ordovician, and Cambrian (~850 m thickness) with crystalline basement rocks is quite thorough and homogeneous throughout the breccia lens, at least for the analyzed part. This may require an air-borne mode of emplacement for the upper section of the breccia in analogy to the fall-back suevite in the Ries crater. A calculation of the excavation (Z-model) and of the shock pressure attenuation based on reasonable estimates of the energy and crater geometry of the Haughton impact confirms the observed maximum depth of excavation of about 2 km. Shock-melted crystalline basement rocks, if present at all, must be confined to the very center of the structure below the excavation cavity.  相似文献   

17.
The ~5 km diameter Gow Lake impact structure formed in the Canadian Shield of northern Saskatchewan approximately 197 Myr ago. This structure has not been studied in detail since its discovery during a regional gravity survey in the early 1970s. We report here on field observations from a 2011 expedition that, when combined with subsequent laboratory studies, have revealed a wealth of new information about this poorly studied Canadian impact structure. Initially considered to be a prototypical central peak (i.e., a complex) impact structure, our observations demonstrate that Gow Lake is actually a transitional impact structure, making it one of only two identified on Earth. Despite its age, a well-preserved sequence of crater-fill impactites is preserved on Calder Island in the middle of Gow Lake. From the base upward, this stratigraphy is parautochthonous target rock, lithic impact breccia, clast-rich impact melt rock, red clast-poor impact melt rock, and green clast-poor impact melt rocks. Discontinuous lenses of impact melt-bearing breccia also occur near the top of the red impact melt rocks and in the uppermost green impact melt rocks. The vitric particles in these breccias display irregular and contorted outlines. This, together with their setting within crater-fill melt rocks, is indicative of an origin as flows within the transient cavity and not an airborne mode of origin. Following impact, a hydrothermal system was initiated, which resulted in alteration of the crater-fill impactites. Major alteration phases are nontronite clay, K-feldspar, and quartz.  相似文献   

18.
Field investigations in the eroded central uplift of the ≤30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone‐bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding ~8–10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. 40Ar/39Ar dating of dark and clast‐poor whole‐rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 ± 10 Ma [± 11 Ma] (2σ; MSWD = 0.11; = 0.98), considered here as the statistically most robust age for the rock. The new 40Ar/39Ar age is incompatible with ~1.88 Ga Svecofennian tectonism and magmatism in south‐central Finland and probably reflects the Keurusselkä impact, followed by impact‐induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic 40Ar/39Ar age of ~1150 Ma should be treated as a minimum age for the impact. The new 40Ar/39Ar results are consistent with paleomagnetic results that suggested a similar age for Keurusselkä, which is shown to be one of the oldest impact structures currently known in Europe and worldwide.  相似文献   

19.
Abstract Petrographical and chemical analysis of melt particles and alteration minerals of the about 100 m‐thick suevitic sequence at the Chicxulub Yax‐1 drill core was performed. The aim of this study is to determine the composition of the impact melt, the variation between different types of melt particles, and the effects of post‐impact hydrothermal alteration. We demonstrate that the compositional variation between melt particles of the suevitic rocks is the result of both incomplete homogenization of the target lithologies during impact and subsequent post‐impact hydrothermal alteration. Most melt particles are andesitic in composition. Clinopyroxene‐rich melt particles possess lower SiO2 and higher CaO contents. These are interpreted by mixing of melts from the silicate basement with overlying carbonate rocks. Multi‐stage post‐impact hydrothermal alteration involved significant mass transfer of most major elements and caused further compositional heterogeneity between melt particles. Following backwash of seawater into the crater, palagonitization of glassy melt particles likely caused depletion of SiO2, Al2O3, CaO, Na2O, and enrichment of K2O and FeOtot during an early alteration stage. Since glass is very susceptible to fluid‐rock interaction, the state of primary crystallization of the melt particles had a significant influence on the intensity of the post‐impact hydrothermal mass transfer and was more pronounced in glassy melt particles than in well‐crystallized particles. In contrast to other occurrences of Chicxulub impactites, the Yax‐1 suevitic rocks show strong potassium metasomatism with hydrothermal K‐feldspar formation and whole rock K20 enrichment, especially in the lower unit of the suevitic sequence. A late stage of hydrothermal alteration is characterized by precipitation of silica, analcime, and Na‐bearing Mg‐rich smectite, among other minerals. This indicates a general evolution from a silica‐undersaturated fluid at relatively high potassium activities at an early stage toward a silica‐oversaturated fluid at relatively high sodium activities at later stages in the course of fluid rock interaction.  相似文献   

20.
Drill core UNAM‐7, obtained 126 km from the center of the Chicxulub impact structure, outside the crater rim, contains a sequence of 126.2 m suevitic, silicate melt‐rich breccia on top of a silicate melt‐poor breccia with anhydrite megablocks. Total reflection X‐ray fluorescence analysis of altered silicate melt particles of the suevitic breccia shows high concentrations of Br, Sr, Cl, and Cu, which may indicate hydrothermal reaction with sea water. Scanning electron microscopy and energy‐dispersive spectrometry reveal recrystallization of silicate components during annealing by superheated impact melt. At anhydrite clasts, recrystallization is represented by a sequence of comparatively large columnar, euhedral to subhedral anhydrite grains and smaller, polygonal to interlobate grains that progressively annealed deformation features. The presence of voids in anhydrite grains indicates SOx gas release during anhydrite decomposition. The silicate melt‐poor breccia contains carbonate and sulfate particles cemented in a microcrystalline matrix. The matrix is dominated by anhydrite, dolomite, and calcite, with minor celestine and feldspars. Calcite‐dominated inclusions in silicate melt with flow textures between recrystallized anhydrite and silicate melt suggest a former liquid state of these components. Vesicular and spherulitic calcite particles may indicate quenching of carbonate melts in the atmosphere at high cooling rates, and partial decomposition during decompression at postshock conditions. Dolomite particles with a recrystallization sequence of interlobate, polygonal, subhedral to euhedral microstructures may have been formed at a low cooling rate. We conclude that UNAM‐7 provides evidence for solid‐state recrystallization or melting and dissociation of sulfates during the Chicxulub impact event. The lack of anhydrite in the K‐Pg ejecta deposits and rare presence of anhydrite in crater suevites may indicate that sulfates were completely dissociated at high temperature (T > 1465 °C)—whereas ejecta deposited near the outer crater rim experienced postshock conditions that were less effective at dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号