首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In recent years, it has been shown that microlensing is a powerful tool for examining the atmospheres of stars in the Galactic bulge and Magellanic Clouds. The high gradient of magnification across the source during both small impact parameter events and caustic crossings offers a unique opportunity for determining the surface brightness profile of the source. Furthermore, models indicate that these events can also provide an appreciable polarization signal: arising from differential magnification across the otherwise symmetric source. Earlier work has addressed the signal from a scattering photosphere for both point mass lenses and caustic crossings. In a previous paper, polarimetric variations from point lensing of a circumstellar envelope were considered, as would be suitable for an extended envelope around a red giant. In this work, we examine the polarization in the context of caustic crossing events, the scenario that represents the most easily accessible situation for actually observing a polarization signal in Galactic microlensing. Furthermore, we present an analysis of the effectiveness of using the polarimetric data to determine the envelope properties, illustrating the potential of employing polarimetry in addition to photometry and spectroscopy with microlensing follow-up campaigns.  相似文献   

2.
Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.  相似文献   

3.
We consider small-scale spheroidal clusters of weakly interacting massive particles in our Galaxy as non-compact gravitational microlenses and predict the appearance of caustics in the plane of a lensed source. The crossing of these caustics by a lensed star can produce a large variety of light curves, including some observed in actual microlensing events that have been interpreted as manifestations of binary gravitational lenses. We consider also observable effects during the gravitational microlensing of stars of non-zero angular size with a given brightness distribution across their disks by such an exotic objects as natural wormholes and objects whose space-time environment is described with the NUT metric. We demonstrate that, under certain conditions, the microlensing light curves, chromatic and polarizational effects due to the properties of the lens and the star disk brightness distributions can differ considerably from those observed for a Schwarzschild gravitational lens, so that their analysis can facilitate the identification of such objects.  相似文献   

4.
《New Astronomy》2003,8(4):325-335
Pixel lensing is a technique used to search for baryonic components of dark matter (MACHOs) and allows detection of microlensing events even when the target galaxies are not resolved into individual stars. Potentially, it has the advantage of providing higher statistics than other methods but, unfortunately, traditional approaches to pixel lensing are very demanding in terms of computing time. We present the new, user friendly, tool MEDEA (Microlensing Experiment Data-Analysis Software for Events with Amplification). The package can be used either in a fully automatic or semi-automatic mode and can perform an on-line identification of events by means of a two level trigger and a quasi-on-line data analysis. The package will find application in the exploration of large databases as well as in the exploitation of specifically tailored future surveys.  相似文献   

5.
6.
Assuming a two-component quasar structure model consisting of a central compact source and an extended outer feature, we produce microlensing simulations for a population of compact masses in the lensing galaxy of Q2237+0305. Such a model is a simplified version of that adopted to explain the brightness variations observed in Q0957. The microlensing light curves generated for a range of source parameters were compared to the light curves obtained in the framework of the Optical Gravitational Lensing Experiment program. With a large number of trials, we built, in the domain of the source structure parameters, probability distributions to find 'good' realizations of light curves. The values of the source parameters which provide the maximum of the joint probability distribution calculated for all the image components have been accepted as estimates for the source structure parameters. The results favour the two-component model of the quasar brightness structure over a single compact central source model, and in general the simulations confirm the Schild–Vakulik model that previously described successfully the microlensing and other properties of Q0957. Adopting 3300 km s−1 for the transverse velocity of the source, the effective size of the central source was determined to be about  2 × 1015 cm  , and  ɛ≈ 2  was obtained for the ratio of the integral luminosity of the outer feature to that of the central source.  相似文献   

7.
Globular clusters have been alternatively predicted to host intermediate-mass black holes (IMBHs) or nearly impossible to form and retain them in their centres. Over the last decade enough theoretical and observational evidence have accumulated to believe that many galactic globular clusters may host IMBHs in their centres, just like galaxies do. The well-established correlations between the supermassive black holes and their host galaxies do suggest that, in extrapolation, globular clusters (GCs) follow the same relations. Most of the attempts in search of the central black holes (BHs) are not direct and present enormous observational difficulties due to the crowding of stars in the GC cores. Here we propose a new method of detection of the central BH – the microlensing of the cluster stars by the central BH. If the core of the cluster is resolved, the direct determination of the lensing curve and lensing system parameters are possible; if unresolved, the differential imaging technique can be applied. We calculate the optical depth to central BH microlensing for a selected list of Galactic GCs and estimate the average time duration of the events. We present the observational strategy and discuss the detectability of microlensing events using a 2-m class telescope.  相似文献   

8.
Gaudi & Gould showed that close companions of remote binary systems can be efficiently detected by using gravitational microlensing via the deviations in the lensing light curves induced by the existence of the lens companions. In this paper, we introduce another channel to detect faint close-in binary companions by using microlensing. This method utilizes a caustic-crossing binary lens event with a source also composed of binary stars, where the companion is a faint star. Detection of the companion is possible because the flux of the companion can be highly amplified when it crosses the lens caustic. The detection is facilitated since the companion is more amplified than the primary because it, in general, has a smaller size than the primary, and thus experiences less finite source effect. The method is an extension of the previous one suggested to detect close-in giant planets by Graff & Gaudi and Lewis & Ibata and further developed by Ashton & Lewis. From the simulations of realistic Galactic bulge events, we find that companions of K-type main-sequence or brighter stars can be efficiently detected from the current type of microlensing follow-up observations by using the proposed method. We also find that compared with the method of detecting lens companions for which the efficiency drops significantly for binaries with separations ≲0.2 of the angular Einstein ring radius, θ E, the proposed method has an important advantage of being able to detect companions with substantially smaller separations down to ∼     .  相似文献   

9.
When a microlensing light curve is contaminated by blended light from unresolved stars near the line of sight to the lensed star, the light curve shape and corresponding parametrization for the event will differ from the values expected when the event is not affected by blending. As a result, blending makes it difficult to identify the major lens population and to estimate the amount of lensing matter. In order to estimate the effect of blending on the result of lensing experiments, it is, therefore, essential to know how the observed lensing parameters change depending on the fraction of blended light. Previously, the changed lensing parameters were obtained with a statistical method that not only required a large amount of computation time but also was prone to uncertainty. In this paper, we derive analytic relations between the lensing parameters with and without the effect of blending. By using these relations, we investigate the dependence of the observed lensing parameters on the amount of blended light, the impact parameter and the threshold amplification for event detection.  相似文献   

10.
We present the results of microlens ray-tracing simulations showing the effect of absorbing material between a source quasar and a lensing galaxy in a gravitational lens system. We find that, in addition to brightness fluctuations due to microlensing, the strength of the absorption line relative to the continuum varies with time, with the properties of the variations depending on the structure of the absorbing material. We conclude that such variations will be measurable via ultraviolet spectroscopy of image A of the gravitationally lensed quasar Q2237+0305 if the Lyman α clouds between the quasar and the lensing galaxy possess structure on scales smaller than ∼0.1 pc. The time-scale for the variations is on the order of years to decades, although very short-term variability can occur. While the Lyman α lines may not be accessible at all wavelengths, this approach is applicable to any absorption system, including metal lines.  相似文献   

11.
With increasingly large data sets, weak lensing measurements are able to measure cosmological parameters with ever-greater precision. However, this increased accuracy also places greater demands on the statistical tools used to extract the available information. To date, the majority of lensing analyses use the two-point statistics of the cosmic shear field. These can be either studied directly using the two-point correlation function or in Fourier space, using the power spectrum. But analysing weak lensing data inevitably involves the masking out of regions, for example to remove bright stars from the field. Masking out the stars is common practice but the gaps in the data need proper handling. In this paper, we show how an inpainting technique allows us to properly fill in these gaps with only   N log  N   operations, leading to a new image from which we can compute straightforwardly and with a very good accuracy both the power spectrum and the bispectrum. We then propose a new method to compute the bispectrum with a polar fft algorithm, which has the main advantage of avoiding any interpolation in the Fourier domain. Finally, we propose a new method for dark matter mass map reconstruction from shear observations, which integrates this new inpainting concept. A range of examples based on 3D N -body simulations illustrates the results.  相似文献   

12.
RoboNet-1.0 is a prototype global network of three two-meter robotic telescopes, placed in La Palma (Canary Islands), Maui (Hawaii), and Siding Spring (Australia). In April 2004, funding for RoboNet-1.0 until July 2007 was approved by PPARC's Science Committee, and the project commenced in earnest in August 2004. The search for cool extra-solar planets by optimised robotic monitoring of Galactic microlensing events is one of the two core elements of its scientific programme—observations of gamma-ray bursts is the other. During the 2005 observing season, light curves of more than 60 microlensing events have been sampled at regular intervals. One particular event, OGLE-2005-BLG-71, showed an anomaly caused by an extrasolar planet, which constituted the second detection of a planet by microlensing. As a by-product, our dense monitoring during caustic crossing events can resolve the brightness profile of observed source stars, providing an observational test of stellar atmosphere models.Current development work uses e-science to create a fully automated chain linking event monitoring to the detection of anomalies in the microlensing lightcurves that could be indications of planetary companions and on to the triggering of follow-up observations. In order to fully exploit the potential of such a network for detecting exoplanets, it will be necessary to complement the existing RoboNet with additional telescopes in the southern hemisphere.  相似文献   

13.
If it is hypothesized that there is no dark matter, then some alternative gravitational theory must take the place of general relativity (GR) on the largest scales. Dynamical measurements can be used to investigate the nature of such a theory, but only where there is visible matter. Gravitational lensing is potentially a more powerful probe as it can be used to measure deflections far from the lens and, for sufficiently large separations, allow it to be treated as a point-mass. Microlensing within the local group does not yet provide any interesting constraints, as only images formed close to the deflectors are appreciably magnified, but stacking of multiple light-curves and observations of microlensing on cosmological scales may be able to discriminate between GR and non-dark matter theories. Galaxy–galaxy lensing is likely to be a more powerful probe of gravity, with the Sloan Digital Sky Survey (SDSS) commissioning data used here to constrain the deflection law of galaxies to be     for impact parameters in the range     . Together with observations of flat rotation curves, these results imply that, in any gravitational theory, photons must experience (close to) twice the deflection of massive particles moving at the speed of light (at least on these physical scales). The full SDSS data set will also be sensitive to asymmetry in the lensing signal and to variation of the deflection law with galaxy type. A detection of either of these effects would represent an independent confirmation that galaxies are dark matter-dominated; conversely, azimuthal symmetry of the shear signal would rule out the typically ellipsoidal haloes predicted by most simulations of structure formation.  相似文献   

14.
From optical R -band data of the double quasar QSO 0957+561A,B, we made two new difference light curves (with an overlap of about 330 d between the time-shifted light curve for the A image and the magnitude-shifted light curve for the B image). We observed noisy behaviours around the zero line and no short time-scale events (with a duration of months), where the term 'event' refers to a prominent feature that may be a result of microlensing or another source of variability. Only one event lasting two weeks and rising −33 mmag was found . Measured constraints on the possible microlensing variability can be used to obtain information on the granularity of the dark matter in the main lensing galaxy and the size of the source. In addition, one can also test the ability of the observational noise to cause the rms averages and the local features of the difference signals. We focused on this last issue. The combined photometries were related to a process consisting of an intrinsic signal plus a Gaussian observational noise. The intrinsic signal has been assumed to be either a smooth function (polynomial), a smooth function plus a stationary noise process, or a correlated stationary process . Using these three pictures without microlensing, we derived some models totally consistent with the observations. We finally discussed the sensitivity of our telescope (at Teide Observatory) to several classes of microlensing variability.  相似文献   

15.
To improve photometric precision by removing the blending effect, a newly developed technique of difference image analysis (DIA) has been adopted by several gravitational microlensing experiment groups. However, the principal problem of the DIA method is that, by its nature, it has difficulties in measuring the baseline flux F 0 of a source star, causing a degeneracy problem in determining the lensing parameters of an event. Therefore, it is often believed that the DIA method is not as powerful as the classical method based on PSF photometry for determining the Einstein time-scales t E of events.
In this paper, we demonstrate that the degeneracy problem in microlensing events, detectable from searches using the DIA method, is not as serious as is often thought. This is because a substantial fraction of events will be high amplification events for which the deviations of the amplification curves, constructed with the wrong baseline fluxes from their corresponding best-fit standard amplification curves, will be considerable, even for a small amount of the fractional baseline flux deviation Δ F 0 F 0. With a model luminosity function of source stars and under realistic observational conditions, we find that ∼30 per cent of detectable Galactic bulge events are expected to have high amplifications and their baseline fluxes can be determined with uncertainties Δ F 0 F 0≤0.5.  相似文献   

16.
Microlensing events are usually selected among single-peaked non-repeating light curves in order to avoid confusion with variable stars. However, a microlensing event may exhibit a second microlensing brightening episode when the source or/and the lens is a binary system. A careful analysis of these repeating events provides an independent way to study the statistics of wide binary stars and to detect extrasolar planets. Previous theoretical studies predicted that 0.5–2 per cent of events should repeat due to wide binary lenses. We present a systematic search for such events in about 4000 light curves of microlensing candidates detected by the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic bulge from 1992 to 2007. The search reveals a total of 19 repeating candidates, with six clearly due to a wide binary lens. As a by-product, we find that 64 events (∼2 per cent of the total OGLE-III sample) have been misclassified as microlensing; these misclassified events are mostly nova or other types of eruptive stars. The number and importance of repeating events will increase considerably when the next-generation wide-field microlensing experiments become fully operational in the future.  相似文献   

17.
The detection of microlensing events from stars in the Large Magellanic Cloud and in the Galactic bulge raises important constraints on the distribution of dark matter and on galactic structure, although some events may be the result of a new type of intrinsic variability. When lenses are relatively close to the sources, we predict that chromatic and spectroscopic effects are likely to appear for a significant fraction of the microlensing events. These effects are due to the differential amplification of the limb and the centre of the stellar disc, and present a systematic dependence with wavelength and time that provides an unambiguous signature of a microlensing event (as opposed to a new type of intrinsic stellar variability). We present detailed predictions of the effects, using realistic model atmospheres. The observations of these effects provide a direct constraint on stellar atmospheres, allowing a three-dimensional reconstruction or imaging of its structure, a unique tool with which to test the current models of stellar atmospheres.  相似文献   

18.
Despite the suspected binarity for a significant fraction of Galactic lenses, the current photometric surveys detected binary microlensing events only for a small fraction of the total events. The detection efficiency is especially low for non-caustic crossing events, which comprise the majority of the binary lensing events, as a result of the absence of distinctive features in their light curves combined with small deviations from the standard light curve of a single point-mass event. In addition, even if they are detected, it will be difficult to determine the solution of the binary lens parameters owing to the severe degeneracy problem. In this paper, we investigate the properties of binary lensing event expected when they are astrometrically observed by using high-precision interferometers. For this, we construct vector field maps of excess centroid shifts, which represent the deviations of the binary lensing centroid shifts from those of a single lensing event as a function of source position. From the analysis of the maps, we find that the excess centroid shifts are substantial in a considerably large area around caustics. In addition, they have characteristic sizes and directions depending strongly on the source positions with respect to the caustics and the resulting trajectories of the light centroid (astrometric trajectories) have distinctive features, which can be distinguished from the deviations caused by other reasons. We classify the types of the deviations and investigate where they occur. Because of the strong dependence of the centroid shifts on the lens system geometry combined with the distinctive features in the observed astrometric trajectories, astrometric binary lensing observations will provide an important tool that can probe the properties of the Galactic binary lens population.  相似文献   

19.
Recent studies have demonstrated that detailed monitoring of gravitational microlensing events can reveal the presence of planets orbiting the microlensed source stars. With the potential of probing planets in the Galactic bulge and Magellanic Clouds, such detections greatly increase the volume over which planets can be found. This paper expands on the original studies by considering the effect of planetary phase on the form of the resultant microlensing light curve. It is found that crescent-like sources can undergo substantially more magnification than a uniformly illuminated disc, the model typically employed in studying such planets. In fact, such a circularly symmetric model is found to suffer a minimal degree of magnification when compared with the crescent models. The degree of magnification is also a strong function of the planet's orientation with respect to the microlensing caustic. The form of the magnification variability is strongly dependent on the planetary phase and from which direction the planet is swept by the caustic, providing further clues to the geometry of the planetary system. As the amount of light reflected from a planet also depends on its phase, the detection of extreme crescent-like planets requires the advent of 30-m class telescopes, while light curves of planets at more moderate phases can be determined with today's 10-m telescopes.  相似文献   

20.
We present Hubble Space Telescope ( HST ) infrared images of four gravitational lens systems from the JVAS/CLASS gravitational lens survey and compare the new infrared HST pictures with previously published WFPC2 HST optical images and radio maps. Apart from the wealth of information that we get from the flux ratios and accurate positions and separations of the components of the lens systems, which we can use as inputs for better constraints on the lens models, we are able to discriminate between reddening and optical/radio microlensing as the possible cause of differences observed in the flux ratios of the components across the three wavelength bands. Substantial reddening has been known to be present in the lens system B1600+434 and has been further confirmed by the present infrared data. In the two systems B0712+472 and B1030+074 microlensing has been pinpointed as the main cause of the flux ratio discrepancy both in the optical/infrared and in the radio, the radio possibly caused by the substructure revealed in the lensing galaxies. In B0218+357, however, the results are still not conclusive. If we are actually seeing the two 'true' components of the lens system then the flux ratio differences are attributed to a combination of microlensing and reddening or are alternatively the result of some variability in at least one of the images. Otherwise the second 'true' component of B0218+357 may be completely absorbed by a molecular cloud and the anomalous flux density ratios and large difference in separation between the optical/infrared and radio that we see can be explained by emission either from a foreground object or from part of the lensing galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号