首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We seek to quantify glacial erosion in a low relief shield landscape in northern Sweden. We use GIS analyses of digital elevation models and field mapping of glacial erosion indicators to explore the geomorphology of three granite areas with the same sets of landforms and of similar relative relief, but with different degrees of glacial streamlining. Area 1, the Parkajoki district, shows no streamlining and so is a type area for negligible glacial erosion. Parkajoki retains many delicate pre‐glacial features, including tors and saprolites with exposure histories of over 1 Myr. Area 2 shows the onset of significant glacial erosion, with the development of glacially streamlined bedrock hills. Area 3 shows extensive glacial streamlining and the development of hill forms such as large crag and tails and roches moutonnées. Preservation of old landforms is almost complete in Area 1, due to repeated covers of cold‐based, non‐erosive ice. In Area 2, streamlined hills appear but sheet joint patterns indicate that the lateral erosion of granite domes needed to form flanking cliffs and to give a streamlined appearance is only of the order of a few tens of metres. The inheritance of large‐scale, pre‐glacial landforms, notably structurally controlled bedrock hills and low relief palaeosurfaces, remains evident even in Area 3, the zone of maximum glacial erosion. Glacial erosion here has been concentrated in valleys, leading to the dissection and loss of area of palaeosurfaces. Semi‐quantitative estimates of glacial erosion on inselbergs and palaeosurfaces and in valleys provide mean totals for glacial erosion of 8 ± 8 m in Area 1 and 27 ± 11 m in Area 3. These estimates support previous views that glacial erosion depths and rates on shields can be low and that pre‐glacial landforms can survive long periods of glaciation, including episodes of wet‐based flow.  相似文献   

2.
Twenty‐six sites with remnants of gravelly saprolites (grus) have been located in southeast Sweden. Joint block hills (castle kopjes) and steep rock walls with weathered joints as well as rounded boulders are documented to have an origin in deep weathering and subsequent stripping of saprolites. The saprolite remnants and landforms result from the fragmentation of the re‐exposed sub‐Cambrian peneplain along fracture systems. Only shallow saprolites occur on the elevated intact parts of the sub‐Cambrian peneplain, while saprolites up to 20 m thick are encountered in areas where the sub‐Cambrian peneplain is fractured and dissected. Neogene uplift with reactivation of the weathering system is thought to be the main cause of saprolite formation. Deep weathering is thus judged to have been the major agent of landform formation in the study area, while glacial and glaciofluvial erosion has contributed mainly by stripping saprolites, detaching corestones, and plucking joint blocks along weathered joints.  相似文献   

3.
Landforms are used as analytical tools to separate inherited features from the glacial impact on Precambrian basement rocks in southwest Sweden. The study covers three different palaeosurfaces, the sub-Cambrian peneplain (relative relief (r.r.) 0–20 m) with the character of a pediplain, an uplifted and dissected part of the sub-Cambrian peneplain (r.r. 5–40 m) and an etch-surface (r.r. 20–135 m), presumably sub-Mesozoic. The surfaces were recently re-exposed, probably due to a Neogene upheaval with some pre-glacial reshaping. Strong structural control and no alignment with glacial erosional directions other than those coinciding with structures, are arguments for etch processes as a most important agent for relief differentiation. This is strengthened by the occurrence of saprolite residues and etchforms in protected positions.
The glacial reshaping of the sub-Cambrian flat bedrock surfaces is negligible. The glacial impact becomes more evident in the uplifted and dissected parts of the peneplain and within the hilly sub-Mesozoic surface. The higher the initial relief the more effect of glacial erosion on individual hills, both on the abrading side, with formation of roches moutonnées, and on the plucking side. Detailed etchforms are preserved in protected positions in spite of erosion by a clearly wet-based ice. The magnitude of the Pleistocene glacial erosion is considerably less than the amplitude of the palaeorelief in the entire area.
Landscapes of areal glacial scouring have been described as comprising irregular depressions with intervening bosses scraped by ice and labelled 'knock and lochan' topography, but we suggest that an etched bedrock surface is a prerequisite for this type of landscape to develop.  相似文献   

4.
A coordinated geological-archaeological investigation has been carried out in southern Disko Bugt with the primary purpose of elucidating Holocene relative sea-level (RSL) changes. Two RSL curves representing the Early-Middle Holocene emergence of respectively southeastern and southwestern Disko Bugt have been constructed. Elevations of paleo-Eskimo sites of different ages have been surveyed and supplemented with similar elevations compiled from the literature. Detailed investigations have been carried out at two partly submerged Dorset I sites. At both sites, the stratigraphy of the foreshore has been recorded in terrain profiles.
It is concluded that the RSL history of southern Disko Bugt was one of steady emergence during Early-Middle Holocene followed by submergence in Late Holocene. The stratigraphy of the foreshore at the two Dorset I sites indicates that RSL has been at least 2-2.5 m below sea-level, and that the Transgression to present sea-level started after ca 1 ka B.P.  相似文献   

5.
Remnants of a high plateau have been identified on Nuussuaq and Disko, central West Greenland. We interpret the plateau as an erosion surface (the summit erosion surface) formed mainly by a fluvial system and graded close to its former base level and subsequently uplifted to its present elevation. It extends over 150 km east–west, being of low relative relief, broken along faults, tilted westwards in the west and eastwards in the east, and having a maximum elevation of ca. 2 km in central Nuussuaq and Disko. The summit erosion surface cuts across Precambrian basement rocks and Paleocene–Eocene lavas, constraining its age to being substantially younger than the last rift event in the Nuussuaq Basin, which took place during the late Maastrichtian and Danian. The geological record shows that the Nuussuaq Basin was subjected to subsidence of several kilometres during Paleocene–Eocene volcanism and was transgressed by the sea later during the Eocene. By comparing with results from apatite fission track analysis and vitrinite reflectance maturity data, it is suggested that formation of the erosion surface was probably triggered by an uplift and erosion event starting between 40 and 30 Ma. Surface formation was completed prior to an uplift event that started between 11 and 10 Ma and caused valley incision. This generation of valleys graded to the new base level and formed a lower erosion surface, at most 1 km below the summit erosion surface, thus indicating the magnitude of its uplift. Formation of this generation of valleys was interrupted by a third uplift event also with a magnitude of 1 km that lifted the landscape to near its present position. Correlation with the fission-track record suggests that this uplift event started between 7 and 2 Ma. Uplift must have been caused initially by tectonism. Isostatic compensation due to erosion and loading and unloading of ice sheets has added to the magnitude of uplift but have not significantly altered the configuration of the surface. It is concluded that the elevations of palaeosurfaces (surfaces not in accordance with present climate or tectonic conditions) on West Greenland's passive margin can be used to define the magnitude and lateral variations of Neogene uplift events. The striking similarity between the landforms in West Greenland and those on many other passive margins is also noted.  相似文献   

6.
The Mylliem granite is one of many igneous bodies within the basement complex of the Meghalaya Plateau, northeast India. Although relatively small in size at c. 90 km2, it is very diverse geomorphologically and shows a range of distinctive landscapes within its limits. Relict flat watershed ridges and topographic basins characterize the northern and eastern part of the pluton, whereas to the southwest the relief becomes higher, with steeper hillslopes and deeply incised valleys. Deep weathering and thick saprolites are abundant, as are residual landforms resulting from stripping of the saprolite: domes, tors and boulders. The major reason behind the diversity of granite landscape of the Mylliem pluton is the progress of headward erosion, initiated at the Dauki fault in the south of the Meghalaya. Headward erosion enhances local relief and hence, weathering systems. Multi‐concave morphology is gradually transformed into multi‐convex one, which is hypothesized to be the specific mode of plateau evolution and scarp retreat in granite bedrock.  相似文献   

7.
沙龙滨  任健  蒋辉  Kuijpers A 《极地研究》2008,20(3):229-239
本文分析了西格陵兰Disko湾的表层沉积物硅藻,发现并统计了分属于39个属的78个硅藻种及其变种。应用对应分析方法,对Disko湾表层沉积硅藻组合进行了分类:组合Ⅰ为Fragilariopsis cylindrus-Fragilariopsis oceanica组合,主要分布在西格陵兰Disko湾南部的近岸和外海处;组合Ⅱ为Detonula confervaceae休眠孢子-Thalassiosira nordenskioeldii组合,都分布在Dis-ko湾北部海域。其中,根据海流等环境要素的不同,组合Ⅰ又可进一步划分为两个亚区:组合Ⅰa为F.cylindrus-F.oceanica-Pauliella taeniata组合,主要分布于沿岸海区;组合Ⅰb为F.cy-lindrus-F.oceanica-Thalassiosira antarcticavar.borealis休眠孢子-Thalassiosiracf.antarcticavar.borealis组合,分布于外海区域。  相似文献   

8.
Erosion of Bedrock by Subglacial Meltwater, Soya Coast, East Antarctica   总被引:1,自引:0,他引:1  
The formation of the glacial erosional bedforms at the Soya Coast of Lützow-Holm Bay, East Antarctica is discussed. The streamlined bedforms in the studied area are classified into crescentic transverse ridges and tadpole rocks, and these bedforms are accompanied by small erosional marks (s-forms) which suport the interpretation of subglacial meltwater erosion. Some tadpole rocks are superimposed on a large roche moutonnée, and these two kinds of landform are interpreted to have different modes of formation. Observations and interpretations of these bedforms are used to reconstruct the historical development of the glacial erosional bedforms, and to draw attention to the significance and implications of subglacial meltwater erosion on the marginal area of the Antarctic Ice Sheet in the past. An initial episode of glacial plucking and abrasion produced roches moutonnées and basic large-scale landforms. Subglacial meltwater flowing peiodically into the Lützow-Holm Bay sculptured s-forms and streamlined bedforms in bedrock over much of the area. During this period, except for water-flowing phases, ice again came in contact with the bedrock to form striations superimposed on the s-forms and the hillocks.  相似文献   

9.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   

10.
The intricate problem of major Fennoscandian landforms has been studied along the following lines: Structural control, erosion surfaces, climatic geomorphological forms, glacial erosion, and river valley anomalies. The last-mentioned method of approach was tried several decades ago and is almost forgotten. It will be discussed here.

Of special interest are the river captures at the main water divide. Clear cases are few compared with the great difference in river length on both sides. River gaps form the main group of discussed cases; the most striking ones are in the Swedish Caledonides. Less well known are the water gaps in pre-Cambrian Sweden. Local tectonic movements cannot be excluded as an explanation in most cases, but are not necessarily the explanation. More probable as a general explanation are lost sedimentary rocks, notably Cambro-Silurian. This means a stable shield area, slowly being stripped of a sedimentary cover in relation to varying rock resistance and undulations of the crystalline basement.  相似文献   

11.
L. Allan James   《Geomorphology》2003,55(1-4):283
Pleistocene glacial erosion left a strong topographic imprint in the northwestern Sierra Nevada at many scales, yet the specific landforms and the processes that created them have not been previously documented in the region. In contrast, glaciation in the southern and central Sierra was extensively studied and by the end of the 19th century was among the best understood examples of alpine glaciation outside of the European Alps. This study describes glacially eroded features in the northwest Sierra and presents inferred linkages between erosional forms and Pleistocene glacial processes. Many relationships corroborate theoretical geomorphic principles. These include the occurrence of whalebacks in deep ice positions, roches moutonnées under thin ice, and occurrence of P-forms in low topographic positions where high subglacial meltwater pressures were likely. Some of the landforms described here have not previously been noted in the Sierra, including a large crag and tail eroded by shallow ice and erosional benches high on valley walls thought to be cut by ice-marginal channels.  相似文献   

12.
Field observations of weathering processes and the related landforms, combined with laboratory analyses of weathering products, permit a synthetic evaluation of Late Cenozoic weathering environments in the Sør Rondane Mountains, Antarctica, an arid upland characterized by low temperatures and strong winds. Rates and character of weathering depend mainly on moisture availability and the bedrock geology. Under the humid weathering regime that occurs only locally around the margin of the present sheet, frequent diurnal freeze-thaw cycles in summer cause relatively rapid rock fragmentation. Most of the mountains are situated in the arid weathering regime, under which rock breakdown is very slow unless the rock contains plenty of salts. Salt weathering becomes more intensive and extensive with exposure age, as a result of salt accumulation in rock, eventually producing soils as small as fine-silt size. Lack of clay mineralization even in weathered rocks having been exposed above the ice sheet prior to 4 Ma ago indicates that hydrolysis or carbonation of rock minerals has been insignificant during the past 4 Ma. The final products of weathering are due mainly to salt action and reflect the parent lithology. Resistant fine-grained granite forms strongly oxidized tors carved with tafoni, or fields of mushroom-like boulders overlying the fractured bedrock. Less resistant rocks, like biotite gneiss and amphibolite, produce stone pavements underlain by saline, silty soils up to 30–40 cm thick, the thickness of which corresponds to the maximum thaw depth.  相似文献   

13.
Pre-volcanic structure of the basement influences volcanism distribution and avalanche generation in volcanic edifices. Therefore, systematic studies of basement structure below volcanic chains are necessary to understand the deformation effects observed in the surface and vice versa. Based on a compilation of pre-existing data, interpretation of aerial photographs and satellite images, and a collection of structural data we analyzed morphological and structural features of the Cofre de Perote–Pico de Orizaba (CP–PO) volcanic chain and its basement. We have identified three sets of regional lineaments that are related to basement trends. (1) NW 55° SE fractures are parallel to anticline folds observed in Cretaceous rocks that originated during Laramide shortening. These folds present an abrupt morphology observed only in the eastern flank but that is likely to continue below the volcanic chain. (2) NE 55° SW fractures are parallel to normal faults at the basement. We infer that these basement faults confine the CP–PO chain within a stepped graben with a total normal displacement of about 400 m. These faults have been active through time since they have affected volcanic deposits and induced the emplacement of monogenetic vents. Notably, lineaments of monogenetic vents concentrate where the basement is relatively shallow. (3) Another set of faults, oriented N–S, has been observed affecting the scarce basement outcrops at the western flank of the chain covered by lacustrine deposits. Lineaments measured in the volcanic edifice of Pico de Orizaba correlate with the regional trends.In particular, the NE 55° SW alignment of monogenetic vents and fractures at Pico de Orizaba suggest that the same dike trend exists within the volcanic edifice. A normal fault with similar orientation was documented at the NE continuation of an alignment crossing the volcanic edifice along the Jamapa canyon. In the absence of magmatic activity related to collapses, the displacement of NE 55° SW faults represents a potential triggering mechanism for generating avalanches at Pico de Orizaba volcano. Instability is enhanced by the presence of N–S trending fractures crossing the entire volcanic edifice and E–W fractures affecting only the present day cone. We conclude that mechanical instability of the volcanic chain is influenced by the basement structure heterogeneity, but further detailed studies are necessary at individual volcanoes to evaluate their effects on volcano deformation.  相似文献   

14.
Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma− 1. The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.  相似文献   

15.
Only a few very young landforms are the result of currently operating geomorphic processes. Because the time scale for landscape evolution is much longer than the time scale for late Cenozoic climate changes, almost all landscapes are palimpsests, written over repeatedly by various combinations of climate-determined processes. Relict glacial and periglacial landforms are widely identified in mid-latitude regions that have been traditionally described as having been shaped by the “normal” processes of fluvial erosion. Less confidently, deeply weathered regolith and associated relict landforms in the middle and high latitudes are attributed to early Tertiary warmth. However, assemblages of geomorphic processes specific to certain climatic regions, like faunal and floral assemblages, cannot be translated across latitude, so in spite of the many books about the geomorphology of specific modern climate regions, there are few sources that discuss former warm high-latitude, or cold low-latitude, low-altitude geomorphic processes that have no modern analogs. Students and teachers alike who attempt to interpret landforms by extrapolating modern climatic conditions to other latitudinal zones will find their outlook broadened, and they become better prepared to consider the geomorphic impacts of global climate change.  相似文献   

16.
The occurrence of tors within glaciated regions has been widely cited as evidence for the preservation of relic pre-Quaternary landscapes beneath protective covers of non-erosive dry-based ice. Here, we test for the preservation of pre-Quaternary landscapes with cosmogenic surface exposure dating of tors. Numerous granite tors are present on summit plateaus in the Cairngorm Mountains of Scotland where they were covered by local ice caps many times during the Pleistocene. Cosmogenic 10Be and 26Al data together with geomorphic relationships reveal that these landforms are more dynamic and younger than previously suspected. Many Cairngorm tors have been bulldozed and toppled along horizontal joints by ice motion, leaving event surfaces on tor remnants and erratics that can be dated with cosmogenic nuclides. As the surfaces have been subject to episodic burial by ice, an exposure model based upon ice and marine sediment core proxies for local glacial cover is necessary to interpret the cosmogenic nuclide data. Exposure ages and weathering characteristics of tors are closely correlated. Glacially modified tors and boulder erratics with slightly weathered surfaces have 10Be exposure ages of about 15 to 43 ka. Nuclide inheritance is present in many of these surfaces. Correction for inheritance indicates that the eastern Cairngorms were deglaciated at 15.6 ± 0.9 ka. Glacially modified tors with moderate to advanced weathering features have 10Be exposure ages of 19 to 92 ka. These surfaces were only slightly modified during the last glacial cycle and gained much of their exposure during the interstadial of marine Oxygen Isotope Stage 5 or earlier. Tors lacking evidence of glacial modification and exhibiting advanced weathering have 10Be exposure ages between 52 and 297 ka. Nuclide concentrations in these surfaces are probably controlled by bedrock erosion rates instead of discrete glacial events. Maximum erosion rates estimated from 10Be range from 2.8 to 12.0 mm/ka, with an error weighted mean of 4.1 ± 0.2 mm/ka. Three of these surfaces yield model exposure-plus-burial ages of 295− 71+ 84, 520− 141+ 178, and 626− 85+ 102 ka. A vertical cosmogenic nuclide profile across the oldest sampled tor indicates a long-term emergence rate of 31 ± 2 mm/ka. These findings show that dry-based ice caps are capable of substantially eroding tors by entraining blocks previously detached by weathering processes. Bedrock surfaces and erratic boulders in such settings are likely to have nuclide inheritance and may yield erroneous (too old) exposure ages. While many Cairngorm tors have survived multiple glacial cycles, rates of regolith stripping and bedrock erosion are too high to permit the widespread preservation of pre-Quaternary rock surfaces.  相似文献   

17.
Although chemical weathering provides fundamental information relevant to geomorphology, the subject has been overlooked during the 20th century in Canada. This paper provides an overview of the current state of Canadian research on chemical weathering in southeastern Canada and takes into account three spatial and temporal contexts: (1) the formation of bedrock morphology by chemical weathering, (2) occurrences, characteristics and age of saprolites and (3) contemporary chemical denudation rates. Long-term geomorphological evolution of southeastern Canadian landscapes shows that chemical weathering has played an important role. An example is taken from the Laurentide region of the Canadian Shield north of Montréal (Québec). The present topography resulted from the stripping of the former weathering mantle and from the probable subsequent modification of the weathering front, first by the action of hillslope processes and rivers and then by glaciers, before and during Plio-Pleistocene times. The present landscape reflects the timing of the formation of erosion surfaces, and of the stripping of the Paleozoic cover rocks and exposure of the Shield. Since the late seventies, several isolated occurrences of saprolite-soil profiles have been discovered in eastern Canada and prompted a renewal of the study of these materials about the Cenozoic evolution of these regions. One of the problems in this field of research is the dating of saprolites and their inclusion in a chronostratigraphic framework, along with the other Cenozoic surficial deposits and landforms. Because of the multiple factors involved in the development of secondary minerals in saprolites during the course of weathering, it is preferable to distinguish the dating of saprolites from the study of their mineralogical and geochemical evolution. Fortunately, several new techniques are becoming available for the absolute dating of surficial deposits and saprolites, including the use of cosmogenic radionuclides. Saprolites provide a strong potential field of research for our understanding of the geological evolution of eastern Canada during the Cenozoic. Contemporary weathering and erosion rates are fields of research that have gained increasing interest recently, since modeling landscape geochemical response can be applied to various environmental stress situations, such as acidification by rain and forest harvesting. Rock-type may be the main factor explaining the large differences between watersheds. In fact, variability of cation removal in the temperate zone is probably most closely related to flow-paths of water. Investigations, at different scales, from entire watersheds to slopes to individual pedons, highlight the problem. In the Catamaran Brook watershed (New Brunswick), water chemistry is explained by a mix of groundwater and soil solution from the horizons at the base of the floodplain soils. Geochemical mass-balances based on net outputs give little information on the weathering reactions of primary minerals, the weathering products or on the nature of the weathering processes that provide the dissolved load of streams. Mineralogic and petrographic analysis of selected soil pedons are necessary to determine weathering reactions and their role as sources or sinks for bases, silica, aluminum and iron in the various compartments through which water percolates before it reaches the stream.  相似文献   

18.
This paper discusses direct current resistivity soundings and geomorphological studies of Quaternary deposits in two glacial troughs in the Abisko Mountains of northern Sweden. The subject of the fieldwork is the depth of Pleistocene glacial erosion. Studies were carried out in 1998 and 2003 in the Kärkevagge and Vassivagge. The estimated thickness of Quaternary deposits and bedrock properties are discussed in the broader context of glacial erosion studies in the Abisko area. Geophysical and geomorphological studies suggest that the depth of glacial erosion was highly differentiated from –190 m in the Torneträsk basin to the metric overall erosion on the upland plateau. In medium‐sized valleys several kilometres long, erosion depth measures 30–50 m. Present‐day stream channel patterns reveal a strong relation to the bedrock configuration in valley floors  相似文献   

19.
Oldlands are complex surfaces of low relief preserved on Precambrian shields and cratons and Paleozoic massifs. Interpretation of their character and age is difficult, but as a consequence of its particular location and of conceptual developments, much of the Australian Craton is now susceptible to analysis in terms of exhumation, etching, and multistage development. Exhumed surfaces of many ages are recorded. Long periods of weathering and erosion generated low relief, although recurrent block tectonics produced a differentiated topography and also resulted in regolithic veneers, some of them with mineral concentrations that later became duricrusts. The associated landforms are of various ages, but are mostly of Early and Middle Tertiary ages. Cretaceous and Early to Middle Tertiary etch forms are widely developed and preserved. Earlier Mesozoic (Jurassic, Triassic) surfaces are also represented or implied. Many cratonic landforms are related to the subsurface weathering and subsequent erosion to which oldlands have been subjected, to the exploitation of fractures in the basement rocks, to underprinting from fracture zones in the basement, and to deep erosion, causing rivers to breach alien structures. Multistage as well as two-stage forms are common, and pre-weathered detritus derived from regoliths was contributed to adjacent basins. [Key words: oldland, etch surface, underprinting, duricrust, paleosurface.]  相似文献   

20.
山东中低山丘陵古冰川遗迹质疑   总被引:1,自引:0,他引:1  
近年来,有关山东中低山丘陵“古冰川遗迹”时有报道,使中国东部第四纪冰川问题在某种意义上再起纷争。为作澄清,通过实地考察对业已报道的“古冰川遗迹”进行质疑,指出其列举的“冰碛垄”“古冰斗”“擦痕”“颤痕”等不符合冰川地貌证据的专有属性和判别标准,冰期划分和雪线重建不符合科学发现与科学事实确证所需的充分条件,即不满足“将古论今”、地貌组合三要素系统配套、成因-环境一致性的判别原则和方法。因此认为,山东中低山丘陵不存在第四纪冰川遗迹。部分学者提出“低海拔型古冰川”的论断,是基于例外主义的泛冰川论,必然会引致“雪球地球”事件进而颠覆第四纪为灵生纪的科学基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号