首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The North Qilian Orogenic Belt (NQOB), which consists of ophiolitic mélange and island-arc assemblages containing many granites, blueschists, and eclogites, lies between the Alax and Qilian terranes in northwestern China. The Minleyaogou and Niuxinshan granitoids occur at the northern and southern margins, respectively, in the middle segment of the NQOB. The Minleyaogou pluton is granodiorite in composition, whereas the Niuxinshan pluton consists mainly of red granite with minor grey quartz diorite. Geochemically, the Minleyaogou granite differs from the Niuxinshan granite in that it contains a smaller range in SiO2, has lower total alkalis, and is more peraluminous. Both granitoids are magnesian but the Niuxinshan granite is alkali-calcic, whereas the Minleyaogou granodiorite is calcic. Both granitoids have similar chondrite-normalized rare earth element patterns with light rare earth element enrichment and negative Eu anomalies. They have pronounced negative Ba, Nb, Sr, P, and Ti anomalies indicating that they have an affinity to island-arc or active continental margin magmatism. SHRIMP U–Pb dating of zircons from the granitoids yields a formation age of 477 Ma for the Niuxinshan granite and 463 Ma for the Minleyaogou granodiorite. These ages, combined with the geochemistry and locations of the plutons, suggest that they formed by the double subduction of the North Qilian oceanic plate during early Palaeozoic time. Formation of the Niuxinshan granite may be related to southward subduction under the Qilian terrane at 477 Ma, whereas the Minleyaogou granodiorite was formed by northward subduction at 463 Ma under the Alax terrane.  相似文献   

2.
《International Geology Review》2012,54(17):2083-2099
ABSTRACT

The high Sr/Y geochemical feature of granitoids can be attributed to various mechanisms, and elucidating genesis of high Sr/Y granitoids provides insights into the material recycling and magmatic processes at depth. In southeastern Central Asian Orogenic Belt (CAOB), many Middle Permian granitoids exhibit high Sr/Y ratios, but their origins remain unclear, inhibiting a comprehensive understanding of the magmatic response to the final closure of the Palaeo-Asian ocean. Here we present new zircon U-Pb ages, Lu-Hf isotopes and whole-rock geochemical data for the Middle Permian high Sr/Y monzogranites from central Inner Mongolia, southeastern CAOB. LA-ICP-MS zircon U-Pb data shows that these high Sr/Y rocks were emplaced during 273–261 Ma. They are calc-alkaline, sodium-rich and metaluminous to weakly peraluminous, with enriched large-ion lithophile elements (Rb, Th, K and Pb) and depleted high field strength elements (Nb, Ta, P and Ti), suggesting a mafic lower crustal source rather than evolved potassic crustal materials. Their relatively low (Gd/Yb)N (1.1–2.0), (Dy/Yb)N (1.0–1.3), Nb/Ta (7.9–10.9) ratios and flat heavy rare earth element patterns are characteristics of derivation from a relatively shallow depth with amphibolite as dominant residue. They also have highly variable εHf(t) values (?8.2 to +10.0) and TDMC (1814 to 649 Ma), similar to those of the Early Palaeozoic high Sr/Y intrusions along the Bainaimiao arc belt. Combined with data from literatures, we suggest that the high Sr/Y monzogranites in this study were probably generated by reworking of the newly underplated juvenile high Sr/Y lower crust of the Bainaimiao arc belt. Moreover, taking into account the regional investigations, the sublinear distributed Middle Permian magmatic rocks in the southeastern CAOB were likely associated with the incipient slab break-off of the Palaeo-Asian oceanic lithosphere following initial collision between the North China craton and the South Mongolia terranes.  相似文献   

3.
ABSTRACT

We report geochemical data and zircon SHRIMP U-Pb ages for Late Mesozoic granitoids from the western Zhejiang province and southern Anhui province (the WZSA region) from southeast China. In combination with published geochronological and geochemical data, the granitoids in the region can be divided into three stages: 171–141 Ma, 140–121 Ma, and 120–95 Ma. The first stage of these granitoids is mainly composed of granite porphyry and granodiorite which are similar to I-type granitoids, including having weakly negative Eu anomalies with enrichment in light rare earth elements (LREE), Rb, Th, and U. The second stage of granitoids consists of monzogranite, syenogranite, and granite with the characteristics of both A-type and I-type granitoids including strongly negative Eu anomalies; depletion of Ba, Sr, and Ti; and enrichment of K, Rb, and high field strength elements (HFSEs) (such as Th and U). The third stage of granitoids is mainly composed of granite, quartz monzonite, quartz diorite, and mafic rocks with weakly negative Eu anomalies and also enrichment in LREE, Rb, Th, U, and K. From our work, we propose a transition from compressional to extensional magmatism at ~141 Ma. Based on the geochemical characteristics of these granites and coeval mafic rocks, we propose that the formation of the A-type magmatism in the WZSA region formed as the result of lithospheric extension and asthenospheric upwelling during the Early Cretaceous.  相似文献   

4.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   

5.
The Indosinian orogeny is recorded by Triassic angular unconformities in Vietnam and South China and by widely occurring granitoids in the Yunkai-Nanling and the Xuefengshan belts of South China. The Longtan pluton in the northwestern part of the Xuefengshan belt is a typical high-K, calc-alkaline, I-type granitoid, which can shed light on the relationship between the Indosinian tectonic and magmatic activity in the region. Three precise zircon U–Pb ages yielded a mean of 218 ± 0.8 Ma, which is taken as the age of crystallization. The pluton consists of both granodiorite (64.59–68.01 % SiO2 and 3.25–4.22 % K2O) and granite (70.49–71.80 % SiO2 and 4.07–4.70 % K2O). The granodiorites are characterized by relatively high Mg# (54–57), low contents of Na2O (3.2–4.3 wt%), low abundances of incompatible elements (LILE, Nb and P), high initial 87Sr/86Sr (0.7175–0.7184) and negative εNd(t) (?9.98 to ?9.72). REE patterns show moderate fractionation ((La/Yb)cn = 8.07–18.80) with negative Eu anomalies (Eu/Eu* = 0.62–0.86). Compared with the granodiorite, the granite has a wider range of Mg# (49–59), lower contents of Na2O (2.8–4.2 wt%), higher initial 87Sr/86Sr (0.7232–0.7243) and more negative εNd(t) (?12.07 to ?11.24) values. REE patterns are relatively flat ((La/Yb)cn = 14.73–29.37) with smaller negative Eu anomalies (Eu/Eu* = 0.48–0.63). The granodiorite has lower K2O/Na2O and Al2O3/(MgO + FeOTot) values than the granite. Based on major and trace element geochemistry and Sr–Nd isotopes, we interpret the Longtan granodioritic magma to have been derived by partial melting of interlayered Proterozoic metabasaltic to metatonalitic source rocks, whereas the granite was probably derived from a mixture of Proterozoic metagraywackes and metaigneous rocks. Field, petrographic and geochemical evidence indicate that partial melting and fractional crystallization were the dominant mechanism in the evolution of the pluton. The Longtan granodiorites and granites are petrologically and geochemically similar to typical Indosinian varieties and are considered to have been produced in a similar manner. The Indosinian granitoids in the region show a magmatic peak age of ~238 Ma from the Yunkai-Nanling belt in the southeast and a magmatic peak age of ~218 Ma of the Xuefengshan belt to the northwest. These early and late magmatic episodes of the Indosinian granitoids also display slight variations of regular compositions, εNd(t) values and T DM ages. Thus, we propose a syncollisional extension model that Indosinian granitoids were generated by decompressional partial melting of crustal materials triggered by two extensions during collision of the Indochina and South China blocks. The Longtan pluton in the northwesternmost part of the orogenic belt marks the termination of the Indosinian magmatism and orogenesis.  相似文献   

6.
The Qimantagh area of Northwest China lies in the western part of the East Kunlun Orogenic Belt and is characterized by extensive magmatism, particularly in the Triassic. However, recent research has shown that Devonian magmatism was also widespread in this area and has a genetic relationship with mineralization. This article presents a detailed study of three types of Early Devonian intrusions: high-K calc-alkaline granites, A-type granites, and mafic intrusions, all from the Qimantagh region. These rocks were subjected to precise zircon U–Pb dating, major and trace element analyses, and Sr–Nd isotope measurements, focusing on the Lalingzaohuo (eastern Qimantagh) and Yemaquan (central Qimantagh) monzogranites, as well as the coeval Tanbeixuefeng (western Qimantagh) mafic dike swarm. To better understand the Early Devonian igneous activity in the Eastern Kunlun, data for other coeval granitoids were compared with our data. The Yemaquan monzogranite yielded a mean zircon U–Pb age of 400.5 ± 1.4 Ma. These rocks are metaluminous to slightly peraluminous, with Al2O3 contents of 13.10–14.16 wt.%, high alkali contents (total K2O + Na2O) of 6.89–7.68 wt.%, relatively low Sr contents (79–192 ppm), and high (La/Yb)N ratios, all of which indicate an I-type granite affinity. The Lalingzaohuo monzogranites yielded mean zircon U–Pb ages of 396.2–402.2 Ma. These rocks have higher SiO2 and alkali contents than the Yemaquan monzogranite, with high 10,000 Ga/Al ratios, high Zr + Nb + Ce + Y contents, high Fe2O3T/MgO ratios, and high Y contents, indicating an A-type granite affinity. These two monzogranites have initial 87Sr/86Sr ratios of 0.703–0.706 and εNd(t) values of –0.1 to –0.7. The Sr–Nd isotopic data require a significant input of a mantle component in the petrogenesis of these granites. The Tanbeixuefeng diabase dikes formed at ~396 Ma and have a continental tholeiitic affinity, as evident from small Ti–Nb–Ta anomalies and high contents of light rare earth and large-ion lithophile elements. We propose that post-collisional slab break-off was responsible for the generation of these Early Devonian intrusions in the Qimantagh area.  相似文献   

7.
The Jigongshan and Qijianfeng batholiths in the Tongbai orogen consist mainly of porphyritic hornblende-biotite monzogranite, biotite monzogranite, and biotite syenogranite, which are variably intruded by lamprophyre, diorite, and syenogranite dykes. Mafic microgranular enclaves commonly occur in the hornblende-biotite monzogranite, whereas surmicaceous enclaves are found in the biotite monzogranite. Both batholiths have zircon U–Pb ages ranging from ca. 139 to 120 Ma, indicating their emplacement in the Early Cretaceous. The hornblende-biotite monzogranite has an adakitic affinity marked by relatively high Sr/Y and (La/Yb) N ratios, lack of Eu anomalies, low MgO and Ni contents, and Na2O > K2O. Its chemical compositions, combined with enriched Sr–Nd isotopic signatures, suggest formation by dehydration melting of mafic rocks in a thickened lower crust. This thickened crust resulted from the Permo-Triassic subduction-collision between the North China and South China blocks and persisted until the Early Cretaceous. The biotite monzogranite and biotite syenogranite have low Al2O3, CaO, and Sr contents, low Rb/Sr, FeOt/MgO, and (Na2O + K2O)/CaO ratios, and flat HREE patterns with moderate to weak Eu anomalies. They were produced by partial melting of crustal materials under relatively low pressure. Partial melting at different crustal levels could have significantly contributed to mechanical weakening of the crust. The diorite and lamprophyre dykes show linear trends between SiO2 and major or trace elements on Harker diagrams, with two lamprophyre samples containing normative nepheline and olivine. These rocks have high La/Yb and Dy/Yb ratios, both displaying co-variation with contents of Yb. They were originated from relatively deep lithospheric mantle followed by fractionation of olivine + clinopyroxene + apatite + Fe–Ti oxides. Extensive partial melting in the lithospheric mantle indicates relatively high temperatures at this level. We suggest that the presence of adakitic magmas, thickened but weakened crust and high temperatures in the lithosphere mantle point to lower crustal delamination in the Early Cretaceous in the Tongbai orogen.  相似文献   

8.
Abstract

Palaeozoic granitoids in the Chinese Altai are important for understanding the evolution of the Central Asian Orogenic Belt (CAOB). The Xiaodonggou granitic intrusion, situated in the Chinese Altai (southern CAOB), is composed of two intrusive phases, medium-grained granite intruded by porphyritic granite. Zircon LA-ICP-MS U–Pb analyses of medium-grained granite and porphyritic granite yield ages of 409 ± 2 Ma and 400 ± 1 Ma, respectively, indicating that these formed in Early Devonian time. Medium-grained granite and porphyritic granite have similar geochemical features and Nd–Hf isotopic compositions. Arc-like geochemical characteristics (e.g. enrichment of LILEs and negative anomalies of Nb, Ta, Ti, and P) show that both phases are volcanic arc granites (VAGs). Geochemical and isotopic characteristics suggest that these magmas originated from melting older crust. Based on their near-zero or negative εNd(t) values (?1.4to 0) and positive εHf(t) values (+1.4 to +7.8), together with Nd model ages of 1.15–1.26 Ga and zircon Hf model ages of 0.90–1.30 Ga, we suggest that the Xiaodonggou granites were derived from a mixture of juvenile and old crustal components. Some other Devonian granitic intrusions were recently identi?ed in the Chinese Altai with ages between 416 and 375 Ma. These Devonian granites have similar geochemical characteristics and petrogenesis as Xiaodonggou granites. The formation of these Devonian granites was in response to subduction processes, suggesting that Chinese Altai was an active continental margin in Early Devonian time.  相似文献   

9.
This article reports systematic zircon U–Pb dating, whole-rock geochemistry, and Sr–Nd isotopic data for the Early Cretaceous Jialou granitoids along the southernmost margin of the North China Craton (NCC), adjacent to the Tongbai Orogen. These results will provide significant constrains on the crustal evolution of the southern margin of the NCC. Zircon U–Pb analyses, using laser ablation–multicollector–inductively coupled plasma–mass spectrometry, indicate that the Jialou granitoids were emplaced at ~130 Ma. The granitoids have high SiO2, K2O, Al2O3, Sr, and Ba contents, high Sr/Y and (La/Yb)N ratios, and low concentrations of MgO, Y, and heavy rare earth elements, indicating a low-Mg adakitic affinity. They have relatively high initial 87Sr/86Sr ratios (0.707464–0.708190) and negative εNd(t) values (–11.8 to –15.2), similar to those of the Palaeoproterozoic lower crust in the NCC. These geochemical and isotopic features indicate that the Jialou low-Mg adakitic rocks were derived by partial melting of mafic Palaeoproterozoic lower crust of the NCC at >50 km depth, leaving behind a garnet amphibolite residue. The petrogenesis of the Jialou low-Mg adakitic rocks, plus the petrogenesis of Mesozoic granitoids and lower crustal xenoliths entrained in the Late Jurassic Xinyang volcaniclastic diatreme, suggests that the continental crust along the southern margin of the NCC was thickened during the Middle Jurassic to Early Cretaceous, but thinned after 130 Ma. We propose that crustal thickening was caused by a late Middle Jurassic to Early Cretaceous intra-continental orogeny, rather than continent–continent collision between the NCC and the Yangtze Craton. We also suggest that crustal thinning and Early Cretaceous magmatism were related to subduction of the palaeo-Pacific plate, rather than post-orogenic collapse of the Qinling–Tongbai–Dabie Orogen.  相似文献   

10.
The Changfagou Cu deposit is a newly discovered porphyry deposit located in the southern Jilin Province of Northeastern China, on the northeastern margin of the North China Craton. To better understand the formation of the Cu deposit, we report the zircon U–Pb and molybdenite Re–Os dating, and Sr-, Nd-, and Hf- isotopic data of the granite porphyry. LA-ICP-MS dating of zircon grains from two mineral zones in the granite porphyry yield ages of 115.7 ± 0.8 and 115.3 ± 0.6 Ma, which is interpreted as the emplacement age of the granite porphyry. The molybdenite Re–Os model ages of 112.5 to 113.8 Ma, an isochron age of 113.3 ± 1.3 Ma, and a weighted mean model age of 113.0 ± 0.7 Ma, which represents the age of the Cu mineralization quite well. The Changfagou granite porphyry samples lack amphibole and muscovite, and are compositionally characterized by high SiO2, high Na2O+K2O, and low P2O5, enriched in some Rb, Th, U, and Pb, and depleted in Nb, Ta, Ti, P, and Eu. Mineralogical and geochemical features suggest that the Changfagou granite porphyry samples are slightly peraluminous and are of highly fractionated I-type granitoids. The granitic rocks also have relatively high (87Sr/86Sr)i (0.71199 to 0. 71422), and both low εNd(t) (?14.56 to ?13.19) and εHf(t) values (?14.916 to ?8.644), which suggest that Changfagou granite porphyry are derived from mixed sources of crustal and mantle, and diagenesis and mineralization were possibly related to the switch in subduction direction of the Palaeo-Pacific Plate in the late phase of Early Cretaceous.  相似文献   

11.
The Chinese Altai in northwestern Xinjiang has numerous outcrops of granitoids which provide critical information on accretionary orogenic processes and crustal growth of the Central Asian Orogenic Belt.Zircon U-Pb ages, Hf-isotopic compositions and whole-rock geochemistry of monzogranite and granodiorites in the Qinghe County are employed to elucidate Paleozoic tectonics of the Chinese Altai. Granodiorites have crystallization ages of 424.6 ± 3.1 Ma(MSWD = 0.23) and 404.0 ± 3.4 Ma(MSWD = 0.18);monzogranite was emplaced in the early Permian with a crystallization age of 293.7 ± 4.6 Ma(MSWD = 1.06). Both granodiorites and monzogranite are I-type granites with A/CNK ratios of 0.92 -0.97 and 1.03 -1.06, respectively. They also show similar geochemical features of high HREE and Y contents, low Sr contents and Sr/Y ratios, as well as enrichment of Cs, Rb, Th and U, and depletion of Nb, Ta, P and Ti.These geochemical features indicate that the monzogranite and granodiorites were formed in an arc setting related to subduction. The gneissic monzogranites display high SiO_2 and K_2 O contents, and belong to the high-K calc-alkaline series. In the chondrite normalized REE distribution pattern, the monzogranite samples exhibit enrichment of LREE with strong negative Eu anomalies(σE u =0.44 -0.53), zircon εHf(t) values from +7.24 to +12.63 and two-stage Hf model ages of 463 -740 Ma. This suggests that the monzogranite was generated from the mixing of pelitic and mantle material. The granodiorite samples are calc-alkaline granites with lower contents of Si O_2 and Na_2 O + K_2 O, higher contents of TiO_2, Fe_2O_3~t, MgO and CaO compared to the monzogranite samples. They also show enrichment of LREE and moderate negative Eu anomalies(σE u= 0.54 =0.81), as well as slightly higher differentiation of LREE than that of HREE. The425 Ma granodiorite has zircon εHf(t) values from -0.51 to +1.98 and two-stage Hf model ages of 1133 -1240 Ma, whereas the 404 Ma granodiorite displays those of +2.52 to +7.50 and 816 -1071 Ma.Geochemistry and zircon Hf isotopic compositions indicate that granodiorites were formed by partial melting of juvenile lower crust. Together with regional geology and previous data, the geochemical and geochronological data of the monzogranite and granodiorites from this study suggest long-lived subduction and accretion along the Altai Orogen during ca. 425 -294 Ma.  相似文献   

12.
The South Um Mongul prospect is a Cu-Mo-Au porphyry system. It is covered by porphyritic dacite and hornblende gabbro. Both units are intruded by monzogranite, which encloses xenoliths of both units. Using LA-ICP-MS U-Pb zircon method, the dacite is dated at ca. 773 ± 6.9 Ma, while the gabbro and the monzogranite are dated at 603 ± 3.5 and 558 ± 4.6 Ma, respectively. The dacite age is consistent with the mid-Cryogenian subduction-related magmatic stage and the gabbro-monzogranite age is comparable to the Ediacaran post-collisional magmatic stage during the evolution of the Arabian-Nubian Shield. The dacite is akin to high-K I-type granitoids and its primitive mantle-normalized trace element patterns show negative Nb anomalies and enrichment in LILE (large ion lithophile elements), Th and U over HFSE. These geochemical characteristics are similar to those of felsic magma formed in a subduction-related tectonic setting. The high La/Ybcn (7.2–30.9), Nb/Yb (2.63–4.41) and Th/Yb (2.07–3.04) ratios of the dacite are comparable to continental rather than oceanic arc systems. Its low Sm/Yb ratios (1.84–3.13) support the primitive nature of the crust beneath the continental arc and derivation from a garnet-free lower crustal source. The dacite has low Sr/Y ratios (5–9) and its Eu/Eu ratios range from 0.66 to 0.83. Similar to dacite, the primitive mantle-normalized trace element patterns of the post-collisional suite show a subduction-related geochemical signature. However, the gabbro is characterized by Th/Ta ratios (3.4–14.8), which are comparable with the within-plate tectonic setting. The subduction-related geochemical signature is inherited from long subduction history beneath the Arabian-Nubian Shield. Both the gabbro and monzogranite are characterized by high Ba (404–590 ppm and 936–1590 ppm, respectively) and Sr (611–708 ppm and 624–793 ppm, respectively) contents, which make them analogous to the Caledonian appinite-high Ba-Sr granite assemblage. The formation of these rocks is related to the Ediacaran lithospheric erosion accompanying slab break-off. This process induced asthenospheric upwelling, which led to partial melting of the lithosphere previously metasomatised by subducted sediments involving carbonates impregnated by hydrothermal barite. Melting of this lithosphere led to the formation of the hornblende gabbro. Underplating by the mafic magma led to melting of the lower crust and the formation of high Ba-Sr monzogranite in the area. The high Sm/Yb (2.94–4.19) and Sr/Y (52–74) ratios of the monzogranite may indicate the presence of garnet in the melted amphibolitic lower crust. The higher Sr/Y ratios, lower HFSE (high field strength elements) contents and the absence of pronounced Eu anomalies in monzogranite relative to dacite suggest the productive nature of the post-collisional magma relative to the continental arc magma in this prospect.  相似文献   

13.
ABSTRACT

This work presents zircon ages and Hf-in-zircon isotopic data for Permian and Triassic A-type granitoids and reviews the evolution of central Inner Mongolia, China, during the early Permian and Late Triassic. SHRIMP U–Pb dating of zircons of peralkaline granites yielded 206Pb/238U ages of 294 ± 4 Ma and 293 ± 9 Ma that reflect the time of Permian magmatism. Zircon ages were also obtained for Late Triassic granites (226 ± 4 Ma, 224 ± 4 Ma). Our results, in combination with published zircon ages and geochemical data, document distinct magmatic episodes in central Inner Mongolia.

The Permian peralkaline granites show typical geochemical features of A-type granites, which also have highly positive zircon εHf(t) values (+4.9 – +17.1), indicating a significant contribution of an isotopically depleted source, likely formed from mantle-derived magmas. Late Triassic A-type granitoids, however, in central Inner Mongolia show large variations and mostly positive in zircon εHf(t) values (?1.3 – +13.5), suggesting derivation from a mixture of crust and mantle or metasomatized lithospheric mantle with crustal contamination. The geochemical characteristics of the Permian peralkaline granites and Late Triassic A-type granitoids are consistent with a post-collisional setting and were likely related to asthenosphere upwelling during the evolution of the Northern Block and Central Asian Orogenic Belt (CAOB).  相似文献   

14.
The geodynamic setting of Mesozoic magmatic rocks and associated mineralization in eastern Tianshan, Northwest China, are attracting increasing attention. The newly discovered giant Donggebi molybdenum deposit (0.508 Mt at 0.115% Mo) is located in the central part of eastern Tianshan, Xinjiang. The molybdenum mineralization was genetically associated with the Donggebi stock, comprised of porphyritic granite and granite porphyry. Secondary ion mass spectrometry (SIMS) zircon U–Pb dating constrains that the porphyritic granite and granite porphyry emplacement occurred at 233.8 ± 2.5 Ma and 231.7 ± 2.6 Ma, respectively. The Re–Os model ages of six molybdenite samples range from 235.2 to 237.0 Ma, with a weighted mean age of 236.1 ± 1.4 Ma, which is roughly consistent within errors with the zircon U–Pb ages, suggesting a Middle Triassic magmatic–mineralization event at Donggebi. Geochemically, the Donggebi granitoids are characterized by high SiO2 and K2O contents, with low MgO contents, belonging to high-K calc-alkaline granites. These rocks show pronounced enrichment in K, Rb, U, and Pb, and depletion in Sr, Ba, P, and Ti, with negative Eu anomalies (Eu/Eu* = 0.20–0.38). In situ Hf isotopic analyses of zircon from the porphyritic granite and granite porphyry yielded εHf(t) values ranging from +6.6 to +10.5, and from +5.5 to +10.1, respectively. The geochemical and isotopic data imply that the primary magmas of the Donggebi granitoids could have originated by partial melting of a juvenile lower crust that involved some mantle components. Combined with the regional geological history, geochemistry of the Donggebi granitoids, and new isotopic age data, we thus propose that the Donggebi molybdenum deposit was formed in the Middle Triassic, and occurred in an intracontinental extension setting in eastern Tianshan.  相似文献   

15.
《International Geology Review》2012,54(16):1975-1991
Late Palaeozoic granites are widely distributed in the southeastern Beishan area, which is located in the central part of the southern Central Asian Orogenic Belt (CAOB). U–Pb zircon dates of five late Palaeozoic granitic plutons from the southeastern Beishan area yield Permian ages: 285 ± 2 Ma (Shuwojing and Western Shuwojing plutons), 269 ± 3 Ma (Jianquanzi and Jiuquandihongshan plutons), and 260 ± 1 Ma (Jiujing pluton). The early Permian Shuwojing pluton, an unfractionated calc-alkaline biotite monzogranite with slightly positive εNd(t) (+0.7 and +0.6) and low initial 87Sr/86Sr (0.70722 and 0.70712), and the early Permian Western Shuwojing pluton, a high-K calc-alkaline biotite granite with slightly negative εNd(t) (?0.2 and ?0.1) and low initial 87Sr/86Sr (0.70390 and 0.70919), are likely derived from a mixture of depleted (juvenile) mantle and upper continental crustal (or sedimentary) material. The mid-Permian Jianquanzi and Jiuquandihongshan monzogranites have highly fractionated potassium-rich calc-alkaline characteristics with negative εNd(t) (?4.3) and very high initial 87Sr/86Sr (0.71949), reflecting a continental crustal component. The compositionally diverse Jiujing pluton and the granodiorite and high-Sr monzogranite phases display adakite-like compositions with relatively low εNd(t) (?0.1 and ?2.2) and high initial 87Sr/86Sr (0.70822 and 0.70913). The Jiujing low-Sr monzogranite has higher initial 87Sr/86Sr (0.73464) and lower εNd(t) (?2.8), indicating a significant continental crustal component in its genesis. This work, combined with the regional geology and previous studies, suggest that the early to middle Permian southern Beishan plutons formed in a post-collisional environment, probably an intracontinental rift environment linked to asthenospheric upwelling in response to the break-off of a subducted slab. In the late Permian, the southern Beishan area was in a compressive tectonic regime and thickening of the continental crust resulted in the formation of the Jiujing adakite-like granite.  相似文献   

16.
《International Geology Review》2012,54(13):1735-1754
Widespread granitic intrusions in the northeast part of the Wulonggou area were previously thought to be emplaced into the Palaeoproterozoic Jinshuikou Group during the Neoproterozoic. This contribution presents detailed LA-ICP-MS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf isotope systematic on the Wulonggou Granodiorite and Xiaoyakou Granite from the Wulonggou area. Three granodiorite samples yielded U–Pb zircon ages of 247 ± 2, 248 ± 1, and 249 ± 1 Ma, and one granite sample yielded U–Pb zircon age of 246 ± 3 Ma. The granodiorite samples are metaluminous with an alumina saturation index of 0.90–0.96, as well as intermediate- to high-alkali contents of 5.49–6.14 wt.%, and low Zr+Nb+Ce+Y contents, and low Fe2O3T/MgO ratios, which suggest an I-type classical island arc magmatic source. The granite samples are peraluminous with an alumina saturation index of 1.02–1.03, Sr content of 305.00–374.00 ppm, Sr/Y ratios of between 17.68 and 28.77, (La/Yb)N values of 16.98–25.07, low HREEs (Yb = 1.10–2.00 ppm), and low Y (13.00–21.10 ppm), which suggest adakite-like rocks. All granodiorite samples have zircons εHf(t) values ranging from ?2.9 to +3.9, and granite samples have zircon εHf(t) values ranging from ?7.8 to +3.2. These Hf isotopic data suggest that the Early Triassic granites were derived from the partial melting of a mafic Mesoproterozoic lower crust, although the degree of ancient crustal assimilation may be higher for the Xiaoyakou Granite. It is suggested here that the ca. 246–248 Ma magma was generated during the northward subduction of the Palaeo-Tethys oceanic plate.  相似文献   

17.
The Dehsalm Cu–Mo-bearing porphyritic granitoids belong to the Lut Block volcanic–plutonic belt (central eastern Iran). These rocks range in composition from gabbro-diorite to granite, with dominance of monzonites and quartz monzonites, and have geochemical features of high-K calc-alkaline to shoshonitic volcanic arc suites. Primitive mantle-normalized trace element spider diagrams display strong enrichment in large-ion lithophile elements such as Rb, Ba and Cs and depletions in some high-field strength elements, e.g., Nb, Ti, Y and HREE. Chondrite-normalized plots display significant LREE enrichments, high LaN/YbN and a lack of Eu anomaly. High Sr/Y and La/Yb ratios of Dehsalm intrusives reveal that, despite their K-rich composition, these granitoids show some resemblances with adakitic rocks. A Rb–Sr whole rock–feldspar–biotite age of 33 ± 1 Ma was obtained in a quartz monzonite sample and coincides, within error, with a previous geochronological result in Chah-Shaljami granitoids, further northwest within the Lut Block. (87Sr/86Sr)i and εNdi isotopic ratios range from 0.70481 to 0.70508 and from +1.5 to +2.5, respectively, which fits into a supra-subduction mantle wedge source for the parental melts and indicates that crustal contribution for magma diversification was of limited importance. Sr and Nd isotopic compositions together with major and trace element geochemistry point to an origin of the parental magmas by melting of a metasomatized mantle source, with phlogopite breakdown playing a significant role in the geochemical fingerprints of the parental magmas; small amounts of residual garnet in the mantle source also help to explain some trace element patterns. Geochemical features of Dehsalm porphyries and its association with Cu–Mo mineralization agree with a mature continental arc setting related to the convergence of Afghan and Lut plates during Oligocene.  相似文献   

18.
《地学前缘(英文版)》2020,11(4):1305-1321
The Western Qinling Orogen(WQO) is characterized by voluminous distribution of Indosinian granitoids,the formation of which provides an important window to unravel the geochemical and geodynamic evolution and associated metallogeny.Here we investigate a group of intrusions termed "Five Golden Flowers" based on petrological,geochemical,zircon U-Pb geochronological and Lu-Hf isotopic studies on the granitoids and their mafic microgranular enclaves(MMEs).Our results show that these intrusions are genetically divided into two types,namely,magma-mixing and highly fractionated.The Jiaochangba,Lujing,Zhongchuan,and Luchuba granitoids are biotite monzogranites(220±0.8 Ma to 217±2.6 Ma) with abundant coeval MMEs(220±.1 Ma to 217±2.7 Ma).The rocks contain moderate to high SiO_2,high MgO,Rb,Sr,Ba,and Th contents,but low TiO_2,P_2 O_5,and Sc values,A/CNK of 1.1,and a range of ε_(Hf)(t) values of-11.7 to +2.23 with corresponding T_(DM2)values of 1967-1228 Ma.The MMEs possess K-feldspar megacrysts,abundant acicular apatites,and show lopsided textures.They have lower SiO_2,Al_2 O_3,and Th contents,but higher MgO,TiO_2,and Sc,with ε_(Hf)(t) values of-18.0 to +3.18 and T_(DM1) of 849-720 Ma.The data indicate that the MMEs were derived from a magma sourced from the enriched lithospheric mantle.We suggest that these host granitoids were produced by partial melting of latePaleoproterozoic to early-Mesoproterozoic lower crust with the involvement of Neoproterozoic SCLM-derived mafic magmas.The Baijiazhuang pluton is dominantly composed of leucogranite(muscovite granite and twomica monzogranite,216±1.5 Ma) without MMEs.The rocks are peraluminous with high A/CNK(1.06-1.27).Compared with the other four granitoids,the Baijiazhuang leucogranite shows higher SiO_2 content,markedly lower concentrations of TiO_2,MgO,Al_2 O_3,CaO,and Fe_2 O_3~T,and lower LREE/HREE and(La/Yb)N values.These leucogranites are also rich in Rb,Th,and U,and display marked depletions in Ba,Sr,Ti,and Eu,indicating that they experienced significant fractionation.Zircon ε_(Hf)(t) values(-10.2 to-3.27) and T_(DM2)(1868-1424 Ma),as well as the Nb/Ta and K_2 O/Na_2 O values are similar to the other four granitoids,indicating that they are likely to have been derived from a similar source;with sediments playing only a minor role in the magma generation.The low contents of Yb and Y suggest that their partial melting was controlled by garnets and micrographic texture of K-feldspar reflects high-temperature melting through undercooling.Based on the above features,we infer that the Baijiazhuang leucogranite likely represents the product of high degree fractionation of the I-type biotite monzogranite magma which generated the other four granitoids at relatively high temperatures,within magma chambers at mid-crust depths.We propose that the granitoid suite was formed in the transitional setting from synto post-collision during the collisional orogeny between the SCB and NCB,following break-off of the subducted South China Block lithosphere during 220-216 Ma.  相似文献   

19.
《International Geology Review》2012,54(13):1646-1672
ABSTRACT

Southern Hunan Province, located in the Cathaysia Block where the Shi–Hang zone and Nanling belt meet, is characterized by extensive Mesozoic magmatism and coeval polymetallic mineralization. The Huangshaping W–Mo–Pb–Zn–(Cu) deposit is representative in this area. However, the petrogenesis of the granitoids associated with the Huangshaping deposit, and their relationships with mineralization, remain undetermined. In this paper we focus on zircon U–Pb dating, whole-rock geochemistry, and Sr–Nd–Pb–Hf isotopic compositions in order to further our understanding of these issues, as well as their regional implications. The Huangshaping granitoids are characterized by two pulses of intrusive activity: a first-stage quartz porphyry and a second-stage felsite and granite porphyry, our new data show that the quartz porphyry and felsite formed at 160.5 ± 1.3 and 156.6 ± 1.4 Ma, respectively, representing a period of Late Jurassic magmatism. Granitic enclaves within the quartz porphyry crystallized at 160.2 ± 1.6 Ma, and zircons and apatites from the enclaves exhibit Hf isotopic and geochemical compositions that suggest a Palaeoproterozoic lower crustal melt as one end-member of the magma that formed the quartz porphyry, whereas another likely end-member was coeval mantle-derived magma, as indicated by the geochemistry and Sr–Nd–Pb–Hf isotopes. However, both the felsite and granite porphyry were probably derived from the melting of metamorphic basement rocks in the upper crust. The felsite clearly formed as a result of the rapid ascent and cooling of magma, whereas the granite porphyry underwent fractional crystallization. The magma sources and evolution of the granitoids, as well as their association with the Huangshaping mineralization, suggest that melting of upper crustal components controlled the W–Mo and Pb–Zn mineralization, whereas dehydration of a subducted slab provided the Cu mineralization in southern Hunan Province.  相似文献   

20.
We present geological, structural, and geochemical data on synmetamorphic granitoids from the Tutai and South Ol’khon plutons of the Ol’khon terrane (Central Asian Fold Belt) with an estimation of the U–Pb zircon age of the Tutai granites. The structural and petrological data suggest the synfolding and synmetamorphic origin of the granitoids. The U–Pb zircon age of the Tutai granites (488.6 ± 8.0 Ma) almost coincides with the previously estimated age of quartz syenites from the South Ol’khon pluton (495 ± 6 Ma). The plutons occupy the same position in the regional structure. The granitoids underwent final deformations and metamorphism at 464 ± 11 Ma. The Tutai pluton consists of moderately potassic granites, whereas the South Ol’khon pluton is made up of quartz syenites and granites. The geochemical characteristics of the granites from both plutons (low Y and Yb contents, fractionated REE patterns) indicate their formation under conditions of garnet crystallization in deep crustal restite. The higher Y and Yb contents of the South Ol’khon quartz syenites as compared with those of the granites suggest the lack of equilibrium between the quartz syenite magmas and garnet parageneses during their formation or evolution. The Tutai and South Ol’khon granites were derived from quartz-feldspar crustal rocks, whereas the South Ol’khon quartz syenites might have originated from a mixed (crust-mantle) source. It is presumed that the granitoids formed within accretion-thickened crust. Early accretion, which has been first identified in the region, affected not only the Pribrezhnaya zone (the zone of the Tutai and South Ol’khon plutons) but also the entire Anga–Satyurty megazone of the Ol’khon terrane. The accretion ended with the convergence and oblique collision of the Ol’khon terrane and Siberian continent, when strike-slip tectonics became ubiquitous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号