首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Summer Sahel-ENSO teleconnection and decadal time scale SST variations   总被引:5,自引:0,他引:5  
The correlation between Sahel rainfall and El Niño–Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years. We propose that the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale sea surface temperature (SST) background. The main modes of SST variability have been extracted through a principal component analysis with Varimax rotation. The correlations between a July-September Sahel rainfall index and these SST modes have been computed on a 20-year running window between 1945 and 1993. The correlations with the interannual ENSO-SST mode are negative, not significant in the 1960s during the transition period from the wet climate phasis to the long-running drought in the Sahel, but then were significant since 1976. During the former period, the correlations between the Sahel rainfall index and the other SST modes (expressing mostly on quasi and multi-decadal scales) are the highest, in particular correlations with the tropical Atlantic “dipole”. Correlations between Sahel and Guinea Coast rainfall are also significantly negative. After 1970, the Sahel-Guinea Coast rainfall correlations are no longer significant, and the ENSO-SST mode becomes the only one significantly correlated with Sahel rainfall, especially due to the impact of warm events. The partial correlations between the ENSO-SST mode and the Sahel rainfall index, when the influence of the other SST modes are eliminated, are significant over all the 20-year running periods between 1945 and 1993, suggesting that this summer teleconnection could be modulated by the decadal scale SST background. The NCEP/NCAR reanalyses reproduce accurately the interannual variability of the atmospheric circulation after 1968. In particular a regional West African Monsoon Index (WAMI), combining wind speed anomalies at 925 and 200?hPa, is highly correlated with the July-September Sahel rainfall index. A warm ENSO event is associated both with an eastward mean sea level pressure gradient between the eastern tropical Pacific and the tropical Atlantic and with a northward pressure gradient along the western coast of West Africa. This pattern leads to enhanced trade winds over the tropical Atlantic and to weaker moisture advection over West Africa, consistent with a weaker monsoon system strength and a weaker Southern Hemisphere Hadley circulation. The NCEP/NCAR reanalyses do not reproduce accurately the decadal variability of the atmospheric circulation over West Africa because of artifical biases. Therefore the impact of the decadal scale pattern of the atmospheric circulation has been investigated with atmospheric general circulation model (AGCM) sensitivity experiments, by forcing the ARPEGE-Climat model with different combinations of an El Niño-like SST pattern with the pattern of the main mode of decadal scale SST variability where the hightest weights are located in the Pacific and Indian basins. AGCM outputs show that the decadal scale SST variations weakly affect Sahel rainfall variability but that they do induce an indirect effect on Sahel rainfall by enhancing the impact of the warm ENSO phases after 1980, through an increase in the fill-in of the monsoon trough and a moisture advection deficit over West Africa.  相似文献   

2.
Summary Climatic patterns associated with extreme modes of summer rainfall over southern Africa are investigated using composite techniques. Differences between the wet summers of the mid-1970s and the dry summers of the early 1980s are highlighted. In dry summers both the Southern Oscillation Index (SOI) and Quasi-Biennial Oscillation (QBO) are negatively biased. Composite difference fields of outgoing longwave radiation (OLR), sea surface temperature (SST), and upper and lower tropospheric wind are analysed. The OLR difference field indicates the widespread nature of convective variations with a consistent sign in the domain 15–33° S, 0–40° E. An area of opposing sign is conspicuous over the southwest Indian Ocean and represents a dipole, whereby wet summers over southern Africa coincide with dry summers over the adjacent ocean. This dipole behaviour is an expression of the primary mode of interannual climatic variability in the region. SST composite differences are negative over a wide portion of the central equatorial Indian Ocean and SE Atlantic, and positive to the south of Africa where the Agulhas Current flows. Wind composites reveal distinctive circulation differences in the extreme summers considered. In the tropical zone off the east coast of Africa difference vectors indicate upper westerly and lower easterly circulation anomalies, and distinguish a pathway for moist Indian Ocean air. A deep anticyclonic gyre is located over the region of positive SST differences in the sub-tropics to the SE of Africa. The identification of climatic patterns in extreme summers offers some useful guidelines in seasonal forecasts.With 6 Figures  相似文献   

3.
Besides sea surface temperature (SST), soil moisture (SM) exhibits a significant memory and is likely to contribute to atmospheric predictability at the seasonal timescale. In this respect, West Africa was recently highlighted as a “hot spot” where the land–atmosphere coupling could play an important role, through the recycling of precipitation and the modulation of the meridional gradient of moist static energy. Particularly intriguing is the observed relationship between summer monsoon rainfall over Sahel and the previous second rainy season over the Guinean Coast, suggesting the possibility of a soil moisture memory beyond the seasonal timescale. The present study is aimed at revisiting this question through a detailed analysis of the instrumental record and a set of numerical sensitivity experiments. Three ensembles of global atmospheric simulations have been designed to assess the relative influence of SST and SM boundary conditions on the West African monsoon predictability over the 1986–1995 period. On the one hand, the results indicate that SM contributes to rainfall predictability at the end and just after the rainy season over the Sahel, through a positive soil-precipitation feedback that is consistent with the “hot spot” hypothesis. On the other hand, SM memory decreases very rapidly during the dry season and does not contribute to the predictability of the all-summer monsoon rainfall. Though possibly model dependent, this conclusion is reinforced by the statistical analysis of the summer monsoon rainfall variability over the Sahel and its link with tropical SSTs. Our results indeed suggest that the apparent relationship with the previous second rainy season over the Guinean Coast is mainly an artefact of rainfall teleconnections with tropical modes of SST variability both at interannual and multi-decadal timescales.  相似文献   

4.
A regional climate model, the Weather Research and Forecasting (WRF) Model, is forced with increased atmospheric CO2 and anomalous SSTs and lateral boundary conditions derived from nine coupled atmosphere–ocean general circulation models to produce an ensemble set of nine future climate simulations for northern Africa at the end of the twenty-first century. A well validated control simulation, agreement among ensemble members, and a physical understanding of the future climate change enhance confidence in the predictions. The regional model ensembles produce consistent precipitation projections over much of northern tropical Africa. A moisture budget analysis is used to identify the circulation changes that support future precipitation anomalies. The projected midsummer drought over the Guinean Coast region is related partly to weakened monsoon flow. Since the rainfall maximum demonstrates a southward bias in the control simulation in July–August, this may be indicative of future summer drying over the Sahel. Wetter conditions in late summer over the Sahel are associated with enhanced moisture transport by the West African westerly jet, a strengthening of the jet itself, and moisture transport from the Mediterranean. Severe drought in East Africa during August and September is accompanied by a weakened Indian monsoon and Somali jet. Simulations with projected and idealized SST forcing suggest that overall SST warming in part supports this regional model ensemble agreement, although changes in SST gradients are important over West Africa in spring and fall. Simulations which isolate the role of individual climate forcings suggest that the spatial distribution of the rainfall predictions is controlled by the anomalous SST and lateral boundary conditions, while CO2 forcing within the regional model domain plays an important secondary role and generally produces wetter conditions.  相似文献   

5.
The ability of the ARPEGE AGCM in reproducing the twentieth century Sahelian drought when only forced by observed SST time evolution has been characterized. Atmospheric internal variability is shown to have a strong contribution in driving the simulated precipitation variability over the Sahel at decadal to multi-decadal time scales. The simulated drought is associated with a southward shift of the continental rainbelt over central and eastern Sahel, associated with an inter-hemispheric SST mode (the southern hemisphere oceans warming faster than the northern ones after 1970). The analysis of idealized experiments further highlights the importance of the Pacific basin. The related increase of the tropospheric temperature (TT) over the tropics is then suggested to dry the margin of convection zones over Africa, in agreement with the so-called “upped-ante” mechanism. A simple metric is then defined to determine the ability of the CMIP3 coupled models in reproducing both the observed Sahel drying and these mechanisms, in order to determine the reliability of the twenty-first century scenarios. Only one model reproduces both the observed drought over the Sahel and consistent SST/TT relationships over the second half of the twentieth century. This model predicts enhanced dry conditions over the Sahel at the end of the twenty-first century. However, as the mechanisms highlighted here for the recent period are not stationary during the twenty-first century when considering the trends, similarities between observed and simulated features of the West African monsoon for the twentieth century are a necessary but insufficient condition for a trustworthy prediction of the future.  相似文献   

6.
The influence on precipitation of regional sea surface temperature (SST) during a drought period of the West African monsoon is determined, using a regional climate model (RCM). The results from three simulations of two realistic dry years are compared. The first two experiments are initialised and nested respectively in 1983 and 1984 reanalysis data sets. The third experiment is a hybrid simulation of 1983 which is the same as the first experiment except that the SST field is the 1984 SST. Precipitation from the RCM is compared with several precipitation data sets and, as in observations, the RCM reasonably simulates the West African monsoon (seasonal cycle and monsoon sub-period) for the two different years. In particular, the model reproduces stage by stage the motion of the monsoon band well: installation phase, high rain period with abrupt northward shift of the rain band, and the retreat southward phase. Interannual variability and wet or dry tendencies are also represented. The most significant effect of SST is shown by the hybrid simulation, when the regional SST appears as a major factor in the seasonal and interannual monsoon precipitation regime over the African continent (up to 12°N) although this influence is modulated both by the surface conditions (soil and vegetation) and by the reanalysis flow introduced at the lateral boundaries. Dynamically, a warmer SST leads to a decrease in the magnitude of the African Easterly Jet and an increase in northward equivalent water content transport (from equator to 12°N).  相似文献   

7.
The climate model of the Goddard Institute for Space Studies (Hansen et al., 1983) is used to study the sensitivity of sub-Saharan rainfall to Atlantic Ocean SST. Initial changes of SST in the South Atlantic Ocean on March 1st are shown to reduce the June–August sub-Saharan precipitation totals using the model version with an interactive ocean that updates SST. Evidence is offered in support of theories that link Sahel drought with anomalously warm SST in the eastern South Atlantic and the study compares the model's response to spatially coherent SST anomalies with the response to random SST perturbations. The physical processes whereby SST and sea-level pressure synoptics influence the African summer monsoon are discussed in reference to the simulations. Predictibility of Sahel summer rainfall based on spring SST patterns or spring atmospheric circulation patterns is implied by the results. The SST/Sahel drought links are discussed for projections of future climate characteristics.  相似文献   

8.
Some drought years over sub-Saharan west Africa (1972, 1977, 1984) have been previously related to a cross-equatorial Atlantic gradient pattern with anomalously warm sea surface temperatures (SSTs) south of 10°N and anomalously cold SSTs north of 10°N. This SST dipole-like pattern was not characteristic of 1983, the third driest summer of the twentieth century in the Sahel. This study presents evidence that the dry conditions that persisted over the west Sahel in 1983 were mainly forced by high Indian Ocean SSTs that were probably remanent from the strong 1982/1983 El Ni?o event. The synchronous Pacific impact of the 1982/1983 El Ni?o event on west African rainfall was however, quite weak. Prior studies have mainly suggested that the Indian Ocean SSTs impact the decadal-scale rainfall variability over the west Sahel. This study demonstrates that the Indian Ocean also significantly affects inter-annual rainfall variability over the west Sahel and that it was the main forcing for the drought over the west Sahel in 1983.  相似文献   

9.
A nine-member ensemble of simulations with a state-of-the-art atmospheric model forced only by the observed record of sea surface temperature (SST) over 1930–2000 is shown to capture the dominant patterns of variability of boreal summer African rainfall. One pattern represents variability along the Gulf of Guinea, between the equator and 10°N. It connects rainfall over Africa to the Atlantic marine Intertropical Convergence Zone, is controlled by local, i.e., eastern equatorial Atlantic, SSTs, and is interannual in time scale. The other represents variability in the semi-arid Sahel, between 10°N and 20°N. It is a continental pattern, capturing the essence of the African summer monsoon, while at the same time displaying high sensitivity to SSTs in the global tropics. A land–atmosphere feedback associated with this pattern translates precipitation anomalies into coherent surface temperature and evaporation anomalies, as highlighted by a simulation where soil moisture is held fixed to climatology. As a consequence of such feedback, it is shown that the recent positive trend in surface temperature is consistent with the ocean-forced negative trend in precipitation, without the need to invoke the direct effect of the observed increase in anthropogenic greenhouse gases. We advance plausible mechanisms by which the balance between land–ocean temperature contrast and moisture availability that defines the monsoon could have been altered in recent decades, resulting in persistent drought. This discussion also serves to illustrate ways in which the monsoon may be perturbed, or may already have been perturbed, by anthropogenic climate change.  相似文献   

10.
Summary An important pattern of interannual variability in the southern African region is one where sea surface temperature (SST) in neighbouring waters, particularly in the Agulhas Current, its retroflection region and outflow across the southern midlatitudes of the Indian Ocean, is anomalously warm or cool. Evidence exists of significant rainfall anomalies over large parts of southern Africa during these warm or cool SST events. Here, a general circulation model is used to study the response of the atmosphere in the region to an idealised representation of these SST anomalies. The induced atmospheric circulation and precipitation anomalies over the adjacent southern African landmass on intraseasonal through to interannual time scales are investigated.A nonlinear response to the SST anomalies is found in that the changes to the model atmosphere when warm SST forcing is used are not the reverse (in either pattern or magnitude) to that when cold SST forcing is imposed. For the warm SST anomaly, it is found that the atmospheric response is favourable for enhancement of the original SST anomaly on scales up to, and including, annual. However, as the scale becomes interannual (i.e., 15–21 months after imposition of the anomaly), the model response suggests that damping of the original SST anomaly becomes likely. However, no such coherent timescale dependent response is found when the cold SST anomaly is impose. It is suggested that the relationship of the SST anomaly to the background seasonal climatology may help explain this fundamental difference in the response.Examination of the circulation and rainfall patterns under warm SST forcing indicates that there are significant anomalies over large parts of southern Africa on all scales from intraseasonal through to interannual. On the south coast, rainfall anomalies result from enhanced evaporation of moisture off the SST anomaly. Over the interior, changer in the convergence of moist air streams together with suggestions of a shift in the Walker circulations between southern Africa and the bordering tropical South Atlantic and Indian Oceans appear to be associated with the rainfall anomalies. Similar mechanisms of rainfall perturbation are found when the cold SST anomaly is imposed; however, there is a significant response only on intra-annual to interannual scales. In all cases, the magnitude of the rainfall anomalies accumulated over a 90 day season were of the order of 90–180 mm, and therefore represent a significant fraction of the annual total of many areas. These model results re-inforce previous observational work suggesting that SST anomalies south of Africa, particularly in the retroflection region of the Agulhas Current, are linked with significant rainfall anomalies over the adjacent subcontinent.With 12 Figures  相似文献   

11.
Liguang Wu  Li Tao 《Climate Dynamics》2011,36(9-10):1851-1864
Although previous studies reported upward trends in the basin-wide average lifetime, annual frequency, proportion of intense hurricanes and annual accumulated power dissipation index of Atlantic tropical cyclones (TCs) over the past 30?years, the basin-wide intensity did not increase significantly with the rising sea surface temperature (SST). Observational analysis and numerical simulation conducted in this study suggest that Sahel rainfall is the key to understanding of the long-term change of Atlantic TC intensity. The long-term changes of the basin-wide TC intensity are generally associated with variations in Sahara air layer (SAL) activity and vertical wind shear in the main development region (MDR), both of which are highly correlated with Sahel rainfall. The drying Sahel corresponds to an equatorward shift in the African easterly jet and African easterly wave activity, introducing the SAL to lower latitudes and increasing the MDR vertical wind shear. As a result, Atlantic TCs are more vulnerable to the suppressing effects of the SAL and vertical wind shear. Since the SST warming, especially in the tropical Indian Ocean, is a dominant factor for the Sahel drying that occurred over the past 30?years, it is suggested that the remote effect of SST warming is important for the long-term change of Atlantic TC intensity. Although influence of the AMO warm phase that started in the early 1990s alone can provide a favorable condition for TC intensification, its influence may have been offset by the influence of the ongoing SST warming, particularly in the Indian Ocean. As a result, there was no significant trend observed in the basin-wide average and peak intensity of Atlantic TCs.  相似文献   

12.
The WAMME regional model intercomparison study   总被引:5,自引:3,他引:2  
Results from five regional climate models (RCMs) participating in the West African Monsoon Modeling and Evaluation (WAMME) initiative are analyzed. The RCMs were driven by boundary conditions from National Center for Environmental Prediction reanalysis II data sets and observed sea-surface temperatures (SST) over four May–October seasons, (2000 and 2003–2005). In addition, the simulations were repeated with two of the RCMs, except that lateral boundary conditions were derived from a continuous global climate model (GCM) simulation forced with observed SST data. RCM and GCM simulations of precipitation, surface air temperature and circulation are compared to each other and to observational evidence. Results demonstrate a range of RCM skill in representing the mean summer climate and the timing of monsoon onset. Four of the five models generate positive precipitation biases and all simulate negative surface air temperature biases over broad areas. RCM spatial patterns of June–September mean precipitation over the Sahel achieve spatial correlations with observational analyses of about 0.90, but within two areas south of 10°N the correlations average only about 0.44. The mean spatial correlation coefficient between RCM and observed surface air temperature over West Africa is 0.88. RCMs show a range of skill in simulating seasonal mean zonal wind and meridional moisture advection and two RCMs overestimate moisture convergence over West Africa. The 0.5° computing grid enables three RCMs to detect local minima related to high topography in seasonal mean meridional moisture advection. Sensitivity to lateral boundary conditions differs between the two RCMs for which this was assessed. The benefits of dynamic downscaling the GCM seasonal climate prediction are analyzed and discussed.  相似文献   

13.
Rainfall over West Africa shows strong interannual variability related to changes in Sea Surface Temperature (SST). Nevertheless, this relationship seem to be non-stationary. A particular turning point is the decade of the 1970s, which witnessed a number of changes in the climatic system, including the climate shift of the late 1970s. The first aim of this study is to explore the change in the interannual variability of West African rainfall after this shift. The analysis indicates that the dipolar features of the rainfall variability over this region, related to changes in the Atlantic SST, disappear after this period. Also, the Pacific SST variability has a higher correlation with Guinean rainfall in the recent period. The results suggest that the current relationship between the Atlantic and Pacific El Ni?o phenomena is the principal responsible for these changes. A fundamental goal of climate research is the development of models simulating a realistic current climate. For this reason, the second aim of this work is to test the performance of Atmospheric General Circulation models in simulating rainfall variability over West Africa. The models have been run with observed SSTs for the common period 1957?C1998 as part of an intercomparison exercise. The results show that the models are able to reproduce Guinean interannual variability, which is strongly related to SST variability in the Equatorial Atlantic. Nevertheless, problems in the simulation of the Sahelian interannual variability appear: not all models are able to reproduce the observed negative link between rainfall over the Sahel and El Ni?o-like anomalies in the Pacific, neither the positive correlation between Mediterranean SSTs and Sahelian rainfall.  相似文献   

14.
Decadal Sahelian rainfall variability was mainly driven by sea surface temperatures (SSTs) during the twentieth century. At the same time SSTs showed a marked long-term global warming (GW) trend. Superimposed on this long-term trend decadal and multi-decadal variability patterns are observed like the Atlantic Multidecadal Oscillation (AMO) and the inter-decadal Pacific Oscillation (IPO). Using an atmospheric general circulation model we investigate the relative contribution of each component to the Sahelian precipitation variability. To take into account the uncertainty related to the use of different SST data sets, we perform the experiments using HadISST1 and ERSSTv3 reconstructed sets. The simulations show that all three SST signals have a significant impact over West Africa: the positive phases of the GW and the IPO lead to drought over the Sahel, while a positive AMO enhances Sahel rainfall. The tropical SST warming is the main cause for the GW impact on Sahel rainfall. Regarding the AMO, the pattern of anomalous precipitation is established by the SSTs in the Atlantic and Mediterranean basins. In turn, the tropical SST anomalies control the impact of the IPO component on West Africa. Our results suggest that the low-frequency evolution of Sahel rainfall can be interpreted as the competition of three factors: the effect of the GW, the AMO and the IPO. Following this interpretation, our results show that 50% of the SST-driven Sahel drought in the 1980s is explained by the change to a negative phase of the AMO, and that the GW contribution was 10%. In addition, the partial recovery of Sahel rainfall in recent years was mainly driven by the AMO.  相似文献   

15.
A regional climate model is used to investigate the mechanism of interdecadal rainfall variability, specifically the drought of the 1970s and 1980s, in the Sahel region of Africa. The model is the National Center for Environmental Prediction’s (NCEPs) Regional Spectral Model (RSM97), with a horizontal resolution of approximately equivalent to a grid spacing of 50 km, nested within the ECHAM4.5 atmospheric general circulation model (AGCM), which in turn was forced by observed sea surface temperature (SST). Simulations for the July–September season of the individual years 1955 and 1986 produced wet conditions in 1955 and dry conditions in 1986 in the Sahel, as observed. Additional July–September simulations were run forced by SSTs averaged for each month over the periods 1950–1959 and the 1978–1987. These simulations yielded wet conditions in the 1950–1959 case and dry conditions in the 1978–1987 case, confirming the role of SST forcing in decadal variability in particular. To test the hypothesis that the SST influences Sahel rainfall via stabilization of the tropospheric sounding, simulations were performed in which the temperature field from the AGCM was artificially modified before it was used to force the regional model. We modified the original 1955 ECHAM4.5 temperature profiles by adding a horizontally uniform, vertically varying temperature increase, taken from the 1986–1955 tropical mean warming in either the AGCM or the NCEP/National Center for Atmospheric Research Reanalysis. When compared to the 1955 simulations without the added tropospheric warming, these simulations show a drying in the Sahel similar to that in the 1986–1955 difference and to the decadal difference between the 1980s and 1950s. This suggests that the tropospheric warming may have been, at least in part, the agent by which the SST increases led to the Sahel drought of the 1970s and 1980s.  相似文献   

16.
This article presents an overview of the land ITCZ (Intertropical Convergence Zone) over West Africa, based on analysis of NCAR–NCEP Reanalysis data. The picture that emerges is much different than the classic one. The most important feature is that the ITCZ is effectively independent of the system that produces most of the rainfall. Rainfall linked directly to this zone of surface convergence generally affects only the southern Sahara and the northern-most Sahel, and only in abnormally wet years in the region. A second feature is that the rainbelt normally assumed to represent the ITCZ is instead produced by a large core of ascent lying between the African Easterly Jet and the Tropical Easterly Jet. This region corresponds to the southern track of African Easterly Waves, which distribute the rainfall. This finding underscores the need to distinguish between the ITCZ and the feature better termed the “tropical rainbelt”. The latter is conventionally but improperly used in remote sensing studies to denote the surface ITCZ over West Africa. The new picture also suggests that the moisture available for convection is strongly coupled to the strength of the uplift, which in turn is controlled by the characteristics of the African Easterly Jet and Tropical Easterly Jet, rather than by moisture convergence. This new picture also includes a circulation feature not generally considered in most analyses of the region. This feature, a low-level westerly jet termed the African Westerly Jet, plays a significant role in interannual and multidecadal variability in the Sahel region of West Africa. Included are discussions of the how this new view relates to other aspects of West Africa meteorology, such as moisture sources, rainfall production and forecasting, desertification, climate monitoring, hurricanes and interannual variability. The West African monsoon is also related to a new paradigm for examining the interannual variability of rainfall over West Africa, one that relates changes in annual rainfall to changes in either the intensity of the rainbelt or north–south displacements of this feature. The new view presented here is consistent with a plethora of research on the synoptic and dynamic aspects of the African Easterly Waves, the disturbances that are linked to rainfall over West Africa and spawn hurricanes over the Atlantic, and with our knowledge of the prevailing synoptic and dynamic features. This article demonstrate a new aspect of the West Africa monsoon, a bimodal state, with one mode linked to dry conditions in the Sahel and the other linked to wet conditions. The switch between modes appears to be linked to an inertial instability mechanism, with the cross-equatorial pressure gradient being a critical factor. The biomodal state has been shown for the month of August only, but this month contributes most of the interannual variability. This new picture of the monsoon and interannual variability shown here appears to be relevant not only to interannual variability, but also to the multidecadal variability evidenced in the region between the 1950s and 1980s.  相似文献   

17.
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.  相似文献   

18.
Summary This study investigates the circulation anomalies associated with the intraseasonal evolution of wet and dry years over western Tanzania (29–37° E, 11.5–4.75° S) and how the onset and withdrawal of the rainy season as well as its wet spell characteristics are modified. It is found that for wet years, the rains begin earlier and end later, with strong wet spells occurring during the season, and there tend to be a greater number of moderate wet spells (although not necessarily more intense wet spells) than in dry years. In dry years, late onset and early cessation of the rainy season occur, often with an extended dry spell soon after the onset, and there tend to be a greater number of dry spells within the season. Large negative outgoing long wave radiation (OLR) anomaly values tend to be located between 20° and 40° E with anomalous westerly flow at 850 hPa occurring across the continent from 10° E to the tropical western Indian Ocean during wet spells in the anomalously wet seasons. Anomalously dry seasons are characterised by large positive OLR anomalies over 30–50° E as well as easterly anomalies at 850 hPa and westerly anomalies at 200 hPa. Eastward propagating intraseasonal anomalies are slower during the wet years implying that the convection remains over Tanzania longer. On the intraseasonal scale, Hovmoeller analyses of OLR and 850 and 200 hPa zonal wind indicate that convection over western Tanzania may be associated with a flux of moisture from the tropical southeast Atlantic and Congo basin followed by weak easterlies from the tropical western Indian Ocean.On interannual scales, wet (dry) years are characterized over the Indian Ocean by weaker (stronger) equatorial westerlies and weaker (stronger) trades that lead to less (more) export of equatorial moisture away from East Africa and increased (decreased) low-level moisture flux convergence over southern Tanzania, respectively. These anomalies arise from an anticyclonic (cyclonic) anomaly over the tropical western Indian Ocean during wet (dry) austral summers that may be related to cool (warm) SST anomalies there. Large scale modulation of the Indian Ocean Walker cell is also evident in both cases, but particularly for the dry years.Current affiliation: Tanzania Meteorological Agency, P.O. Box 3056, Dar es Salaam, Tanzania  相似文献   

19.
Summary The ITCZ (Intertropical Convergence Zone) is an important parameter for climatic studies in tropical areas, and meteorological satellite imagery provides an original way to follow its location. Using archive imagery covering the 1971–1987 period, we attempted to study further some of the relationships (suggested by former studies) between ITCZ locations (followed here over the Atlantic ocean at 28°W), and climate anomalies in the Sahel, an area affected by periodic drought for the last seventeen years. We also paid close attention to more frequently studied parameters, such as upper air data, wind at sea level, and sea surface temperature. As for relative drought estimates, we assumed that runoff from the Senegal River was representative of the sahelian area and we observed that its variations were consistent with the Lamb's rainfall index over the 1965–1987 period.Since the onset of the rainy season for West Africa responds to wind changes, we assessed the link between ITCZ and wind at sea level and found the timing of northward ITCZ migration to be highly correlated (r=0.84) with the date of zonal wind stress intensification.On a general point of view, the relationships we found between rainfall amount and ITCZ position anomalies (or SST anomalies) agree with known results of precedent works, though better fit is found with the seventies than the eighties. We think this discrepancy is due in part to the fact that the parameters studied were not identical and, perhaps to a possible change in climatic conditions (on a long term basis, the data show a continuous trend for less intense equatorial upwelling in the gulf of Guinea, and our time series covers a more recent period than referenced works).With a closer look on the first half of the year, it appears that typical (wet/dry) schemes of the ITCZ migration can be evidenced more clearly, than in reporting the northernmost ITCZ location, that we found to be a less significant index: in other words, a sooner (respectively later) northward ITCZ migration corresponds to dry (respectively wet) episodes during the rainy season in sahelian areas. Hence, we propose the speed of ITCZ northwards movement as a parameterization of this event.Moisture content of the lower troposphere revealed that steady anomalies of this parameter may last several years over sahelian areas. Taking into consideration the relative strength African tropical and easterly jets, some limited results were obtained, in regard of climatic anomalies.As first conclusions, moisture transportation over sahelian area (associated with larger negative SST anomalies) is more efficient for wetter rainy season, than the intensity of convective process linked to higher local SST in the equatorial Atlantic area. In joining moisture analysis and ITZ migration (1980–1987 period), wetter rainy seasons were observed each time that positive humidity anomalies coincided with a later northward ITCZ migration (or greater northward ITCZ speed).With 8 Figures  相似文献   

20.
Abstract

The relationship between sea surface temperature (SST) and rainfall index anomalies over sub‐Saharan Africa for the 15‐year period, 1970–84, has been examined. The objectively analysed monthly mean SST data were used for the global oceans between 40°S and 60°N. The rainfall data consist of annual mean rainfall indices for the Sahel and Soudan belts over north Africa.

An Empirical Orthogonal Function analysis of the SST data has been carried out for the Atlantic, Indian and global ocean regions. The results show that the most dominant eigenmode, EOF1, is characterized by warming over the central eastern Pacific, cooling over the eastern mid‐latitude Pacific and warming over the entire Atlantic and Indian ocean basins. The second EOF for the Atlantic Ocean SST analysis shows a dipole (north‐south see‐saw) pattern. The third EOF for the Atlantic SST analysis has the same sign over the entire Atlantic basin. Global SST EOF2 and EOF3 correspondió Atlantic SST EOF3 and EOF2, respectively.

The correlation between the sub‐Saharan annual rainfall index, which mainly represents the summer season rainfall from June to September, and SST EOFs shows that EOF1 has statistically significant monthly correlations for the Sahel and Soudan regions and that the warm El Niño‐like phases of SST EOF1 correspond to drought conditions. This result suggests that the large‐scale SST anomalies may be responsible for a significant component of the observed vacillation of sub‐Saharan rainfall. Some preliminary GLA GCM simulation results that support the above findings are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号