首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
为解释著名的G矮星问题,提出银河系化学演化的三成分模型,即由银晕、厚盘和薄盘所构成的演化模型.相邻演化阶段间隔着一个快速坍缩过程.对不同星族成分的演化过程分别进行模拟,并在总体上得到一个太阳附近区域的G矮星丰度分布函数.检验了三种不同的模型:初始富化模型、比例生成模型和坍缩模型.利用最小二乘拟合得到最佳模型的参数.结果表明,太阳附近区域的化学演化受物质交换的影响较小,至少在银河系演化的晚期,可将太阳附近区域看作封闭系统.同时,单位质量中新合成的重元素比例对三种恒星成分可分别近似为常数,其差别则说明不同星族恒星的初始质量函数存在着显著差异.  相似文献   

2.
李天超  赵刚 《天文学进展》1999,17(4):334-345
银河系的形成与演化是天体物理学研究的重大前沿课题,银河系的化学演化在其中更具有极其重要的地位。随着观测资料的不断积累和理论工作的不断深入,银河系化学演化的研究取得了一系列进展。在观测方面,从太阳附近区域,整个银盘,银晕和核球等方面简要回顾了银河系化学演化模型主要观测约束的近期结果;在化学演化模型方面,回顾了银河系化学演化研究的发展历程和近期进展,并对未来的研究进行了展望。  相似文献   

3.
Recent data on the empirical metallicity distribution of G dwarfs in the disk solar neighbourhood are fitted in two different ways. We use an extended Poisson distribution in the limit where the probability of star formation is small, and a Gauss distribution in the limit where a large number of physical variables is required to determine stellar metal abundance. Both are found to reproduce the data at the same (acceptable) extent, with a slight preference for the former. The emprirical, differential metallicity distribution of G dwarfs in the disk solar neighbourhood is compared with its theoretical counterpart, in the picture of a closed, comoving model of chemical evolution. The limits of the currently used infall models are discussed and a scenario of galactic formation and evolution is presented. The Galactic history is thought as made of two main phases: contraction (which produces the extended component) and equilibrium (which gives the disk). In this view, the stars observed within the solar cylinder did not necessarily arise from the primordial gas which later collapsed into the disk solar neighbourhood. It is found that the G-dwarf problem is strongly alleviated, with the possible exception of the low-metallicity and high-metallicity tail of the distribution. The best choice of parameters implies: (i) a metal yield in the contraction phase which is larger by a factor of about 5 with respect to the equilibrium phase; (ii) a model halo mass fraction of about 0.3; (iii) a model disk mass fraction of about 0.6. It provides additional support to the idea of a generalized Schmidt star formation law, which is different in different phases of evolution. The model, cumulative, G-dwarf metallicity distribution in the disk solar neighbourhood is found to predict too may low-metallicity stars with respect to its empirical counterpart, related to a Poissonian or Gaussian fit. The main resons for the occurrence of a G-dwarf problem are discussed. Finally, a stochastic process of star formation, related to a Poisson distribution, is briefly outlined.  相似文献   

4.
Infall models for the evolution of the local galactic disk were studied and confronted with a large number of observational constraints from the solar vicinity, inclusive of the white dwarf luminosity function. The models are characterized as follows: 1. The key-functions (SFR, IMF, gas infall rate) are not prescribed by simple laws, but are directly derived from observational constraints. 2. A scatter in the metallicity at fixed age is considered which partly reflects inhomogeous chemical evolution. 3. Special attention is drawn to the internal consistency of the models. 4. In addition to infall of low-metallicity gas, metal-enriched outflows are allowed. The “best” model is characterized by a disk age of ≈︁ 12 Gyr, a SFR which is decreasing over the first half and is nearly constant over the second half of the disk evolution, and by a similar temporal run of the gas infall rate. Moderate metal-enriched outflow can not be excluded.  相似文献   

5.
A simple mathematical model for the evolution of a system of collisionally interacting bodies—such as the asteroid population—consists of two coupled, nonlinear, first-order differential equations for the abundances of “small” and “big” bodies. The model easily allows us to recover Dohnanyi's value for the exponent of the equilibrium mass distribution. Moreover, the model shows that any initial value for the ratio of “big” to “small” bodies rapidly relaxes to the equilibrium ratio, corresponding to the exponent, and that integrating the evolution equations backward in time—an attractive possibility to investigate the mass distribution of primordial planetesimals—leads to strong numerical instability.  相似文献   

6.
In this work, based on the analytical model with delayed production approximation developed by Pagel & Tautvaišienė (1995) for the Galaxy, the analytic solutions of the distribution of neutron exposures of the Galaxy (hereafter NEG) are obtained. The present results appear to reasonably reproduce the distribution of neutron exposures of the solar system (hereafter NES). The strong component and the main component of the NES are built up in different epochs. Firstly, the strong component is produced by the s-process nucleosynthesis in the metal-poor AGB stars, starting from [Fe/H] ≈ −1.16 to [Fe/H] ≈ −0.66, corresponding to the time interval 1.06 < t < 2.6 Gyr. Secondly, the main component is produced by the s-process in the galactic disk AGB stars, starting from [Fe/H] ≈ −0.66 to [Fe/H] ≈ 0, corresponding to the time interval t > 2.6 Gyr. The analytic solutions have the advantage of an understanding of the structure and the properties of the NEG. The NEG is believed to be an effective tool to study the s-process element abundance distributions in the Galaxy at different epochs and the galactic chemical evolution of the neutron-capture elements.  相似文献   

7.
Under the two initial 1‐D one parameter velocity distribution forms (one is normal, the other is exponential), the z direction scale height evolution of normal neutron stars in the Galaxy is studied by numerical simulation. We do statistics for the cases at different time segments, also do statistics for the cumulative cases made of each time segment. The results show in the cumulative cases the evolution curves of the scale heights are smoother than in the each time segment, i.e., the cumulation improve the signal‐to‐noise ratio. Certainly the evolution cases are different at different Galactic disk locations, which also have very large difference from the average cases in the whole disk. In the initial stages of z evolution of normal neutron stars, after the beginning transient states, the cumulative scale heights increase linearly with time, and the cumulative scale height increasing rates have linear relationship with the initial velocity distribution parameters, which have larger fluctuation in the vicinity of the Sun than in the whole disk. We utilize the linear relationship of the cumulative scale height increasing rates vs. the initial velocity distribution parameters in the vicinity of the Sun to make comparison with the observation near the Sun. The results show if there is no magnetic decay, then the deserved initial velocity parameters are obvious lower than the present well known results from some authors; whereas if introducing magnetic decay, for the 1‐D normal case we can make consistence among concerning results using magnetic decay time values which are supported by some authors, while for the 1‐D exponential case the results show the lackness of young pulsar samples in the larger z in the vicinity of the Sun (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
《New Astronomy》2007,12(4):289-321
This paper has two parts: one about observational constraints, and the other about chemical evolution models. In the first part, the empirical differential metallicity distribution (EDMD) is deduced from two different samples involving (i) 268 K-giant bulge stars [Sadler, E.M., Rich, R.M., Terndrup, D.M., 1996. AJ 112, 171], and (ii) 149 globular clusters [Mackey, A.D., van den Bergh, S., 2005. MNRAS 360, 631], in addition to previous results (Caimmi, R., 2001b, AN 322, 241 (C01)) related to (iii) 372 solar neighbourhood halo subdwarfs [Ryan, S.G., Norris, J.E., 1991. AJ 101, 1865]. Under the assumption that each distribution is typical for the corresponding subsystem, the EDMD of the Galactic spheroid is determined by weighting the mass. The empirical age-metallicity relation (EAMR) involving absolute ages is deduced from recent results related to a homogeneous sample of globular clusters [De Angeli, F., Piotto, G., Cassisi, S., et al., 2005. AJ 130, 116]. In the second part, models of chemical evolution for the Galactic halo and bulge are computed, assuming the instantaneous recycling approximation. The EDMD data are fitted, to an acceptable extent, by simple models of chemical evolution implying both homogeneous and inhomogeneous star formation, provided that star formation is inhibited during halo formation and enhanced during bulge formation, with respect to the disk solar neighbourhood, taken to be representative of the whole disk. The initial mass function (IMF) is assumed to be a universal power law, which implies the same value of the true yield in different subsystems. The theoretical differential metallicity distribution (TDMD) is first determined for the halo and the bulge separately, and then for the Galactic spheroid by weighting the mass. The EAMR cannot be fitted into the Simple model that implies homogeneous star formation, but shows a non-monotonic trend characterized by large dispersion. On the other hand, simple models involving inhomogeneous star formation yield a theoretical age-metallicity relation (TAMR) which reproduces the data to an acceptable extent. For gas ouflow from the proto-halo, acceptable models give rise to different predictions in different alternatives. If the Galactic spheroid and disk underwent decoupled chemical evolution, i.e. no gas exchange between the related reservoirs, less than one third of the bulge mass outflowed from the proto-halo. If the Galactic spheroid and disk underwent coupled chemical evolution, i.e. some gas exchange between the related reservoirs, the existence of an unseen baryonic halo (or equivalent amount of gas lost by the Galaxy) with mass comparable to bulge mass, is necessarily needed. In this view, the outflowing proto-halo gas which remains bound to the Galaxy, produces both the bulge and the disk.  相似文献   

9.
The current paper investigates how the empirical, G-dwarf metallicity distribution constrains simple, comoving models of chemical evolution. In doing this, the application of the models to a data sample, performed in a previous paper, is refined and extended. The key idea is that (i) different star formation rates with different mass spectra take place in different phases of evolution, i.e. contraction and equilibrium, and (ii) disk formation begins at a time t = Td and ends at t = Tc, which marks the transition from contraction to equilibrium. In this view, the lowest-metallicity point of the empirical, differential distribution, consistent with a linear fit, is related to the beginning of disk formation, and an apparent discontinuity point to the transition from contraction to equilibrium. In addition, different linear fits hold on the left (early distribution) and on the right (late distribution) of the discontinuity point. Models consistent with the empirical, G-dwarf metallicity distribution are related to linear fits on the early and late side. Homologous solutions during the equilibrium phase are analysed in detail with respect to changes in Tc and Ta, the age of the Galaxy. Then we are left with a single free parameter which is relevant to the chemical evolution, i.e. the mass spectrum exponent during the equilibrium phase. The allowed values for the other parameters, thought as a function of the above mentioned one, are plotted for each case. A Salpeter mass spectrum exponent, p = −2.35, is ruled out by the theoretical, lower stellar mass limit, contrary to a Scalo mass spectrum exponent, p = −2.90, in contrast with previous literature. The reasons for this discrepancy are discussed. Our results are marginally consistent with a same initial mass function during the contraction and equilibrium phase, but in this case the disk mass fraction is of the is same order, or less, than the halo mass fraction. It is also investigated how the empirical age-metallicity relation constrains the duration of the contraction phase, for a reasonable upper limit of Ta. Keeping in mind that the empirical, G-dwarf metallicity distribution has not been corrected for the large cosmic scatter shown by the empirical, age-metallicity relation, we find a duration of disk formation, TcTd = 1.07–1.5 Gyr, by a factor 3–5 less than it is found by use of simple infall models. The reasons of this difference are explained. The idea of a massive, white dwarf halo, which seems to be indicated by microlensing experiments, is ruled out by the empirical, G-dwarf metallicity distribution, in the light of the current model and provided the solar neighbourhood is a typical region of the Galaxy. More refined models involving e.g., the relax of instantaneous recycling would change our results, but the trend is expected to be only slightly altered.  相似文献   

10.
The oxygen abundance distribution in solar neighbourhood halo subdwarfs is deduced, using two alternative, known empirical relationships, involving the presence or the absence of [O/Fe] plateau for low [Fe/H] values, from a sample of 372 kinematically selected halo stars, for which the iron abundance distribution has been determined by Ryan & Norris (1991). The data are interpreted by a simple, either homogeneous or inhomogeneous model of chemical evolution, using an updated value of the solar oxygen abundance. The effect of changing the solar oxygen abundance, the power‐law exponent in the initial mass function, and the rate of oxygen nucleosyntesis, keeping the remaining input parameters unchanged, is investigated, and a theorem is stated. In all cases, part of the gas must necessarily be inhibited from forming stars, and no disk contamination has to be advocated for fitting the empirical oxygen abundance distribution in halo subdwarfs of the solar neighbourhood (EGD). Then a theorem is stated, which allows a one‐to‐one correspondence between simple, homogeneous models with and without inhibited gas, related to same independent parameters of chemical evolution, except lower stellar mass limit, real yield, and inhibition parameter. The mutual correlations between the latter parameters are also specified. In addition the starting point, and the point related to the first step, of the theoretical distribution of oxygen abundance (TGD) predicted by simple, inhomogeneous models, is calculated analytically. The mean oxygen abundance of the total and only inhibited gas, respectively, are also determined. Following the idea of a universal, initial mass function (IMF), a power‐law with both an exponent p = 2.9, which is acceptably close to Scalo IMF for mm, and an exponent p = 2.35, i.e. Salpeter IMF, have been considered. In general, both the age‐metallicity relationship and the empirical distribution of oxygen abundance in G dwarfs of the disk solar neighbourhood, are fitted by power‐law IMF exponents in the range 2.35 ≤ p ≤ 2.9. Acceptable models predict about 15% of the total mass in form of long‐lived stars and remnants, at the end of halo evolution, with a mean gas oxygen abundance which is substantially lower than the mean bulge and initial disk oxygen abundance. To avoid this discrepancy, either the existence of a still undetected, baryonic dark halo with about 15% of the total mass, or an equal amount of gas loss during bulge and disk formation, is necessary. The latter alternative implies a lower stellar mass limit close to 0.2 m, which is related to a power‐law IMF exponent close to 2.77. Acceptable models also imply a rapid halo formation, mainly during the first step, Δt = 0.5 Gyr, followed by a period (three steps) where small changes occur. Accordingly, statistical fluctuations are found to produce only minor effects on the evolution.  相似文献   

11.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

12.
There can exist a hidden sector of the Universe in the form of parallel “mirror” world which has the same particle physics as the observable world and interacts with the latter only gravitationally. Big Bang nucleosynthesis bounds demand that the mirror sector should have a smaller temperature than the ordinary one. This implies that the mirror matter could play a role of dark matter, and in addition its chemical content should be dominated by helium. Here we study the evolutionary and structural properties of the mirror stars which essentially are similar to that of the ordinary stars but with higher helium contents. Being invisible in terms of photons, they could be observed only as MACHOs in the microlensing experiments. Using a numerical code, we compute evolution of stars with large helium abundances (Y = 0.30–0.80) and a wide range of masses, from 0.5 to 10 M. We found that helium dominated mirror star should have much faster evolutionary time (up to a factor 30) than the ordinary star with the same mass. In addition, we show the diagrams of luminosities, effective temperatures, central temperatures and densities, and compute the masses of the He-core at ignition and the minimum mass for carbon ignition, for different chemical compositions. The general conclusion is that mirror stars evolve faster as compared to ordinary ones, and explode earlier as type II supernovae, thus enriching the galactic halo of processed mirror gas with higher metallicity, with implications for MACHO observations and galaxy evolution.  相似文献   

13.
The emerging field of bioastronomy is beginning to address one of the oldest questions in science and philosophy: Are we alone? By virtue of its sheer sensitivity, high frequency coverage, and long baselines, the SKA will play a pivotal role in bioastronomical studies. It will be a unique instrument with the capability to image proto-planetary disks in nearby star-forming regions and monitor the evolution of structures within those disks (“movies of planetary formation”). It will also be able to assess the extent to which interstellar molecules are incorporated into proto-planetary disks. It will also be able to reach qualitatively new levels of sensitivity in the search for intelligence elsewhere in the Galaxy, including for the first time the realistic possibility of detecting unintentional emissions or “leakage” (such as from TV transmitters) from nearby stars.  相似文献   

14.
As evidence for energy release in microflares, high time resolution observations of solar radio emission obtained with our “synchronous observation system of solar radio radiation with high time resolution at four frequencies (1.42, 2.13, 2.84 and 4.26 GHz)” from December 1989 to April 1993 are presented in this paper. The observed events include weak ms spikes, “spike-likes”, fast pulsations as well as two kinds of newly discovered fast fine structures, i.e., microwave type III bursts and microwave patch-like structures. A statistical study of the duration of fast fine structures has been made and on its basis the various types of phenomena are illustrated with actual examples.  相似文献   

15.
We present an analysis of the very recent data from the CASA-MIA extensive air shower array (M.A.K. Glasmacher, Ph.D. Thesis, University of Michigan (1998) in terms of a search for the structure in the shower size spectrum claimed by us from an analysis of “the world's data”. Our earlier claim is found to be supported to the extent that there is strong evidence for the existence of structure in the spectrum which cannot obviously be explained by the conventional Galactic Modulation Model. There is modest evidence for the structure being of “our” form and strong support for “our” mass composition when “corrected” to the interaction model advocated by us. None of the results are inconsistent with there having been a recent, nearby, single supernova.  相似文献   

16.
A comparison of the observed distribution of absolute proper motions with a kinematical model of the Galaxy is presented. Proper motions with respect to galaxies were obtained for about 40 000 stars along the main Galactic meridian and in two fields near the North Galactic pole (programme MEGA). The Galaxy is considered as composed of the disk (main sequence and disk red giants), the thick disk and spheroid populations. For each subsystem, spatial velocity components and their dispersions were computed. The distribution of kinematical parameters were modelled for stars located in different directions of the Galaxy.  相似文献   

17.
In their “mixing time” theory of magnetic heating of the corona by slow photospheric motion, Heyvaerts and Priest (1984) neglected certain second-order terms in the calculation of the energy and retained the linear part of the perturbed magnetic field which led to infinite displacements. In this paper, we revised these points. Our main results are: (1) the heating efficiency we obtained is greater than what they found. (2) Dissipation-free, linear evolution of the force-free field of coronal arcade is impossible. (3) The possibility of reconnection of field lines of non-linear force-free field is clarified in terms of the field configuration and it is pointed out that reconnection is most likely at a height equal to about one width of the arcade.  相似文献   

18.
History of Star Formation and Chemical Enrichment in the Milky Way Disk   总被引:2,自引:0,他引:2  
Based on a physical treatment of the star formation law similar to that given by Efstathiou, we have improved our two-component chemical evolution model for the Milky Way disk. Two gas infall rates are compared, one exponential, one Gaussian. It is shown that the star formation law adopted in this paper depends more strongly on the gas surface density than that in Chang et al. It has large effects on the history of star formation and gas evolution of the whole disk. In the solar neighborhood, the history of chemical evolution and star formation is not sensitive to whether the infall rate is Gaussian or exponential. For the same infall time scale, both forms predict the same behavior for the current properties of the Galactic disk. The model predictions do depend on whether or not the infall time scale varies with the radius, but current available observations cannot decide which case is the more realistic. Our results also show that it would be inadequate to describe the gradient evolution along the Gala  相似文献   

19.
According to the two-infall model for the chemical evolution of the Galaxy the halo and bulge formed on a relatively short timescale (0.8–1.0 Gyr) out of the first infall episode, whereas the disk accumulated much more slowly and ‘inside-out’ during a second independent infall episode. We explored the effects of a threshold in the star formation process, during both the halo and disk phases. In the comparison between model predictions and available data, we have focused our attention on abundance gradients as well as gas, stellar and star formation rate distributions along the disk. We suggest that the mechanism for the formation of the halo leaves detectable imprints on the chemical properties of the outer regions of the disk, whereas the evolution of the halo and the inner disk are almost completely disentangled. This is due to the fact that the halo and disk densities are comparable at large Galactocentric distances and therefore the gas lost from the halo can substantially contribute to building up the outer disk. We predict that the abundance gradients along the Galactic disk have increased in time during the first billion years of the disk evolution and remained almost constant in the last ~5Gyrs. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
A model is presented for the chemical evolution of the solar neighbourhood which takes into account three families of galactic objects, according to their condensation states: stars, refuses and gas. Stars are defined as all condensed objects with masses greater than or equal to the minimum mass which ignites hydrogen and which will give rise to an evolutionary track on the HR diagram to the left of Hayashi's limit; refuses include the remnants, which are compact objects resulting from stellar deaths, and the residues, which have masses not large enough to ignite hydrogen; gas is defined as the mass which can be condensed to form stars and/or residues. We have developed equations for the mass evolution of each family, and have studied the gas metallicity distribution within the framework of the instantaneous recycling approximation, adopting different initial conditions. In order to constrain the model parameters we have also used preliminary evaluations of comet cloud masses to investigate the role of the residues as sinks of heavy elements in the Galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号