首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来极端气候事件的频发对全球和区域性水循环产生了重大影响,特别是2005—2017年间两次强ENSO(El Nino-Southern Oscillation)事件使得全球陆地水储量出现了较大的年际波动.GRACE(Gravity Recovery and Climate Experiment)重力卫星随着数据质量的提高、后处理方法的完善和超过十年的连续观测,捕捉陆地水储量异常的能力明显提高,这为研究2005—2017年间两次强ENSO事件对中国区域陆地水储量变化的影响提供了观测基础.本文综合利用GRACE卫星重力数据、GLDAS水文模型和实测降水资料分析了中国区域陆地水储量年际变化和与ENSO的关系.研究发现:长江流域中、下游地区和东南诸河流域与ENSO存在较高的相关性,与ENSO的相关系数最大值分别为0.55、0.78、0.70,较ENSO分别滞后约7个月、5个月和5个月.其中长江流域下游地区与ENSO的相关性最强,2010/11 La Nina和2015/16 El Nino两次强ENSO事件使得陆地水储量分别发生了约-24.1亿吨和27.9亿吨的波动.在2010/11 La Nina期间,长江流域下游地区和东南诸河流域陆地水储量异常约在2011年4—5月达到谷值,而长江流域中游地区晚1~2月达到谷值.在2015/16 El Nino期间,长江流域中、下游地区和东南诸河流域陆地水储量从2015年9月到2016年7月持续出现正异常信号.其中,2015年秋冬季(2015年9月至2016年1月)陆地水储量异常明显是受此次El Nino同期影响的结果;2016年春季(4—5月)陆地水异常是受到此次厄尔尼诺峰值的滞后影响所致;2016年7月的陆地水储量异常则与西北太平洋存在的异常反气旋环流有关.  相似文献   

2.
There is some evidence of rapid changes in the global atmosphere and hydrological cycle caused by the influence of climate variability. In West Africa, such changes impact directly on water resources leading to incessant extreme hydro‐meteorological conditions. This study examines the association of three global climate teleconnections—El‐Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multi‐decadal Oscillation (AMO) with changes in terrestrial water storage (TWS) derived from both Modern‐Era Retrospective Analysis for Research and Applications (MERRA, 1980–2015) and Gravity Recovery and Climate Experiment (GRACE, 2002–2014). In the Sahel region, positive phase of AMO coincided with above‐normal rainfall (wet conditions) and the negative phase with drought conditions and confirms the observed statistically significant association (r = 0.62) between AMO and the temporal evolutions of standardised precipitation index. This relationship corroborates the observed presence of AMO‐driven TWS in much of the Sahel region (though considerably weak in some areas). Although ENSO appears to be more associated with GRACE‐derived TWS over the Volta basin (r =?0.40), this study also shows a strong presence of AMO‐ and ENSO‐induced TWS derived from MERRA reanalysis data in the coastal West African countries and most of the regions below latitude 10°N. The observed presence of ENSO‐ and AMO‐driven TWS is noticeable in tropical areas with relatively high annual/bimodal rainfall and strong inter‐annual variations in surface water. The AMO has a wider footprint and sphere of influence on the region's TWS and suggests the important role of North Atlantic Ocean. IOD‐related TWS also exists in West Africa and its influence on the region's hydrology maybe secondary and somewhat complementary. Nonetheless, presumptive evidence from the study indicates that ENSO and AMO are the two major climatic indices more likely to impact on West Africa's TWS.  相似文献   

3.
Runoff signatures, including low flow, high flow, mean flow and flow variability, have important implications on the environment and society, predominantly through drought, flooding and water resources. Yet, the response of runoff signatures has not been previously investigated at the global scale, and the influencing mechanisms are largely unclear. Hence, this study makes a global assessment of runoff signature responses to the El Niño and La Niña phases using daily streamflow observations from 8217 gauging stations during 1960–2015. Based on the Granger causality test, we found that ~15% of the hydrological stations of multiple runoff signatures show a significant causal relationship with El Niño–southern oscillation (ENSO). The quantiles of all runoff signatures were larger during the El Niño phase than during the La Niña phase, implying that the entire flow distribution tends to shift upward during El Niño and downward during La Niña. In addition, El Niño has different effects on low and high flows: it tends to increase the low and mean flow signatures but reduces the high flow and flow variability signatures. In contrast, La Niña generally reduces all runoff signatures. We highlight that the impacts of ENSO on streamflow signatures are manifested by its effects on precipitation (P), potential evaporation (PET) and leaf area index (LAI) through ENSO-induced atmospheric circulation changes. Overall, our study provides a comprehensive picture of runoff signature responses to ENSO, with valuable insights for water resources management and flood and drought disaster mitigation.  相似文献   

4.
The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are two important climate oscillations that affect hydrological processes at global and regional scales. However, few studies have attempted to identify their single and combined influences on water discharge variability at multiple timescales. In this study, we examine temporal variation in water discharge from the Yangtze River into the sea and explore the influence of the ENSO and the PDO on multiscale variations in water discharge over the last century. The results of the wavelet transform analysis of the water discharge series show significant periodic variations at the interannual timescale of 2 to 8 years and the decadal timescale of 15 to 17 years. Water discharge tended to be higher during the La Niña–PDO cold phase and lower during the El Niño–PDO warm phase. The results of the cross wavelet spectrum and wavelet coherence analyses confirm the relationship between the interannual (i.e., 2 to 8 years) and decadal (i.e., 15 to 17 years) periodicities in water discharge with the ENSO and the PDO, respectively. As an important large‐scale climate background, the PDO can modulate the influence of the ENSO on water discharge variability. In general, the warm PDO enhances the influence of El Niño events, and the cold PDO enhances the influence of La Niña events. Our study is helpful in understanding the influencing mechanism of climate change on hydrological processes and provides an important scientific guideline for water resource prediction and management.  相似文献   

5.
The relationship between El Niño Southern Oscillation (ENSO) and precipitation along the Peruvian Pacific coast is investigated over 1964–2011 on the basis of a variety of indices accounting for the different types of El Niño events and atmospheric and oceanographic manifestations of the interannual variability in the tropical Pacific. We show the existence of fluctuations in the ENSO/precipitation relationship at decadal timescales that are associated with the ENSO property changes over the recent decades. Several indices are considered in order to discriminate the influence of the two types of El Niño, namely, the eastern Pacific El Niño and the central Pacific El Niño, as well as the influence of large‐scale atmospheric variability associated to the Madden and Julian Oscillation, and of regional oceanic conditions. Three main periods are identified that correspond to the interleave periods between the main climatic transitions over 1964–2011, i.e. the shifts of the 1970s and the 2000s, over which ENSO experiences significant changes in its characteristics. We show that the relationship between ENSO and precipitation along the western coast of Peru has experienced significant decadal change. Whereas El Niño events before 2000 lead to increased precipitation, in the 2000s, ENSO is associated to drier conditions. This is due to the change in the main ENSO pattern after 2000 that is associated to cooler oceanic conditions off Peru during warm events (i.e. central Pacific El Niño). Our analysis also indicates that the two extreme El Niño events of 1982/1983 and 1997/1998 have overshadowed actual trends in the relationship between interannual variability in the tropical Pacific and precipitation along the coast of Peru. Overall, our study stresses on the complexity of the hydrological cycle on the western side of the Andes with regard to its relationship with the interannual to decadal variability in the tropical Pacific. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
本文利用GRACE (Gravity Recovery and Climate Experiment) 卫星重力资料研究了亚马逊流域2002-2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002-2003年和2005年,亚马逊流域发生明显的干旱现象;2007年至2009年,陆地水呈逐年增加的趋势,并在2009年6月变化值达到最大,为772±181 km3;自2009年6月至2010年12月,陆地水总量又急剧减少了1139±262 km3,这相当于全球海平面上升3.2±0.7 mm所需的水量.水文模式得到的亚马逊流域陆地水在2010年也表现出明显的减少.降雨资料与GRACE观测资料有很好的一致性.在2005年和2010年的干旱期,亚马逊流域的降雨显著减少,说明降雨是亚马逊流域陆地水变化的重要因素.此外,本文采用的尺度因子的方法有效地降低了GRACE后处理误差的影响.  相似文献   

7.
The relationship between El Niño–Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South‐east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non‐parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the effects of the El Niño-Southern Oscillation (ENSO) on the annual maximum flood (AMF) and volume over threshold (VOT) in two major neighbouring river basins in southwest Iran are investigated. The basins are located upstream of the Dez and Karun-I dams and cover over 40?000 km2 in total area. The effects of ENSO on the frequency, magnitude and severity (frequency times magnitude) of flood characteristics over the March–April period were analysed. ENSO indices were also correlated with both AMF and VOT. The results indicate that, in the Dez and Karun basins, the El Niño phenomenon intensifies March–April floods compared with neutral conditions. The opposite is true in La Niña conditions. The degree of the effect is more intense in the El Niño period.  相似文献   

9.
The Earth’s surface fluid mass redistribution, e.g., groundwater depletion and severe drought, causes the elastic surface deformation, which can be measured by global positioning system (GPS). In this paper, the continuous GPS observations are used to estimate the terrestrial water storage (TWS) changes in southwestern USA, which have a good agreement with TWS changes derived from Gravity Recovery And Climate Experiment (GRACE) and hydrological models. The seasonal variation is mostly located in the Rocky mountain range and Mississippi river watershed. The largest amplitude of the seasonal variation is between 12 and 15 cm in equivalent water thickness. The timing and duration of TWS anomalies caused by the severe drought in 2012 are observed by the GPS-derived TWS, which are confirmed by the GRACE results. Different hydrological models are further used for comparison with GPS and GRACE results. The magnitude of TWS depletion from GRACE and GPS observations during the drought is larger than that from hydrological models, which indicates that the drought was caused by comparable groundwater and surface water depletion. The interannual TWS changes from GPS are also consistent with the precipitation pattern over the past 6 years, which further confirms the severe drought in 2012. This study demonstrates that continuous GPS observations have the potential as real-time drought indicator.  相似文献   

10.
Abstract

El Niño Southern Oscillation (ENSO) has been linked to climate anomalies throughout the world. This paper presents an overview of global ENSO-streamflow teleconnection and identifies regions where the relationship may be exploited to forecast streamflow several months ahead. The teleconnection is investigated by fitting a first harmonic to 24-month El Niño streamflow composites from 581 catchments worldwide and the potential for forecasting is investigated by calculating the lag correlation between streamflow and two indicators of ENSO. The analyses indicate clear ENSO-streamflow teleconnections in many catchments, some of which are consistent across large geographical regions. Strong and regionally consistent ENSO-streamflow teleconnections are identified in Australia and New Zealand, South and Central America, and weaker signals are identified in some parts of Africa and North America. The results suggest that the ENSO-streamflow relationship and the serial correlation in streamflow can be used to successfully forecast streamflow. The streamflow forecasts can be used to help manage water resources, particularly in systems with high interannual variability in Australia, southern and drier parts of Africa and some areas of North America.  相似文献   

11.
The South Pacific low latitude western boundary currents (LLWBCs) carry waters of subtropical origin through the Solomon Sea before joining the equatorial Pacific. Changes in their properties or transport are assumed to impact El Niño Southern Oscillation (ENSO) dynamics. At ENSO timescales, the LLWBCs transport tends to counterbalance the interior geostrophic one. When transiting through the complex geography of the Solomon Sea, the main LLWBC, the New Guinea Coastal Undercurrent, cannot follow a unique simple route to the equator. Instead, its routes and water mass properties are influenced by the circulation occurring in the Solomon Sea. In this study, the response of the Solomon Sea circulation to ENSO is investigated based on a numerical simulation. The transport anomalies entering the Solomon Sea from the south are confined to the top 250 m of the water column, where they represent 7.5 Sv (based on ENSO composites) for a mean transport of 10 Sv. The induced circulation anomalies in the Solomon Sea are not symmetric between the two ENSO states because of (1) a bathymetric control at Vitiaz Strait, which plays a stronger role during El Niño, and (2) an additional inflow through Solomon Strait during La Niña events. In terms of temperature and salinity, modifications are particularly notable for the thermocline water during El Niño conditions, with cooler and fresher waters compared to the climatological mean. The surface water at Vitiaz Strait and the upper thermocline water at Solomon Strait, feeding respectively the equatorial Pacific warm pool and the Equatorial Undercurrent, particularly affect the heat and salt fluxes. These fluxes can change by up to a factor of 2 between extreme El Niño and La Niña conditions.  相似文献   

12.
本文基于CSR最新公布的GRACE RL06版本数据,采用Slepian空域反演法估算了南极冰盖27个流域的质量变化.Slepian空域反演法结合了Slepian空间谱集中法和空域反演法的技术优势,能够有效降低GRACE在小区域反演时信号出现的严重泄漏和衰减,进而精确获得南极冰盖在每个流域的质量变化.相对于GRACE RL05版本数据,RL06在条带误差的控制上要更加优化,获得的南极冰盖质量变化时间序列也更加平滑,但在趋势估算上差别并不明显(小于10Gt/a).本文的估算结果显示:在2002年4月至2016年8月期间,整个南极冰盖质量变化速率为-118.6±16.3Gt/a,其中西南极为-142.4±10.5Gt/a,南极半岛为-29.2±2.1Gt/a,东南极则为52.9±8.6Gt/a.南极冰盖损失最大的区域集中在西南极Amundsen Sea Embayment(流域20-23),该地区质量变化速率为-203.5±4.1Gt/a,其次为南极半岛(流域24-27)以及东南极Victoria-Wilkes Land (流域13-15),质量变化速率分别为-29.2±2.1Gt/a和-19.0±4.7Gt/a,其中Amundsen Sea Embayment和南极半岛南部两个地区的冰排放呈现加速状态.南极冰盖质量显著增加的区域主要有西南极的Ellsworth Land(流域1)和Siple Coast(流域18和19)以及东南极的Coats-Queen Maud-Enderby Land (流域3-8),三个地区质量变化速率分别为17.2±2.4Gt/a、43.9±1.9Gt/a和62.7±3.8Gt/a,质量增加大多来自降雪累积,比如:Coats-Queen Maud-Enderby Land在2009年和2011年发生的大规模降雪事件,但也有来自冰川的增厚,如:Siple Coast地区Kamb冰流的持续加厚.此外,对GRACE估算的南极冰盖质量变化年际信号进行初步分析发现,GRACE年际信号与气候模型估算的冰盖表面质量平衡年际信号存在显著的线性相关关系,但与主要影响南极气候年际变化的气候事件之间却不存在线性相关关系,这说明南极冰盖质量变化的年际信号主要受冰盖表面质量平衡的支配,而气候事件对冰盖表面质量平衡的影响可能是复杂的非线性耦合过程.  相似文献   

13.
In recent decades, decomposition techniques have enabled increasingly more applications for dimension reduction, as well as extraction of additional information from geophysical time series. Traditionally, the principal component analysis (PCA)/empirical orthogonal function (EOF) method and more recently the independent component analysis (ICA) have been applied to extract, statistical orthogonal (uncorrelated), and independent modes that represent the maximum variance of time series, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the autocovariance matrix and diagonalizing higher (than two) order statistical tensors from centered time series, respectively. However, the stationarity assumption in these techniques is not justified for many geophysical and climate variables even after removing cyclic components, e.g., the commonly removed dominant seasonal cycles. In this paper, we present a novel decomposition method, the complex independent component analysis (CICA), which can be applied to extract non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA, where (a) we first define a new complex dataset that contains the observed time series in its real part, and their Hilbert transformed series as its imaginary part, (b) an ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex dataset in (a), and finally, (c) the dominant independent complex modes are extracted and used to represent the dominant space and time amplitudes and associated phase propagation patterns. The performance of CICA is examined by analyzing synthetic data constructed from multiple physically meaningful modes in a simulation framework, with known truth. Next, global terrestrial water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) gravimetry mission (2003–2016), and satellite radiometric sea surface temperature (SST) data (1982–2016) over the Atlantic and Pacific Oceans are used with the aim of demonstrating signal separations of the North Atlantic Oscillation (NAO) from the Atlantic Multi-decadal Oscillation (AMO), and the El Niño Southern Oscillation (ENSO) from the Pacific Decadal Oscillation (PDO). CICA results indicate that ENSO-related patterns can be extracted from the Gravity Recovery And Climate Experiment Terrestrial Water Storage (GRACE TWS) with an accuracy of 0.5–1 cm in terms of equivalent water height (EWH). The magnitude of errors in extracting NAO or AMO from SST data using the complex EOF (CEOF) approach reaches up to ~50% of the signal itself, while it is reduced to ~16% when applying CICA. Larger errors with magnitudes of ~100% and ~30% of the signal itself are found while separating ENSO from PDO using CEOF and CICA, respectively. We thus conclude that the CICA is more effective than CEOF in separating non-stationary patterns.  相似文献   

14.
在无真实观测值的情况下,本文利用广义三角帽方法评估了五种GRACE时变重力场模型(CSR、GFZ、GRGS、HUST发布的球谐系数解和JPL发布的Mascon解)反演中国大陆地区2003-2013年水储量变化的不确定性.研究结果表明,CSR、GFZ、JPL、HUST和GRGS反演月水储量变化不确定性的区域平均RMS分别为14.4 mm、26.3 mm、25.3 mm、26.6 mm和56.1 mm,其中GRGS的结果未恢复泄漏信号;在季和年尺度上,模型的不确定性均小于月尺度;扣除周期和趋势信号后,各模型反演结果更为一致.除长江流域外,CSR在13个流域的不确定性均小于其他模型,GRGS反演各流域水储量变化的不确定性通常较大,且可能高估了温带大陆性气候地区水储量的波动;CSR和JPL的不确定性受流域周边水文特征、气候类型、流域面积和形状的影响相对较小,不确定性变化范围分别为2.3~17.1 mm和5.6~22.5 mm,GFZ和HUST受影响较大,不确定性变化范围分别为5.5~35.1 mm和4.0~40.6 mm.本文的研究结果为GRACE产品不确定性评估提供了新的途径,为GRACE时变重力场模型的选取提供参考.  相似文献   

15.
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.  相似文献   

16.
The plausible long‐term trend of precipitation in China and its association with El Niño–southern oscillation (ENSO) are investigated by using non‐parametric techniques. It is concluded that a greater number of decreasing trends are observed than are expected to occur by chance. Geographically, the decreasing trend was concentrated in most parts of China, including the Songliao River, Hai River, Huai River, Yellow River, Zhujiang River, and southern part of the Yangtze River basins, whereas an increasing trend appeared primarily in the western and middle parts of China, mainly including the Inland River basin, and the northern part of the Yangtze River basins. Monthly mean precipitation for the summer and early autumn months generally decreased, with the greatest decrease occurring in August. The precipitation in spring from January to April and later autumn, including September and October, tended to increase. The teleconnection between precipitation and ENSO has been investigated by using the non‐parametric Kendall's τ. The correlation coefficients between the southern oscillation index (SOI) and precipitation show the areas with positive or negative associations. Approximately 20% of the stations exhibit statistically significant correlations between SOI and precipitation, of which 70% show a negative correlation, with most of them appearing in southeast China and several appearing in northwest and northeast China. Similar regional patterns are also observed when the precipitation records are further subdivided into El Niño, La Niña, and neutral periods. Statistical tests for the three kinds of time series were carried out using the non‐parametric Wilcoxon rank‐sum test, and it is noted that the stations with significant differences in precipitation averages are mainly marked in the Yellow River basin and south China. The frequencies of below‐ and above‐average precipitation that occurred during the El Niño, La Niña, and neutral periods are estimated as well. The result shows that greater precipitation may be associated with El Niño episodes in south China, but drought may easily occur during El Niño episodes in the Yellow River basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates mechanisms controlling the mixed-layer salinity (MLS) in the tropical Pacific during 1990–2009. We use monthly 1°?×?1° gridded observations of salinity, horizontal current and fresh water flux, and a validated ocean general circulation model with no direct MLS relaxation in both its full resolution (0.25° and 5 days) and re-sampled as the observation time/space grid resolution. The present study shows that the mean spatial distribution of MLS results from a subtle balance between surface forcing (E???P, evaporation minus precipitation), horizontal advection (at low and high frequencies) and subsurface forcing (entrainment and mixing), all terms being of analogous importance. Large-scale seasonal MLS variability is found mainly in the Intertropical and South Pacific Convergence Zones due to changes in their meridional location (and related heavy P), in the North Equatorial Counter Currents, and partly in the subsurface forcing. Maximum interannual variability is found in the western Pacific warm pool and in both convergence zones, in relation to El Niño Southern Oscillation (ENSO) events. In the equatorial band, this later variability is due chiefly to the horizontal advection of low salinity waters from the western to the central-eastern basin during El Niño (and vice versa during La Niña), with contrasted evolution for the Eastern and Central Pacific ENSO types. Our findings reveal that all terms of the MLS equation, including high-frequency (<1 month) salinity advection, have to be considered to close the salinity budget, ruling out the use of MLS (or sea surface salinity) only to directly infer the mean, seasonal and/or interannual fresh water fluxes.  相似文献   

18.
The objective of the work discussed in this paper was to seek possible links between surface hydrology in Southwestern (SW) Poland and El Niño/Southern Oscillation (ENSO). Although the impact of ENSO on hydrology in Europe has been investigated by many researchers, no clear picture demonstrating spatial variability of such a teleconnection has yet been unequivocally reported. In particular, there is no comprehensive study on ENSO–streamflow links for Polish rivers. Herein, discharge time series from 15 sites located at lowland and mountain rivers in SW Poland and different ENSO indices are examined. They include atmospheric time series (axial component of atmospheric angular momentum, Southern Oscillation Index), oceanic indices (Niño 3.4 Index, Global SST Index), geodetic data (length-of-day), and the combined index (Multivariate ENSO Index). The data span the period from November 1971 to October 2006. On the basis of cross-correlation and wavelet analyses it was found that there is a weak but significant link between ENSO and surface hydrology in SW Poland. It is inferred that ENSO episodes may be among a few factors affecting winter and early spring discharges of rivers in SW Poland and may have a (probably limited) impact on snow-melt flood generation.  相似文献   

19.
The influence of the El Niño Southern Oscillation (ENSO) phenomenon on monthly mean river flows of 12 rivers in the extreme south of South America in the 20th century is analysed. The original dataset of each river is divided into two subsets, i.e. warm ENSO events or El Niño, and cold ENSO events or La Niña. The elements of the subsets are composites of 24 consecutive months, from January of the year when the ENSO event begins to December of the following year. The ENSO signal is analysed by comparing the monthly mean value of each subset to the long-term monthly mean. The results reveal that, in general, monthly mean El Niño (La Niña) river flows are predominantly larger (smaller) than the long-term monthly mean in the rivers studied. The anomalies are more evident during the second half of the year in which the event starts and the first months of the following year.  相似文献   

20.
Understanding the influences of local hydroclimatology and two large-scale oceanic-atmospheric oscillations (i.e., Atlantic Multidecadal Oscillation (AMO) and El Niño-Southern Oscillation (ENSO)) on seasonal precipitation (P) and temperature (T) relationships for a tropical region (i.e., Florida) is the focus of this study. The warm and cool phases of AMO and ENSO are initially identified using sea surface temperatures (SSTs). The associations of SSTs and regional minimum, maximum and average surface air temperatures (SATs) with precipitation are then evaluated. The seasonal variations in P-SATs and P-SSTs associations considering AMO and ENSO phases for sites in (1) two soil temperature regimes (i.e., thermic and hyperthermic); (2) urban and non-urban regions; and (3) regions with and without water bodies, are analysed using two monthly datasets. The analyses are carried out using trend tests, two association measures, nonparametric and parametric statistical hypothesis tests and kernel density estimates. Decreasing (increasing) trend in precipitation (SATs) is noted in the recent multi-decadal period (1985–2019) compared to the previous one (1950–1984) indicating a progression towards warmer and drier climatic conditions across Florida. Spatially and temporally non-uniform variations in the associations of precipitation with SATs and SSTs are noted. Strong positive (weak negative) P–T associations are noted during the wet (dry) season for both AMO phases and El Niño, while significant (positive) P–T associations are observed across southern Florida during La Niña in the dry season. The seasonal influences are predominant in governing the P–T relationship over the regions with and without water bodies; however, considerable variations between El Niño and La Niña are noted during the dry season. The climate variability influences on P–T correlations for hyperthermic and thermic soil zones are found to be insignificant (significant) during the wet (dry) season. Nonparametric clustering is performed to identify the spatial clusters exhibiting homogeneous P–T relationships considering seasonal and climate variability influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号