首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The origin of Jupiter-family comets is linked to the intermediate stage of evolution through the Centaur region. Thus the structure of the Centaur population provides important constraints on sources of short-period comets. We show that our model of the Oort cloud evolution gives results which are consistent with the orbital distribution of observed Centaurs. In particular, it explains the existence of the large population of Centaurs with semimajor axes greater than 60 AU. The main source for these objects is the inner Oort cloud. Both Jupiter-family and Halley-type comets are produced by Centaurs originating from the Oort cloud. The injection rate for Jupiter-family comets coming from the inner Oort cloud is, at least, not less than that for a model based on the observed sample of high-eccentricity trans-Neptunian objects.  相似文献   

2.
This paper analyzes the capture of comets into Halley-type and Jupiter-family orbits from the nearparabolic flux of the Oort cloud. Two types of capture into Halley-type orbits are found. The first type is the evolution of near-parabolic orbits into short-period orbits (with heliocentric orbital periods P < 200 years) as a result of close encounters with giant planets. This process is followed by a very slow drift of cometary orbits into the inner part of the Solar System. Only those comets may pass from short-period orbits into Halley-type and Jupiter-family orbits, which move in orbits with perihelion distances q < 13 au. In the second type of capture, the perihelion distances of cometary orbits become rather small (< 1.5 au) during the first stage of dynamic evolution under the action of perturbations from the Galaxy, and then their semimajor axes decrease as a result of diffusion. The capture takes place, on average, in 500 revolutions of the comet about the Sun, whereas in the first case, the comet is captured, on average, after 12500 revolutions. The region of initial orbital perihelion distances q > 4 au is found to be at least as important a source of Halley-type comets as the region of perihelion distances q < 4 au. More than half of the Halley-type comets are captured from the nearly parabolic flux with q > 4 au. The analysis of the dynamic evolution of objects moving in short-period orbits shows that the distribution of Centaurs orbits agrees well with the observed distribution corrected for observational selection effects. Hence, the hypothesis associating the origin of Centaurs with the Edgeworth-Kuiper belt and the trans-Neptunian region exclusively should be rejected.  相似文献   

3.
Long-period (LP) comets, Halley-type (HT) comets, and even some comets of the Jupiter family, probably come from the Oort cloud, a huge reservoir of icy bodies that surrounds the solar system. Therefore, these comets become important probes to learn about the distant Oort cloud population. We review the fundamental dynamical properties of LP comets, and what is our current understanding of the dynamical mechanisms that bring these bodies from the distant Oort cloud region to the inner planetary region. Most new comets have original reciprocal semimajor axes in the range2 × 10-5 < 1/aorig < 5 × 10-5AU-1. Yet, this cannot be taken to represent the actual space distribution of Oort cloud comets, but only the region in the energy space in which external perturbers have the greatest efficiency in bringing comets to the inner planetary region. The flux of Oort cloud comets in the outer planetary region is found to be at least several tens times greater than the flux in the inner planetary region. The sharp decrease closer to the Sun is due to the powerful gravitational fields of Jupiter and Saturn that prevent most Oort cloud comets from reaching the Earth’s neighborhood (they act as a dynamical barrier). A small fraction of ~10-2 Oort cloud comets become Halley type (orbital periods P < 200 yr), and some of them can reach short-period orbits with P < 20 yr. We analyze whether we can distinguish the latter, very ‘old” LP comets, from comets of the Jupier family coming from the Edgeworth-Kuiper belt.  相似文献   

4.
We investigate the first stage of the dynamical evolution of Oort cloud comets entering the planetary region for the first time. To this purpose, we integrate numerically the motions of a large number of fictitious comets pertaining to two samples, both with perihelion distances up to 5.7 au and random inclinations; the first sample is composed of comets whose orbits have at least one node close to 5.2 au, while the second is not subject to this constraint. We examine the orbits when the comets come to aphelion after their first perihelion passage within the planetary region, and find that there is a clear statistical dependence of the energy perturbations on the Tisserand parameter. There appear to be two main processes, of comparable importance, governing the shortening of semimajor axes to values of less than 1000 au, i.e. planetary close encounters, especially with Jupiter, and indirect perturbations due to the shifting of the motion from barycentric to heliocentric and back; the former process mostly affects comets crossing the ecliptic at about 5.2 au, or on low-inclination orbits, while the latter mostly affects comets of small perihelion distance. This last result may help to understand the relative paucity of Halley-type comets with perihelion distances larger than about 1.5 au.  相似文献   

5.
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1).  相似文献   

6.
We introduce a model for integrating the effects of Galactic tides on Oort cloud comets, which involves two procedures, according to the values of the osculating semi-major axis a and eccentricity e. Ten simulations of the dynamics of 106 comets over 5 Gyr are performed using this model. We thus investigate the long-term effects of the Galactic tide with and without a radial component, the effects of the local density of the Galactic disk, and those of the Oort constants. Most of the results may be understood in terms of the integrability or non-integrability of the system. For an integrable system, which occurs for moderate semi-major axes with or without radial component, the dynamics is explained by periodic variation of the cometary perihelion, inducing the depletion of the outer region of the Oort cloud, a constant flux from the inner region after 500 Myr, and the quick formation of a reservoir of comets with argument of perihelion near 26.6°. When the system is non-integrable, the efficiency of the tide in reducing the cometary perihelion distance is enhanced both by replenishing the Oort cloud domain from which comets are sent toward the planetary system, and by reducing the minimal value that the perihelion distance may reach. No effects of varying the Oort constants were observed, showing that the flat rotation curve is a satisfactory approximation in Oort cloud dynamics.  相似文献   

7.
We present Monte Carlo simulations of the dynamical evolution of the Oort cloud over the age of the Solar System, using an initial sample of one million test comets without any cloning. Our model includes perturbations due to the Galactic tide (radial and vertical) and passing stars. We present the first detailed analysis of the injection mechanism into observable orbits by comparing the complete model with separate models for tidal and stellar perturbations alone. We find that a fundamental role for injecting comets from the region outside the loss cone (perihelion distance q > 15 AU) into observable orbits (q < 5 AU) is played by stellar perturbations. These act in synergy with the tide such that the total injection rate is significantly larger than the sum of the two separate rates. This synergy is as important during comet showers as during quiescent periods and concerns comets with both small and large semi-major axes. We propose different dynamical mechanisms to explain the synergies in the inner and outer parts of the Oort Cloud. We find that the filling of the observable part of the loss cone under normal conditions in the present-day Solar System rises from <1% for a < 20 000 AU to about 100% for a ? 100 000 AU.  相似文献   

8.
We have integrated the orbits of the 76 scattered disk objects (SDOs), discovered through the end of 2002, plus 399 clones for 5 Gyr to study their dynamical evolution and the probability of falling in one of the following end states: reaching Jupiter's influence zone, hyperbolic ejection, or transfer to the Oort cloud. We find that nearly 50% of the SDOs are transferred to the Oort cloud (i.e., they reach heliocentric distances greater than 20,000 AU in a barycentric elliptical orbit), from which about 60% have their perihelia beyond Neptune's orbit (31 AU<q<36 AU) at the moment of reaching the Oort cloud. This shows that Neptune acts as a dynamical barrier, scattering most of the bodies to near-parabolic orbits before they can approach or cross Neptune's orbit in non-resonant orbits (that may allow their transfer to the planetary region as Centaurs via close encounters with Neptune). Consequently, Neptune's dynamical barrier greatly favors insertion in the Oort cloud at the expense of the other end states mentioned above. We found that the current rate of SDOs with radii R>1 km incorporated into the Oort cloud is about 5 yr−1, which might be a non-negligible fraction of comet losses from the Oort cloud (probably around or even above 10%). Therefore, we conclude that the Oort cloud may have experienced and may be even experiencing a significant renovation of its population, and that the trans-neptunian belt—via the scattered disk—may be the main feeding source.  相似文献   

9.
Oort cloud comets occasionally obtain orbits which take them through the planetary region. The perturbations by the planets are likely to change the orbit of the comet. We model this process by using a Monte Carlo method and cross sections for orbital changes, i.e. changes in energy, inclination and perihelion distance, in a single planet-comet encounter. The influence of all major planets is considered. We study the distributions of orbital parameters of observable comets, i.e. those which have perihelion distance smaller than a given value. We find that enough comets are captured from the Oort cloud in order to explain the present populations of short period comets. The median value of cos i for the Jupiter family is 0.985 while it is 0.27 for the Halley types. The results may explain the orbital features of short period comets, assuming that the active lifetime of a comet is not much greater than 400 orbital revolutions.  相似文献   

10.
The flux of near-parabolic comets in the outer-planetary region is estimated on the presumption that the major planets and the galactic tide control the dynamics of comets. It is found that the flux of the Oort cloud comets (semi-major axis > 20000 AU) is similar to the case of a strong comet shower derived on the presumption that the galactic tidal force were not operative. On the other hand, the flux of comets with semi-major axes <- 20000 AU is found to be an increasing function of q (perihelion distance) until q reaches 20 AU, while for a 45000 AU it is a rapidly increasing function for q 12 AU. In other words, for comets of the inner extension of the Oort cloud the planetary perturbation acts as a strong barrier for them to penetrate into the inner planetary region.  相似文献   

11.
B. Lago  A. Cazenave 《Icarus》1983,53(1):68-83
The evolution of the perihelion distance distribution in the Oort cloud was studied over the age of the solar system, under the gravitational perturbations of random passing stars, using a statistical approach. These perturbations are accounted for through an empirical relation relating the change in cometary perihelion distance to the closest-approach comet-star distance; this relation is deduced from a previous study [H. Scholl, A. Cazenave, and A. Brahic, Astron. Astrophys.112, 157–166 (1982)]. Two kinds of initial perihelion distances are considered: (a) perihelion distances <2500 AU, associated with an origin of comets as icy planetesimals in the region of the giant planets, and (b) larger perihelion distances (up to 5 × 104 AU), possibly representative of comet formation as satellite fragments in the accretion disk of the primitive solar nebula. Distant star-comet encounters, as well as rare close encounters, are considered. Several quantities are estimated: (i) number of “new” comets entering into the planetary region, (ii) number of comets escaping the Sun sphere of influence or lost by hyperbolic ejection and (iii) percentage of total comet loss over the age of the solar system. From these quantities, the current and original cloud populations are deduced, as well as the corresponding cloud mass, for the two types of formation scenarios.  相似文献   

12.
Stars passing through the Oort cloud eject comets to interstellar space and initiate showers of comets into the planetary region. Monte Carlo simulations of such passages are performed on a representative distribution of cometary orbits. Ejected comets generally lie along a narrow tunnel “drilled” by the star through the cloud. However, shower comets come from the entire cloud, and do not give a strong signature of the star's passage, except in the inverse semimajor axis distribution for the shower comets. The planetary system is likely not experiencing a cometary shower at this time.  相似文献   

13.
Julio A. Fernández 《Icarus》1980,42(3):406-421
The orbital evolution of 500 hypothetical comets during 109 years is studied numerically. It is assumed that the birthplace of such comets was the region of Uranus and Neptune from where they were deflected into very elongated orbits by perturbations of these planets. Then, we adopted the following initial orbital elements: perihelion distances between 20 and 30 AU, inclinations to the ecliptic plane smaller than 20°, and semimajor axes from 5 × 103 to 5 × 104 AU. Gravitational perturbations by the four giant planets and by hypothetical stars passing at distances from the Sun smaller than 5 × 105 AU are considered. During the simulation, somewhat more than 50% of the comets were lost from the solar system due to planetary or stellar perturbations. The survivors were removed from the planetary region and left as members of what is generally known as the cometary cloud. At the end of the studied period, the semimajor axes of the surviving comets tend to be concentrated in the interval 2 × 104 < a < 3 × 104 AU. The orbital planes of the comets with initial a ≧ 3 × 104AU acquired a complete randomization while the others still maintain a slight predominance of direct orbits. In addition, comet orbits with final a < 6 × 104AU preserve high eccentricities with an average value greater than 0.8 Most “new” comets from the sample entering the region interior to Jupiter's orbit had already registered earlier passages through the planetary region. By scaling up the rate of paritions of hypothetical new comets with the observed one, the number of members of the cometary cloud is estimated to be about 7 × 1010 and the conclusion is drawn that Uranus and Neptune had to remove a number of comets ten times greater.  相似文献   

14.
Oort cloud comets occasionally obtain orbits which take them through the planetary region. The perturbations by the planets are likely to change the orbit of the comet. We model this process by using a Monte Carlo method and cross sections for orbital changes, i.e. changes in energy, inclination and perihelion distance, in a single planet-comet encounter. The influence of all major planets is considered. We study the distributions of orbital parameters of observable comets, i.e. those which have perihelion distance smaller than a given value. We find that enough comets are captured from the Oort cloud in order to explain the present populations of short period comets. The median value of cos i for the Jupiter family is 0.985 while it is 0.27 for the Halley types. The results may explain the orbital features of short period comets, assuming that the active lifetime of a comet is not much greater than 400 orbital revolutions.  相似文献   

15.
Among all the asteroid dynamical groups, Centaurs have the highest fraction of objects moving in retrograde orbits. The distribution in absolute magnitude, H, of known retrograde Centaurs with semi-major axes in the range 6–34 AU exhibits a remarkable trend: 10 % have H<10 mag, the rest have H>12 mag. The largest objects, namely (342842) 2008 YB3, 2011 MM4 and 2013 LU28, move in almost polar, very eccentric paths; their nodal points are currently located near perihelion and aphelion. In the group of retrograde Centaurs, they are obvious outliers both in terms of dynamics and size. Here, we show that these objects are also trapped in retrograde resonances that make them unstable. Asteroid 2013 LU28, the largest, is a candidate transient co-orbital to Uranus and it may be a recent visitor from the trans-Neptunian region. Asteroids 342842 and 2011 MM4 are temporarily submitted to various high-order retrograde resonances with the Jovian planets but 342842 may be ejected towards the trans-Neptunian region within the next few hundred kyr. Asteroid 2011 MM4 is far more stable. Our analysis shows that the large retrograde Centaurs form an heterogeneous group that may include objects from various sources. Asteroid 2011 MM4 could be a visitor from the Oort cloud but an origin in a relatively stable closer reservoir cannot be ruled out. Minor bodies like 2011 MM4 may represent the remnants of the primordial planetesimals and signal the size threshold for catastrophic collisions in the early Solar System.  相似文献   

16.
Stars passing through the Oort cloud eject comets to interstellar space and initiate showers of comets into the planetary region. Monte Carlo simulations of such passages are performed on a representative distribution of cometary orbits. Ejected comets generally lie along a narrow tunnel drilled by the star through the cloud. However, shower comets come from the entire cloud, and do not give a strong signature of the star's passage, except in the inverse semimajor axis distribution for the shower comets. The planetary system is likely not experiencing a cometary shower at this time.  相似文献   

17.
We estimated the gravitational influence of giant molecular clouds passing near the Solar system on the orbital evolution of Oort cloud comets. We performed a comparative analysis of the accuracies of the following two methods of allowance for the perturbations from giant molecular clouds: the impulse approximation and numerical integration. The impulse approximation yields fairly accurate estimates of the change in the energy of Oort cloud comets and the probability of their ejection under the influence of a molecular cloud if the path of the Solar system does not cross its boundary and if the molecular cloud may be treated as a point perturbing mass. The comet survival probability in the Oort cloud depends significantly on the internal structure of the perturbing molecular cloud and the impact parameter of the encounter. The most massive injection of comets into the planetary region and their ejection from the Oort cloud take place if the Solar system passes through a giant molecular cloud composed of several high-mass condensations. In this case, most of the comets injected into the planetary region were initially comets of the inner Oort cloud (a 10–4 AU) with high orbital eccentricities.  相似文献   

18.
Most known trans-neptunian objects (TNO's) are either on low eccentricity orbits or could have been perturbed to their current trajectories via gravitational interactions with known bodies. However, one or two recently-discovered TNO's are distant detached objects (DDO's) (perihelion, q>40 AU and semimajor axis, a>50 AU) whose origins are not as easily understood. We investigate the parameter space of a hypothetical distant planetary-mass solar companion which could detach the perihelion of a Neptune-dominated TNO into a DDO orbit. Perturbations of the giant planets are also included. The problem is analyzed using two models. In the first model, we start with a distribution of undetached, low-inclination TNO's having a wide range of semimajor axes. The planetary perturbations and the companion perturbation are treated in the adiabatic, secularly averaged tidal approximation. This provides a starting point for a more detailed analysis by providing insights as to the companion parameter space likely to create DDO's. The second model includes the companion and the planets and numerically integrates perturbations on a sampling that is based on the real population of scattered disk objects (SDO's). A single calculation is performed including the mutual interactions and migration of the planets. By comparing these models, we distinguish the distant detached population that can be attributable to the secular interaction from those that require additional planetary perturbations. We find that a DDO can be produced by a hypothetical Neptune-mass companion having semiminor axis, bc?2000 AU or a Jupiter-mass companion with bc?5000 AU. DDO's produced by such a companion are likely to have small inclinations to the ecliptic only if the companion's orbit is significantly inclined. We also discuss the possibility that the tilt of the planets' invariable plane relative to the solar equatorial plane has been produced by such a hypothetical distant planetary-mass companion. Perturbations of a companion on Oort cloud comets are also considered.  相似文献   

19.
We analyze the dynamical evolution of Jupiter-family (JF) comets and near-Earth asteroids (NEAs) with aphelion distances Q>3.5 AU, paying special attention to the problem of mixing of both populations, such that inactive comets may be disguised as NEAs. From numerical integrations for 2×106 years we find that the half lifetime (where the lifetime is defined against hyperbolic ejection or collision with the Sun or the planets) of near-Earth JF comets (perihelion distances q<1.3 AU) is about 1.5×105 years but that they spend only a small fraction of this time (∼ a few 103 years) with q<1.3 AU. From numerical integrations for 5×106 years we find that the half lifetime of NEAs in “cometary” orbits (defined as those with aphelion distances Q>4.5 AU, i.e., that approach or cross Jupiter's orbit) is 4.2×105 years, i.e., about three times longer than that for near-Earth JF comets. We also analyze the problem of decoupling JF comets from Jupiter to produce Encke-type comets. To this end we simulate the dynamical evolution of the sample of observed JF comets with the inclusion of nongravitational forces. While decoupling occurs very seldom when a purely gravitational motion is considered, the action of nongravitational forces (as strong as or greater than those acting on Encke) can produce a few Enckes. Furthermore, a few JF comets are transferred to low-eccentricity orbits entirely within the main asteroid belt (Q<4 AU and q>2 AU). The population of NEAs in cometary orbits is found to be adequately replenished with NEAs of smaller Q's diffusing outward, from which we can set an upper limit of ∼20% for the putative component of deactivated JF comets needed to maintain such a population in steady state. From this analysis, the upper limit for the average time that a JF comet in near-Earth orbit can spend as a dormant, asteroid-looking body can be estimated to be about 40% of the time spent as an active comet. More likely, JF comets in near-Earth orbits will disintegrate once (or shortly after) they end their active phases.  相似文献   

20.
For an Oort cloud comet to be seen as a new comet, its perihelion must be moved from a point exterior to the loss cylinder boundary to a point interior to observable limits in a single orbit. The galactic tide can do this continuously, in a non-impulsive manner. Near-parabolic comets, with specific angular momentum , will most easily be made observable. Therefore, to reduce the perihelion distance H must decrease. Since weakly perturbed comets are, in general, more numerous than strongly perturbed comets, we can anticipate that new comets made observable by a weak tidal torque will more likely be first observed when their slowly changing perihelion distances are approaching their minimum osculating values under the action of the tide, rather than receding from their minimum values. That is, defining ΔHtide as the vector change due to the galactic tidal torque during the prior orbit, and Hobs as the observed vector, the sign S≡Sign(Hobs·ΔHtide) will more likely be −1 than +1 if a weak galactic tidal perturbation indeed dominates in making comets observable. Using comet data of the highest quality class (1A) for new comets (a>10,000 AU), we find that 49 comets have S=−1 and 22 have S=+1. The binomial probability that as many or more would exhibit this characteristic if in fact S=?1 were equally likely is only 0.0009. This characteristic also persists in other long-period comet populations, lending support to the notion that they are dominated by comets recently arrived from the outer Oort cloud. The preponderance of S=−1 also correlates with weakly perturbed (i.e., smaller semimajor axis) new comets in a statistically significant manner. This is strong evidence that the data are of sufficiently high quality and sufficiently free of observational selection effects to detect this unique imprint of the tide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号