首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A geochemical study of thermal and cold springs, stream waters and gas emissions has been carried out in the Mt. Amiata geothermal region.The cold springs and stream waters do not seem to have received significant contribution from hot deep fluids. On the contrary, the thermal springs present complex and not clearly quantifiable interactions with the hot fluids of the main geothermal reservoir.The liquid-dominated systems in the Mt. Amiata area, like most of the high-enthalpy geothermal fields in the world, are characterized by saline, NaCl fluids. The nature of the reservoir rock (carbonatic and anhydritic), and its widespread occurrence in central Italy, favor a regional circulation of “Ca-sulfate” thermal waters, which discharge from its outcrop areas. Waters of this kind, which have been considered recharge waters of the known geothermal fields, dilute, disperse and react with the deep geothermal fluids in the Mt. Amiata area, preventing the use of the main chemical geothermometers for prospecting purposes. The temperatures obtained from the chemical geothermometers vary widely and are generally cooler than temperatures measured in producing wells.Other thermal anomalies in central Italy, apart from those already known, might be masked by the above-mentioned circulation. A better knowledge of deep-fluid chemistry could contribute to the calibration of specific geothermometers for waters from reservoirs in carbonatic rocks.  相似文献   

2.
Radon (222Rn) concentration in geothermal waters and CO2-rich cold springwaters collected weekly in duplicate samples from four stations in northern Taiwan were measured from July 1980 to December 1983. Seven spike-like radon anomalies (increases of 2 to 3 times the standard deviation above the mean) were observed at three stations. Following every anomaly except one, an earthquake ofM L above 4.6 occurred within 4 to 51 days, at an epicentral distance 14 to 45 km, and at a focal depth of less than 10 km. The distribution of the earthquakes preceded by radon anomalies is skewed in certain directions from the radon stations; the radon stations seem to be insensitive to earthquakes occurring in the other directions. At the fourth station, near a volcanic area, much gas (mainly CO2) is discharged from the well, together with hot water. A very high concentration of radon was detected in the discharged gas; therefore trapping of gas in the water can result in anomalously high radon contents. According to limited measurements, the radon concentration in water appears to be undersaturated with respect to that in gas. This suggests that hot water is very susceptible to radon loss, and monitoring of radon in gas is more desirable.  相似文献   

3.
Radon-222 was measured using Kodak LR-115 film in the soils of 2500 locations near the Ngawha hot springs region, New Zealand, which is being exploited for geothermal power; the object was to determine its usefulness for predicting good drill sites. Unlike other surveys, which have shown large areas with consistent high radon values, anomalies here were scattered, and corresponded mainly with fault lineaments. The results suggested a major previously unnoticed fault. The sampling distance was 50 m.There was a strong seasonal effect on ground radon levels, with summer levels about ten times higher than winter levels.Swamps usually had measured radon levels of near zero because of the slow diffusion of radon in stagnant water, and even thermal areas (mainly in the swamps) usually had low measured values. However, where a fault crossed swamp it was sometimes detected, and with high signal/noise ratio, so swamps should be surveyed.Arguments from the radon levels found on different geologies show that at Ngawha radon has a maximum half value diffusion thickness of 7 m for lacustrine sediment and 25 m for basalt unless a permeable area is present (e.g., a fault).There was a weak correlation of radon levels with the temperatures found on drilling deep bores.Comparisons with the ROAC system and Alphacard system for measuring radon showed no statistical inter-correlations, but some qualitative correspondence of radon contours.The main strength of the method in regions with impermeable soils (such as at Ngawha), seems to be in detecting or confirming the presence of faults, and possibly (through them) indicating geological structure as deep as 300 m.  相似文献   

4.
Detailed geochemistry supported by geologic mapping has been used to investigate Sulphur Springs, an acid-sulfate hot spring system that issues from the western flank of the resurgent dome inside Valles Caldera. The most intense activity occurs at the intersection of faults offsetting caldera-fill deposits and post-caldera rhyolites. Three geothermal wells in the area have encountered pressures <1 MPa and temperatures of 200°C at depths of 600 to 1000 m. Hot spring and fumarole fluids may discharge at boiling temperatures with pH 1.0 and SO4 8000 mg/l. These conditions cause argillic alterations throughout a large area.Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280°C. Comparison of 13C and 18O between CaCO3 from well cuttings and CO2 from fumarole steam indicates a fractionation temperature between 200 and 300°C by decarbonation of hydrothermally altered Paleozoic limestone and vein calcite in the reservoir rocks. Tritium concentrations obtained from steam condensed in a mudpot and deep reservoir fluids (Baca #13, 278°C) are 2.1 and 1.0 T.U. respectively, suggesting the steam originates from a reservoir whose water is mostly >50 yrs old. Deuterium contents of fumarole steam, deep reservoir fluid, and local meteoric water are practically identical even though 18O contents range through 4‰, thus, precipitation on the resurgent dome of the caldera could recharge the hydrothermal system by slow percolation. From analysis of D and 18O values between fumarol steam and deep reservoir fluid, steam reaches the surface either (1) by vaporizing relatively shallow groundwater at 200°C or (2) by means of a two-stage boiling process through an intermediate level reservoir at roughly 200°C.Although many characteristics of known vapor-dominated geothermal systems are found at Sulphur Springs, fundamental differences exist in temperature and pressure of our postulated vapor-zone. We propose that the reservoir beneath Sulphur Springs is too small or too poorly confined to sustain a “true” vapor-dominated system and that the Sulphur Springs system may be a “dying” vapor-dominated system that has practically boiled itself dry.  相似文献   

5.
The Latera field (Vulsini volcanic complex, Latium, Italy) is one of the geothermal areas of the peri-Tyrrhenian belt along which a regional, high thermal anomaly has been detected. So far nine deep wells have been drilled within the Latera caldera and four of them have been productive. The geothermal reservoir is located within the fractured carbonatic rocks of the Tuscan nappe; the overlying volcanic units, sealed by hydrothermal minerals (mainly calcite and anhydrite), act as an impervious cover.The fluid produced by the wells comes from a deep aquifer (about 1000–1500 m depth) which at present is not connected with the shallow aquifer in the volcanoclastic units. Fluid temperatures range between 200 and 230°C; in-hole temperatures as high as 343°C at 2775 m depth have been measured in dry wells.The study of the newly formed mineral assemblages from both volcanic and sedimentary units as sampled from the geothermal wells can be used to reconstruct the thermal evolution of the geothermal field. The intrusion of a syenitic melt, up to a depth of about 2000 m, dated 0.86 Ma, represents the major thermal event for the units in the area and is assumed to represent the first step in the geothermal evolution of the Latera system.The above mentioned newly formed mineral assemblages can be divided into three groups: (a) “contact-metasomatic”: calcite, anhydrite, diopsidic pyroxene, grossularitic garnet, phlogopite, wollastonite or monticellite; (b) “high-temperature hydrothermal”: calcite, anhydrite, K-feldspar, vesuvianite, melanitic garnet, tourmaline, amphibole, epidote, sulphides; (c) “low-temperature hydrothermal”: calcite, anhydrite, K-feldspar, clay minerals, sulphides. Group (a) minerals are now relics. Part of (b) and all of (c) group are still in equilibrium with the existing conditions in different parts of the geothermal system.Thermodynamic calculations on the observed mineral assemblages permitted estimates of the P, T conditions and gas fugacities.  相似文献   

6.
Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines.Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors.To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called “reactivation of platform” with large-scale faulting and magmatism.Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),  相似文献   

7.
Hydrothermal systems in regions of high relief may not have obvious thermal features indicative of their central upflow zone at depth. Investigation of such areas for geothermal energy production in the Philippines has, however, encountered relatively large ( > 10,000 m2) areas of volumetrically significant but diffuse, cold-gas emission and associated intense argillic alteration. These features are likely to be best developed above, or close to, hydrothermal upflow zones. The identification of such features is important for interpreting the hydrology of active geothermal systems in the course of exploration for power development, or when interpreting the paleohydrology of fossil geothermal systems which host epithermal mineral deposits. Such zones of argillic alteration are likely to be barren of precious metals or other elements (except mercury) which are commonly used as pathfinders for precious-metal deposits, but are indicative of subsurface processes significant in ore genesis.It is proposed that the term “kaipohan” be used for such features. Their existence depends on the presence of either a low-permeability geologic formation or where a suitable relationship exists between the hydrology of the deep geothermal reservoir and that of the shallow groundwater system. Such a situation occurs in steep terrain, where much of the area supplying meteoric recharge to the geothermal system is at a lower elevation than the area overlying the centre of the system, and where there is a high annual rainfall. These conditions are typical of andesitic stratovolcanoes in tropical or subtropical island arcs.  相似文献   

8.
有关氡气的来源、变化机制及共和地应力的关系尚处于研究过程中。本文将围绕这一问题对岩石标本进行压力试验和溶解试验,为氡预报地震的压溶机制提供实验依据。作者在对唐山地区水氡普查测定的基础上,采集井孔围岩及岩芯标本,开展岩石铀(钍)含量、岩石压氡、岩石水溶解氡及井孔水氡含量之间的综合研究。初步认为,当岩石受压变形破裂时井孔围岩中放射性元素的含量与氡逸出量呈正向关系  相似文献   

9.
唐山7.8级地震前水氡异常演化特征   总被引:1,自引:0,他引:1  
根据华北地区分布的33个水化观测点的水氡观测资料,以半年为尺度对唐山7.8级地震前水氡的异常演化过程进行了研究,认为:唐山7.8级地震前水氡异常存在由外围向震中区演化的异常特征,且在唐山地震发生的短临阶段,水氡异常在唐山地区形成集中,异常强度最大。  相似文献   

10.
An earthquake sequence at the transform plate boundary in South Iceland, that included two magnitude 6.5 earthquakes in June 2000, was anticipated on the basis of a centuries-long seismicity pattern in the area. A program of radon monitoring in geothermal water from drill holes, initiated in 1999, rendered distinct and consistent variations in radon in association with these events. All seven sampling stations in a 50 × 30 km zone covering the epicentral area showed a consistent pattern. Four types of change could be identified: 1) Preseismic decrease of radon. Anomalously low values were measured 101–167 days before the earthquakes. 2) Preseismic increase. Spikes appear in the time series at six stations 40–144 days prior to the earthquakes. These anomalies were large and unusual if compared to a 17-years history of radon monitoring in this area. 3) Coseismic step, most likely related to the coseismic change in groundwater pressure observed over the entire area. 4) Postseismic return of the radon values to the preseismic level about three months later, also concurrent with groundwater pressure changes.  相似文献   

11.
Seismic, geothermal, petrological and other data collected during the joint Soviet-Chinese-Japanese Project “Geotraverse: Pacific-China plain” are highly contradictory concerning their information on back-arc basins. The routine interpretation of the geothermal data leads, e.g. to the conclusion that the temperatures at depth are much higher than can be derived from other data. The discrepancies can be resolved by the back-arc spreading basins origin because of secondary mantle bulk or fluid convection. The inversion of the sign of the seismic velocity anomalies in the Pacific region at a depth of about 300 km can also be explained if active deep fluid regime is proposed. A new geotherm below the Mariana back-arc basin is proposed, and the velocity of the ascending mantle flow is estimated for this region.  相似文献   

12.
Depressurisation of the Tauhara field due to massive withdrawal of deep chloride water from the adjacent Wairakei field for geothermal power has caused considerably hydrological and chemical changes at Tauhara. In the undisturbed state (1962), deep chloride water discharged as hot and boiling dilute chloride springs on the east and west flanks of the field (the Terrace and Spa areas, respectively), while steam from the two-phase zone of the deep system produced by absorption into near-surface groundwater, steam-heated sulphatebicarbonate waters and by mixing with chloride water, chloride-sulphate waters. By 1978–1981 the chloride waters had stopped discharging on the western flank, the steam flow towards the surface had greatly increased (by 5–10 fold) increasing the volume and temperature of the steam-heated waters, but the dilute chloride waters of the Terrace area had changed very little. Silica concentrations in the near-surface waters appear to be controlled by the solubility of amorphous silica, which is present in the surface zone rocks (e.g., Taupo pumice breccias). The increased steam flow led to enrichment in the 13O and D contents of the steam-heated waters by loss of secondary steam and enlargement of the area and intensity of steaming ground, the latter accompanied by hydrothermal eruptions in 1974 and 1981. Generation of the steam-heated waters has been modelled using mass, heat and isotope balances. The model is consistent with observed heat and cold groundwater flows and requires that a large proportion of the heat from adsorbed primary steam is released as secondary steam. Tritium contents show that the steam-heated waters have a mean residence time of 50–100 years. In the future, invasion of the deep system by cooler surface waters may reduce steam flow and lower surface aquifer temperatures.  相似文献   

13.
北京平原区西北部大地热流与深部地温分布特征   总被引:3,自引:0,他引:3       下载免费PDF全文
北京平原区蕴藏着丰富的中-低温水热型地热资源,其西北部分布着小汤山地热田和京西北地热田,两大地热田以南口—孙河断裂带为界.地热田及其外围地区基础的地热地质研究工作较少.为给地热学研究和地热资源精细勘探提供科学依据,本文基于前人23眼钻孔的温度测量数据以及近期完成的548件热导率和100件放射性生热率实测数据,研究了区域大地热流和0~4 km深部地温特征.结果表明:(1)研究区现今地温梯度为11.31~94.89℃·km-1,平均值为31.79℃·km-1;岩石热导率为0.895~5.111 W·(m·K)-1,放射性生热率为0.257~2.305 μW·m-3,大地热流为48.1~99.1 mW·m-2,平均值为68.3 mW·m-2,热流的分布受基底形态和断裂构造控制.研究区东部南口—孙河断裂带两侧小汤山和郑各庄地区为高热流异常区,中部马池口地区也存在局部高热流异常区.(2)在南口—孙河断裂带的不同位置,不同深度地层温度差异明显,体现出区域现今地温场不只受控于该活动断裂,更是多期次构造事件复合叠加的结果.(3)南口—孙河断裂带南侧存在两处有意义的较高地温异常区,分别为郑各庄异常区和马池口异常区,其中马池口异常区是未来地热开发利用有一定潜力的地区.  相似文献   

14.
为分析汤阴地堑南部土壤Rn空间分布特征,揭示其与断裂构造、岩性及沉积层厚度之间的联系,本文采用网格化布点野外流动观测方法测定了该地区380个点的土壤Rn浓度,结果表明:汤阴地堑土壤Rn浓度介于3.09—78.54 kBq/m3,背景均值为27.22 kBq/m3,异常阈值下限为48.40 kBq/m3。在空间分布上,研究区西部(以第四系等厚线50 m为界),受岩石单元和人类石料开采活动的影响,Rn浓度背景值高于东部。在西部高浓度背景影响下,Rn浓度高值异常点除沿汤西断裂带分布外,还沿断裂带外围呈斑块状分布,断裂带对气体释放的控制作用在一定程度上被掩盖。而东部地区,覆盖层较厚,Rn浓度背景值较低,部分高值异常点主要沿汤中和汤东断裂带分布,显示出构造对气体迁移的控制作用;另一部分高值异常点与第四系等厚线近似平行,呈条带分布,推测新乡—卫辉间存在一条规模较大的隐伏断裂。此外,研究区主要断裂带的Rn异常衬度表现为汤东断裂带高于汤西和汤中断裂带。结合研究区地质背景和深部孕震环境认为,该Rn异常衬度表现是汤阴地堑南部构造活动背景的反映。因此,研究区土壤Rn浓度空间分布主要受断裂构造、岩性、沉积层厚度以及人类活动的影响,气体异常衬度主要受汤阴地堑南部构造活动背景的控制。土壤Rn浓度能够有效地用于汤东活动断裂带的构造活动监测,而对位于隆起区与沉降区的过渡地带、断裂局部出露于地表,且受人类活动影响较大的汤西断裂带则需充分考虑环境背景的影响。   相似文献   

15.
FeaturesoffractaldimensionanomalyofradoncontentinundergroundwaterinNorthChinabeforeandafterthe1976TangshanearthquakeChang-Chu...  相似文献   

16.
In the past decade many international studies have established that the radioactive gas radon is responsible to a large extent for the radiation dose absorbed by the population. Consequently the Swiss Federal Health Office started and sponsored a research program called RAPROS (Radon Programm Schweiz, 1987–1991) to assess the relevant aspects of radon exposure in Switzerland.The average indoor radon concentration in Swiss living rooms is about 60–70 Bq m−3, this corresponds to an annual dose of about 2.2 mSv, but values largely exceeding 1000 Bq m−3 were also found. Often very strong temporal fluctuations of indoor radon concentrations were measured.The ground directly underneath buildings is the main radon source of indoor radon. The material properties that influence the radon production and transport in soils are: radium content, emanating coefficient and soil gas permeability; among them only the last one can vary over many orders of magnitude. The permeability is consequently the decisive factor that enables radon transport in the subsurface. To characterize the radon potential of soils a radon availability index (rav) was introduced.Our investigations have also shown that in karst systems the radon concentration in the air is often increased to 10–100 times higher than in buildings. This radon-charged air is able to travel over considerable distances through faults and cavities in the underground and reach living rooms built over karstified areas.  相似文献   

17.
Long-wavelength anomalies in the total magnetic field measured by Magsat over the United States and adjacent areas are inverted to an equivalent surface layer magnetization distribution. The model is based on an equal-area dipole grid at the Earth's surface. Model resolution, defined as the closest dipole spacing giving a solution having physical significance, is about 220 km for Magsat data in the elevation range 300–550 km. The magnetization contours correlate well with large-scale tectonic provinces. A higher-resolution (200 km) model based on relatively noise-free synthetic “pseudodata” is also presented. An excellent inverse correlation between apparent magnetization and heat flow in the western U.S. is demonstrated. A new regional heat flow map derived indirectly from Magsat data shows nearly all the important thermal anomalies evidenced in previous published maps. Notably, the map predicts high heat flow in Nebraska and the Dakotas, suggesting the presence of a “blind” geothermal area of regional extent.  相似文献   

18.
Seiler RL 《Ground water》2004,42(3):446-455
Since 1997, 15 cases of acute lymphocytic leukemia and one case of acute myelocytic leukemia have been diagnosed in children and teenagers who live, or have lived, in an area centered on the town of Fallon, Nevada. The expected rate for the population is about one case every five years. In 2001, 99 domestic and municipal wells and one industrial well were sampled in the Fallon area. Twenty-nine of these wells had been sampled previously in 1989. Statistical comparison of concentrations of major ions and trace elements in those 29 wells between 1989 and 2001 using the nonparametric Wilcoxon signed-rank test indicate water quality did not substantially change over that period; however, short-term changes may have occurred that were not detected. Volatile organic compounds were seldom detected in ground water samples and those that are regulated were consistently found at concentrations less than the maximum contaminant level (MCL). The MCL for gross-alpha radioactivity and arsenic, radon, and uranium concentrations were commonly exceeded, and sometimes were greatly exceeded. Statistical comparisons using the nonparametric Wilcoxon rank-sum test indicate gross-alpha and -beta radioactivity, arsenic, uranium, and radon concentrations in wells used by families having a child with leukemia did not statistically differ from the remainder of the domestic wells sampled during this investigation. Isotopic measurements indicate the uranium was natural and not the result of a 1963 underground nuclear bomb test near Fallon. In arid and semiarid areas where trace-element concentrations can greatly exceed the MCL, household reverse-osmosis units may not reduce their concentrations to safe levels. In parts of the world where radon concentrations are high, water consumed first thing in the morning may be appreciably more radioactive than water consumed a few minutes later after the pressure tank has been emptied because secular equilibrium between radon and its immediate daughter progeny is attained in pressure tanks overnight.  相似文献   

19.
The practically important part of geothermal systems belongs to the convective type where the thermal energy is transported by movement of water or steam. Both geothermics and hydrology should be in very close cooperation at the interpretation of convective geothermal anomalies.In the first part of the study the parameters required for the calculation of water- and thermal-balance will be enumerated and their obtainable accuracy will be discussed based mainly on the praxis used in Hungary.In the second part, heat convection problems connected to subterranean water movement will be discussed, divided into three cases which have importance in praxis:
• — regional water-flow systems with great inflow and outflow areas;
• — mountainous — mainly karstic — areas of infiltration with springs at the foot of the mountain;
• — closed convective systems of circulation.
For illustrating the conceptual examples given above, Hungarian case histories with characteristic data will be presented: The Transdanubian Middle Range, Spa of Budapest, Spa of Héviz, the Great Hungarian Plain and the Thermal Anomaly at Tiszakécske.  相似文献   

20.
目前用于地下水中氡浓度观测的仪器,特别是模拟氡观测仪器的更新换代相当缓慢,且普遍采用的FD-105K型静电计和FD-125型氡钍分析器均采用人工鼓泡、读数,存在一定的人为误差。经实验研究认为AlphaGUARD P2000便携测氡仪完全采用自动鼓泡和读数,可避免人工操作带来的误差,提高水氡观测质量,利于捕捉地震异常信息。同时,AlphaGUARAD P2000便携测氡仪携带方便、自带电源、操作简单,可用于野外观测、异常核实和土壤氡的测量,拓展地震地下流体中氡的观测范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号