首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The laser 40Ar‐39Ar dating technique has been applied to the Dar al Gani (DaG) 262 lunar meteorite, a polymict highland regolith breccia, to determine the crystallisation age and timing of shock events experienced by this meteorite. Laser stepped‐heating analyses of three dominantly feldspathic fragments (DaG‐1, DaG‐2, and DaG‐3) revealed the presence of trapped Ar, mostly released at intermediate and high temperatures, with an 40Ar/36Ar value of ~2.8. Trapped Ar is most likely released from melt glass present as small veins within the fragments. The 40Ar‐39Ar ages determined for the three fragments are ~3.0 Ga for DaG‐1 and DaG‐2 and 2.0 Ga for DaG‐3 and probably relate to major impact events. Laser spot analyses were performed on a feldspathic clast, an impact crystalline melt basalt (ICMB), and the matrix in a polished section of DaG 262. The feldspathic and ICMB clasts have low contents of trapped Ar compared with that in the matrix. The feldspathic clast shows a wide range of ages from 3.0 to 1.7 Ga similar to those obtained by stepped heating. The younger age is interpreted as a minimum age for the last major event that assembled this meteorite. The ICMB shows two age clusters at 3.37 and 3.07 Ga, where the older age may be that of the impact event that formed the impact melt. Several cosmic‐ray exposure (CRE) ages were obtained as expected for a polymict regolith breccia. The CRE ages are 106 and 141 Ma for the feldspathic clast and the ICMB, respectively. One of the feldspathic fragments, DaG‐2, shows a range between 200–400 Ma. These CRE ages, which are similar to those determined for returned samples of the lunar regolith, indicate that the different components of DaG 262 experienced preexposure prior to assemblage of the meteorite.  相似文献   

2.
Abstract— We measured the noble gas isotopic abundances in lunar meteorite QUE 94269 and in bulk-, glass-, and crystal-phases of lunar meteorite QUE 94281. Our results confirm that QUE 94269 originated from the same meteorite fall as QUE 93069: both specimens yield the same signature of solar-particle irradiation and also the cosmogenic noble gases are in agreement within their uncertainities. Queen Alexandra Range 93069/94269 was exposed to cosmic rays in the lunar regolith for ~1000 Ma, and it trapped 3.5 × 10?4 cm3STP/g solar 36Ar, the other solar noble gases being present in proportions typical for the solar-particle irradiation. The bulk material of QUE 94281 contains about three times less cosmogenic and trapped noble gases than QUE 93069/94269 and the lunar regolith residence time corresponds to 400 ± 60 Ma. We show that in lunar meteorites the trapped solar 20Ne/22Ne ratio is correlated with the trapped ratio 40Ar/36Ar, that is, trapped 20Ne/22Ne may also serve as an antiquity indicator. The upper limits of the breccia compaction ages, as derived from the trapped ratio 40Ar/36Ar for QUE 93069/94269 and QUE 94281 are ~400 Ma and 800 Ma, respectively. We found very different regolith histories for the glass phase and the crystals separated from QUE 94281. The glass phase contains much less cosmogenic and solar noble gases than the crystals, in contrast to the glasses of lunar meteorite EET 87521, that were enriched in noble gases relative to the crystalline material. The QUE 94281 phases yield a 40K-40Ar gas retention age of 3770 Ma, which is in the range of that for lunar mare rocks.  相似文献   

3.
Abstract— The Monahans H‐chondrite is a regolith breccia containing light and dark phases and the first reported presence of small grains of halite. We made detailed noble gas analyses of each of these phases. The 39Ar‐40Ar age of Monahans light is 4.533 ± 0.006 Ma. Monahans dark and halite samples show greater amounts of diffusive loss of 40Ar and the maximum ages are 4.50 and 4.33 Ga, respectively. Monahans dark phase contains significant concentrations of He, Ne and Ar implanted by the solar wind when this material was extant in a parent body regolith. Monahans light contains no solar gases. From the cosmogenic 3He, 21Ne, and 38Ar in Monahans light we calculate a probable cosmic‐ray, space exposure age of 6.0 ± 0.5 Ma. Monahans dark contains twice as much cosmogenic 21Ne and 38Ar as does the light and indicates early near‐surface exposure of 13–18 Ma in a H‐chondrite regolith. The existence of fragile halite grains in H‐chondrites suggests that this regolith irradiation occurred very early. Large concentrations of 36Ar in the halite were produced during regolith exposure by neutron capture on 35Cl, followed by decay to 36Ar. The thermal neutron fluence seen by the halite was (2–4) × 1014 n/cm2. The thermal neutron flux during regolith exposure was ~0.4‐0.7 n/cm2/s. The Monahans neutron fluence is more than an order of magnitude less than that acquired during space exposure of several large meteorites and of lunar soils, but the neutron flux is lower by a factor of ≤5. Comparison of the 36Arn/21Necos ratio in Monahans halite and silicate with the theoretically calculated ratio as a function of shielding depth in an H‐chondrite regolith suggests that irradiation of Monahans dark occurred under low shielding in a regolith that may have been relatively shallow. Late addition of halite to the regolith can be ruled out. However, irradiation of halite and silicate for different times at different depths in an extensive regolith cannot be excluded.  相似文献   

4.
Abstract— The noble gases He, Ne, Ar, Kr, and Xe were measured in 27 individual Antarctic micrometeorites (AMMs) in the size range 60 to 250 μm that were collected at the Dome Fuji Station. Eleven of the AMMs were collected in 1996 (F96 series) and 16 were collected in 1997 (F97 series). One of the F97 AMMs is a totally melted spherule, whereas all other particles are irregular in shape. Noble gases were extracted using a Nd‐YAG continuous wave laser with an output power of 2.5‐3.5 W for ?5 min. Most particles released measurable amounts of noble gases. 3He/4He ratios are determined for 26 AMMs ((0.85‐9.65) × 10?4). Solar energetic particles (SEP) are the dominant source of helium in most AMMs rather than solar wind (SW) and cosmogenic He. Three samples had higher 3He/4He ratios compared to that of SW, showing the presence of spallogenic 3He. The Ne isotopic composition of most AMMs resembled that of SEP as in the case of helium. Spallogenic 21Ne was detected in three samples, two of which had extremely long cosmic‐ray exposure ages (> 100 Ma), calculated by assuming solar cosmic‐ray (SCR) + galactic cosmic‐ray (GCR) production. These two particles may have come to Earth directly from the Kuiper Belt. Most AMMs had negligible amounts of cosmogenic 21 Ne and exposure ages of <1 Ma. 40Ar/36Ar ratios for all particles (3.9–289) were lower than that of the terrestrial atmosphere (296), indicating an extraterrestrial origin of part of the Ar with a very low 40Ar/36Ar ratio plus some atmospheric contamination. Indeed, 40Ar/36Ar ratios for the AMMs are higher than SW, SEP, and Q‐Ar values, which is explained by the presence of atmospheric 40Ar. The average 38Ar/36Ar ratio of 24 AMMs (0.194) is slightly higher than the value of atmospheric or Q‐Ar, suggesting the presence of SEP‐Ar which has a relatively high 38Ar/36Ar ratio. According to the elemental compositions of the heavy noble gases, Dome Fuji AMMs can be classified into three groups: chondritic (eight particles), air‐affected (nine particles), and solar‐affected (eight particles). The eight AMMs classified as chondritic preserve the heavy noble gas composition of primordial trapped component due to lack of atmospheric adsorption and solar implantation. The average of 129Xe/132Xe ratio for the 16 AMMs not affected by atmospheric contamination (1.05) corresponds to the values in matrices of carbonaceous chondrites (?1.04). One AMM, F96DK038, has high 129Xe/132Xe in excess of this ratio. Our results imply that most Dome Fuji AMMs originally had chondritic heavy noble gas compositions, and carbonaceous chondrite‐like objects are appropriate candidate sources for most AMMs.  相似文献   

5.
We measured the concentrations and isotopic compositions of the stable isotopes of He, Ne, Ar, Kr, and Xe in the two lunar impact‐melt breccias Abar al’ Uj (AaU) 012 and Shi?r 166 to obtain information on their cosmic‐ray exposure histories and possible launch pairing; the latter was suggested because of their similar chemical composition. AaU 012 has higher gas concentrations than Shi?r 166 and clearly contains implanted solar wind gases, indicating a shallow to moderate shielding for this meteorite in the lunar regolith. The maximum shielding depth of AaU 012 was most likely ≤310 g cm?2 and its lunar regolith residence time was ≥420 ± 70 Ma. Our results indicate that in Shi?r 166 the trapped component is a mixture of air and solar wind. The low concentration of cosmogenic and solar wind gases indicate substantial diffusive gas loss and a shielding depth of <700 g cm?2 on the Moon for Shi?r 166. All differences seen in the concentrations and isotopic compositions of the noble gases suggest that AaU 012 and Shi?r 166 are most likely not launch pairs, although a different exposure history on the Moon does not exclude the possibility that the two meteorites were ejected by a single, large impact event.  相似文献   

6.
Abstract— Calcium‐aluminum‐rich inclusions (CAIs) were among the first solids in the solar system and were, similar to chondrules, created at very high temperatures. While in chondrules, trapped noble gases have recently been detected, the presence of trapped gases in CAIs is unclear but could have important implications for CAI formation and for early solar system evolution in general. To reassess this question, He, Ne, and Ar isotopes were measured in small, carefully separated and, thus, uncontaminated samples of CAIs from the CV3 chondrites Allende, Axtell, and Efremovka. The 20Ne/22Ne ratios of all CAIs studied here are <0.9, indicating the absence of trapped Ne as, e.g., Ne‐HL, Ne‐Q, or solar wind Ne. The 21Ne/22Ne ratios range from 0.86 to 0.72, with fine‐grained, more altered CAIs usually showing lower values than coarse‐grained, less altered CAIs. This is attributed to variable amounts of cosmogenic Ne produced from Na‐rich alteration phases rather than to the presence of Ne‐G or Ne‐R (essentially pure 22Ne) in the samples. Our interpretation is supported by model calculations of the isotopic composition of cosmogenic Ne in minerals common in CAIs. The 36Ar/38Ar ratios are between 0.7 and 4.8, with fine‐grained CAIs within one meteorite showing higher ratios than the coarse‐grained ones. This agrees with higher concentrations of cosmogenic 36Ar produced by neutron capture on 35Cl with subsequent β?‐decay in finer‐grained, more altered, and thus, more Cl‐rich CAIs than in coarser‐grained, less altered ones. Although our data do not strictly contradict the presence of small amounts of Ne‐G, Ne‐R, or trapped Ar in the CAIs, our noble gas signatures are most simply explained by cosmogenic production, mainly from Na‐, Ca‐, and Cl‐rich minerals.  相似文献   

7.
Abstract– We measured cosmogenic radionuclides and noble gases in the L3–6 chondrite breccia Northwest Africa (NWA) 869, one of the largest meteorite finds from the Sahara. Concentrations of 10Be, 26Al, and 36Cl in stone and metal fractions of six fragments of NWA 869 indicate a preatmospheric radius of 2.0–2.5 m. The 14C and 10Be concentrations in three fragments yield a terrestrial age of 4.4 ± 0.7 kyr, whereas two fragments show evidence for a recent change in shielding, most likely due to a recent impact on the NWA meteoroid, approximately 105 yr ago, that excavated material up to approximately 80 cm deep and exposed previously shielded material to higher cosmic‐ray fluxes. This scenario is supported by the low cosmogenic 3He/21Ne ratios in these two samples, indicating recent loss of cosmogenic 3He. Most NWA samples, except for clasts of petrologic type 4–6, contain significant amounts of solar Ne and Ar, but are virtually free of solar helium, judging from the trapped 4He/20Ne ratio of approximately 7. Trapped planetary‐type Kr and Xe are most clearly present in the bulk and matrix samples, where abundances of 129Xe from decay of now extinct 129I are highest. Cosmogenic 21Ne varies between 0.55 and 1.92 × 10?8 cm3 STP g?1, with no apparent relationship between cosmogenic and solar Ne contents. Low cosmogenic (22Ne/21Ne)c ratios in solar gas free specimens are consistent with irradiation in a large body. Combined 10Be and 21Ne concentrations indicate that NWA 869 had a 4π cosmic‐ray exposure (CRE) age of 5 ± 1 Myr, whereas elevated 21Ne concentrations in several clasts and bulk samples indicate a previous CRE of 10–30 Myr on the parent body, most probably as individual components in a regolith. Unlike many other large chondrites, NWA 869 does not show clear evidence of CRE as a large boulder near the surface of its parent body. Radiogenic 4He concentrations in most NWA 869 samples indicate a major outgassing event approximately 2.8 Gyr ago that may have also resulted in loss of solar helium.  相似文献   

8.
Abstract— Glass-rich separates were prepared from a sample of the basaltic lunar meteorite EET87521 rich in dark glass. Noble gas isotopic abundances and 26Al and 10Be activities were measured to find out whether shock effects associated with lunar launch helped to assemble these phases. Similar 10Be and 26Al activities indicate that all materials in EET87521 had a common exposure history in the last few million years before launch. However, the glass contains much higher concentrations of trapped gases and records a much longer cosmic-ray exposure, 100 Ma–150 Ma, in the lunar regolith than does the bulk sample. The different histories show that the glass existed long before the ejection of EET87521. The trapped 40Ar/36Ar ratio of 1.6 ± 0.1 implies that the lunar exposure that produced most of the stable cosmogenic noble gases began 500 Ma ago. Cosmogenic and trapped noble gas components correlate strongly in various temperature-release fractions and phases of EET87521, which is probably because the glass contains most of the gas. The trapped solar ratios, 20Ne/22Ne = 12.68 ± 0.20 and 36Ar/38Ar = 5.24 ± 0.05 can be understood as resulting from a mixture consisting of ~60% solar wind and 40% solar energetic particles (SEP). All EET87521 phases show a 40K-40Ar gas retention age of ~3300 Ma, which is in the range of typical lunar mare basalts.  相似文献   

9.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   

10.
The Mifflin meteorite fell on the night of April 14, 2010, in southwestern Wisconsin. A bright fireball was observed throughout a wide area of the midwestern United States. The petrography, mineral compositions, and oxygen isotope ratios indicate that the meteorite is a L5 chondrite fragmental breccia with light/dark structure. The meteorite shows a low shock stage of S2, although some shock‐melted veins are present. The U,Th‐He age is 0.7 Ga, and the K‐Ar age is 1.8 Ga, indicating that Mifflin might have been heated at the time of the 470 Ma L‐chondrite parent body breakup and that U, Th‐He, and K‐Ar ages were partially reset. The cosmogenic radionuclide data indicate that Mifflin was exposed to cosmic rays while its radius was 30–65 cm. Assuming this exposure geometry, a cosmic‐ray exposure age of 25 ± 3 Ma is calculated from cosmogenic noble gas concentrations. The low 22Ne/21Ne ratio may, however, indicate a two‐stage exposure with a longer first‐stage exposure at high shielding. Mifflin is unusual in having a low radiogenic gas content combined with a low shock stage and no evidence of late stage annealing; this inconsistency remains unexplained.  相似文献   

11.
Lunar basalt 15016 (~3.3 Ga) is among the most vesicular (50% by volume) basalts recovered by the Apollo missions. We investigated the possible occurrence of indigenous lunar nitrogen and noble gases trapped in vesicles within basalt 15016, by crushing several cm-sized chips. Matrix/mineral gases were also extracted from crush residues by fusion with a CO2 laser. No magmatic/primordial component could be identified; all isotope compositions, including those of vesicles, pointed to a cosmogenic origin. We found that vesicles contained ~0.2%, ~0.02%, ~0.002%, and ~0.02% of the total amount of cosmogenic 21Ne, 38Ar, 83Kr, and 126Xe, respectively, produced over the basalt's 300 Myr of exposure. Diffusion/recoil of cosmogenic isotopes from the basaltic matrix/minerals to intergrain joints and vesicles is discussed. The enhanced proportion of cosmogenic Xe isotopes relative to Kr detected in vesicles could be the result of kinetic fractionation, through which preferential retention of Xe isotopes over Kr within vesicles might have occurred during diffusion from the vesicle volume to the outer space through microleaks. This study suggests that cosmogenic loss, known to be significant for 3He and 21Ne, and to a lesser extent for 36Ar (Signer et al. 1977 ), also occurs to a negligible extent for the heaviest noble gases Kr and Xe.  相似文献   

12.
Abstract— We investigated the characteristics and history of lunar meteorites Queen Alexandra Range 93069, Yamato 793169 and Asuka 881757 based on the abundances of all stable noble gas isotopes, the concentrations of the radionuclides 10Be, 26Al, 36Cl, and 81Kr, and the abundances of Mg, Al, K, Ca, Fe, Cl, Sr, Y, Zr, Ba, and La. Based on the solar wind and cosmic-ray irradiations, QUE 93069 is the most mature lunar meteorite studied up to now. The 40Ar/36Ar ratio of the trapped component is 1.87 ± 0.16. This ratio corresponds to a time when the material was exposed to solar and lunar atmospheric volatiles ~400 Ma ago. On the other hand, Yamato 793169 and Asuka 881757 contain very little or no solar noble gases, which indicates that these materials resided in the top layer of the lunar regolith only briefly or not at all. For all lunar meteorites, we observe a positive correlation of the concentrations of cosmic-ray produced with trapped solar noble gases. The duration of lunar regolith residence for the lunar meteorites was calculated based on cosmic-ray produced 21Ne, 38Ar, 78Kr, 83Kr, and 126Xe and appropriate production rates that were derived based on the target element abundances and the shielding indicator 131Xe/126Xe. For QUE 93069, Yamato 793169, and Asuka 881757, we obtained 1000 ± 400 Ma, 50 ± 10 Ma, and <1 Ma, respectively. Both Asuka 881757 and Yamato 793169 show losses of radiogenic 4He from U and Th decay and Yamato 793169 also 40Ar loss from K-decay. For Asuka 881757, we calculate a K-Ar gas retention age of 3100 ± 600 Ma and a 244Pu-136Xe fission age of 4240 ± 170 Ma. This age is one of the oldest formation ages ever observed for a lunar basalt. The exposure history of QUE 93069 after ejection from the Moon was derived from the radionuclide concentrations: ejection 0.16 ± 0.03 Ma ago, duration of Moon-Earth transit 0.15 ± 0.02 Ma and fall on Earth <0.015 Ma ago. This ejection event is distinguished temporally from those which produced the other lunar meteorites. We conclude that six to eight events are necessary to eject all the known lunar meteorites.  相似文献   

13.
Abstract— Chemical and mineral analysis of the Bhawad chondrite, which fell in Rajasthan in 2002, suggest that this stone belongs to LL6 group of chondrites. Based on helium, neon, and argon isotopes, it has a cosmic ray exposure age of 16.3 Ma. The track density in the olivines shows a narrow range of 1.7–6.8 times 106/cm2. The 22Na/26Al ratio of 1.13 is about 25% lower than the solar cycle average value of about 1.5, but is consistent with irradiation of the meteoroid to modulated galactic cosmic ray fluxes as expected for a fall around the solar maximum. The cosmogenic records indicate a pre‐atmospheric radius of about 7.5 cm. Based on U/Th‐4He and K‐40Ar, the gas retention ages are low (about 1.1 Ga), indicating a major thermal event or shock event that lead to the complete loss of radiogenic 4He and 40Ar and the partial loss of radiogenic 129Xe and fission Xe from 244Pu.  相似文献   

14.
Abstract— We present concentration and isotopic composition of He, Ne, and Ar in ten chondrites from the Nullarbor region in Western Australia as well as the concentrations of 84Ke, 129Xe, and 132Xe. From the measured cosmogenic 14C concentrations (Jull et al. 1995), shielding‐corrected production rates of 14C are deduced using cosmogenic 22Ne/21Ne ratios. For shielding conditions characterized by 22Ne/21Ne >1.10, this correction becomes significant and results in shorter terrestrial ages. The exposure ages of the ten Nullarbor chondrites are in the range of values usually observed in ordinary chondrites. Some of the meteorites have lost radiogenic gases as well as cosmogenic 3He. Most of the analyzed specimens show additional trapped Ar, Kr, and Xe of terrestrial origin. The incorporation of these gases into weathering products is common in chondrites from hot deserts.  相似文献   

15.
Abstract— We measured the concentrations and isotopic compositions of He, Ne, and Ar in 29 bulk samples from 11 different strewn field fragments of the large Jiddat al Harasis (JaH) 073 L6 chondrite shower, including 7 samples from known locations within the main mass. In addition, we measured the concentrations of cosmogenic 10Be, 26Al, 36Cl, and 41Ca in 10 samples. All fragments of this shower are characterized by low 10Be concentrations (7.6–12.8 dpm/kg), high 26Al/10Be ratios (3.5‐5), large contributions of neutron capture 41Ca (200–1800 dpm/kgCa), low 3He/21Ne ratios (1.5‐3.0), large variations in cosmogenic 21Ne (1.2–12) × 10?8cm3STP/g, and significant contributions of neutron‐capture 36Ar. Stepwise heating experiments show that neutron‐capture produced 36Ar is predominantly released between 1000–1200 °C. All these results are consistent with a first‐stage exposure of ?65 Ma within ?20 cm of the surface of the L‐chondrite parent body, followed by ejection of a 1.5‐2 m large object, which was then delivered to Earth within about 0.5 and 0.7 Ma. The cosmogenic nuclide data in JaH 073 thus corroborate the trend that many of the large chondrites studied so far experienced a complex exposure history. The observed 3He/21Ne ratios of 2.5‐3.0 in the most shielded samples (including those of the main mass) are lower than predicted by model calculations, but similar to the lowest values found in the large Gold Basin L‐chondrite shower. The Bern plot, which gives a linear correlation for 3He/21Ne versus 22Ne/21Ne, is evidently not valid for very high shielding. Some of our measured 22Ne/21Ne ratios in JaH 073 are lower than 1.06, which is not well understood, but might be explained by loss of cosmogenic neon from shocked sodium‐rich plagioclase during terrestrial weathering. The amount of trapped atmospheric argon in the JaH 073 fragments varies by almost two orders of magnitude and shows only a weak correlation with the size of the fragments, which range from <100 g to >50 kg. Finally, low concentrations of radiogenic 4He and 40Ar indicate incomplete degassing < 1 Ga ago, probably at the main collision event on the L‐chondrite parent body ?480 Ma ago.  相似文献   

16.
Abstract— From November 1998 to January 1999, the 39th Japanese Antarctic Research Expedition (JARE) conducted a large‐scale micrometeorite collection at 3 areas in the meteorite ice field around the Yamato Mountains, Antarctica. The Antarctic micrometeorites (AMMs) collected were ancient cosmic dust particles. This is in contrast with the Dome Fuji AMMs, which were collected previously from fresh snows in 1996 and 1997 and which represent modern micrometeorites. To determine the noble gas concentrations and isotopic compositions of individual AMMs, noble gas analyses were carried out using laser‐gas extraction for 35 unmelted Yamato Mountains AMMs and 3 cosmic spherules. X‐ray diffraction analyses were performed on 13 AMMs before the noble gas measurement and mineral compositions were determined. AMMs are classified into 4 main mineralogical groups, defined from the heating they suffered during atmospheric entry. Heating temperatures of AMMs, inferred from their mineral compositions, are correlated with 4He concentrations and reflect the effect of degassing during atmospheric entry. Jarosite, an aqueous alteration product, is detected for 4 AMMs, indicating the aqueous alteration during long‐time storage in Antarctic ice. Jarosite‐bearing AMMs have relatively low concentrations of 4He, which is suggestive of loss during the alteration. High 3He/4He ratios are detected for AMMs with high 20Ne/4He ratios, showing both cosmogenic 3He and preferential He loss. SEP (solar energetic particles)‐He and Ne, rather than the solar wind (SW), were dominant in AMMs, presumably showing a preferential removal of the more shallowly implanted SW by atmospheric entry heating. The mean 20Ne/22Ne ratio is 11.27 ± 0.35, which is close to the SEP value of 11.2. Cosmogenic 21Ne is not detected in any of the particles, which is probably due to the short cosmic ray exposure ages. Ar isotopic compositions are explained by 3‐component mixing of air, Q, and SEP‐Ar. Ar isotopic compositions can not be explained without significant contributions of Q‐Ar. SEP‐Ne contributed more than 99% of the total Ne. As for 36Ar and 38Ar, the abundance of the Q component is comparable to that of the SEP component. 84Kr and 132Xe are dominated by the primordial component, and solar‐derived Xe is almost negligible.  相似文献   

17.
Abstract– Noble gas isotopic compositions were measured for a eucritic pebble and bulk material of a silicate–metal mixture from the Vaca Muerta mesosiderite as well as pyroxene and plagioclase separated from the eucritic pebble by total melting and stepwise heating methods. Trapped noble gases were degassed completely by a high‐temperature thermal event, probably at the formation of the Vaca Muerta parent body (VMPB). The presence of fissiogenic Xe isotopes from extinct 244Pu in the bulk samples might be a result of rapid cooling from an early high‐temperature metamorphism. High concentrations of cosmogenic noble gases enabled us to determine precise isotopic ratios of cosmogenic Kr and Xe. Spallogenic Ne from Na and unique Ar isotopic compositions were observed. The 81Kr‐Kr exposure age of 168 ± 8 Myr for the silicate pebble is distinctly longer than the age of 139 ± 8 Myr for the bulk samples. The precursor of the pebble had been irradiated on the surface of the VMPB for more than 60 Myr (first stage irradiation), with subsequent incorporation into bulk materials approximately 4 Gyr ago. The Vaca Muerta meteorite was excavated from the VMPB 140 Myr ago (second stage irradiation). Relative diffusion rates among the cosmogenic Ar, Kr, and Xe based on data obtained by stepwise heating indicate that Kr and Xe can be partially retained in pyroxene and plagioclase under the condition that resets the K‐Ar system. This result supports the presence of fission Xe and of excess concentration of cosmogenic Kr, which could have survived the thermal event approximately 3.8 Gyr ago.  相似文献   

18.
Abstract— The regolith evolution of the lunar meteorites Dhofar (Dho) 081, Northwest Africa (NWA) 032, NWA 482, NWA 773, Sayh al Uhaymir (SaU) 169, and Yamato (Y‐) 981031 was investigated by measuring the light noble gases He, Ne, and Ar. The presence of trapped solar neon in Dho 081, NWA 773, and Y‐981031 indicates an exposure at the lunar surface. A neon three‐isotope diagram for lunar meteorites yields an average solar 20Ne/22Ne ratio of 12.48 ± 0.07 representing a mixture of solar energetic particles neon at a ratio of 11.2 and solar wind neon at a ratio of 13.8. Based on the production rate ratio of 21Ne and 38Ar, the shielding depth in the lunar regolith of NWA 032, NWA 482, SaU 169, and Y‐981031 was obtained. The shielding depth of these samples was between 10.5 g/cm2 and >500 g/cm2. Based on spallogenic Kr and Xe, the shielding depth of Dho 081 was estimated to be most likely between 120 and 180 g/cm2. Assuming a mean density of the lunar regolith of 1.8 g/cm3, 10.5 g/cm2 corresponds to a depth of 5.8 cm and 500 g/cm2 to 280 cm below the lunar surface. The range of regolith residence time observed in this study is 100 Ma up to 2070 Ma.  相似文献   

19.
Abstract– We present the results of a noble gas (He, Ne, Ar) and cosmogenic radionuclide (10Be, 26Al, 36Cl) analysis of two chondritic fragments (#A100, L4 and #25, H5) found in the Almahata Sitta strewn field in Sudan. We confirm their earlier attribution to the same fall as the ureilites dominating the strewn field, based on the following findings: (1) both chondrite samples indicate a preatmospheric radius of approximately 300 g cm?2, consistent with the preatmospheric size of asteroid 2008 TC3 that produced the Almahata Sitta strewn field; (2) both have, within error, a 21Ne/26Al‐based cosmic ray exposure age of approximately 20 Ma, identical to the reported ages of Almahata Sitta ureilites; (3) both exhibit hints of ureilitic Ar in the trapped component. We discuss a possible earlier irradiation phase for the two fragments of approximately 10–20 Ma, visible only in cosmogenic 38Ar. We also discuss the approximately 3.8 Ga (4He) and approximately 4.6 Ga (40Ar) gas retention ages, measured in both chondritic fragments. These imply that the two chondrite fragments were incorporated into the ureilite host early in solar system evolution, and that the parent asteroid from which 2008 TC3 is derived has not experienced a large break‐up event in the last 3.8 Ga.  相似文献   

20.
Abstract— Isotopic abundances of the noble gases were measured in the following Martian meteorites: two shock glass inclusions from Elephant Moraine (EET) 79001, shock vein glass from Shergotty and Yamato (Y) 793605, and whole-rock samples of Allan Hills (ALH) 84001 and Queen Alexandra Range (QUE) 94201. These glass samples, when combined with literature data on a separate single glass inclusion from EET 79001 and a glass vein from Zagami, permit examination in greater detail of the isotopic composition of Ne, Ar, Kr, and Xe trapped from the Martian atmosphere. The isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The 40Ar/36Ar ratio of trapped Martian atmospheric Ar is probably considerably lower than the nominal ratio of 3000 measured by Viking, and data on impact glasses suggest a value of ~1900. The atmospheric 36Ar/38Ar ratio is ≤4.0. Martian atmospheric Kr may be enriched in lighter isotopes by ~0.5%/amu compared to both solar-wind Kr and to the Martian composition previously reported. The isotopic composition of Xe in these glasses agrees with that previously reported in the literature. The Martian atmospheric 36Ar/132Xe and 84Kr/132Xe elemental ratios are higher than those reported by Viking by factors of ~2.5–1.6 (depending on the 40Ar/36Ar ratio adopted) and ~1.8, respectively, and are discussed in a separate paper. Cosmogenic gases indicate space exposure ages of 2.7 ± 0.6 Ma for QUE 94201 and Shergotty and 14 ± 1 Ma for ALH 84001. Small amounts of 21Ne produced by energetic solar protons may be present in QUE 94201 but are not present in ALH 84001 or Y-793605. The space exposure age for Y-793605 is 4.9 ± 0.6 Ma and appears to be distinctly older than the ages for basaltic shergottites. However, uncertainties in cosmogenic production rates still makes somewhat uncertain the number of Martian impact events required to produce the exposure ages of Martian meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号