首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jere H. Lipps  Sarah Rieboldt 《Icarus》2005,177(2):515-527
Jupiter's moon Europa possesses an icy shell kilometers thick that may overlie a briny ocean. The inferred presence of water, tidal and volcanic energy, and nutrients suggests that Europa is potentially inhabited by some kind of life; indeed Europa is a primary target in the search for life in the Solar System although no evidence yet exists for any kind of life. The thickness of the icy crust would impose limits on life, but at least 15 broad kinds of habitats seem possible for Europa. They include several on the sea floor, at least 3 in the water column, and many in the ice itself. All of these habitats are in, or could be transported to, the icy shell where they could be exposed by geologic activity or impacts so they might be explored from the surface or orbit by future planetary missions. Taphonomic processes that transport, preserve, and expose habitats include buoyant ice removing bottom habitats and sediment to the underside of the ice, water currents depositing components of water column habitats on the ice bottom, cryovolcanoes depositing water on the surface, tidal pumping bringing water column and ice habitats to the near-surface ice, and subice freezing and diapiric action incorporating water column and bottom ice habitats into the lower parts of the icy shell. The preserved habitats could be exposed at or near the surface of Europa chiefly in newly-formed ice, tilted or rotated ice blocks, ridge debris, surface deposits, fault scarps, the sides of domes and pits, and impact craters and ejecta. Future exploration of Europa for life must consider careful targeting of sites where habitats are most likely preserved or exist close to the surface.  相似文献   

2.
One possibility to explore the subsurface layers of icy bodies is to use a probe with a “hot tip", which is able to penetrate ice layers by melting. Such probes have been built and used in the past for the exploration of terrestrial polar ice sheets and may also become useful tools to explore other icy layers in the Solar System. Examples for such layers are the polar areas of Mars or the icy crust of Jupiter’s moon Europa. However, while on Earth a heated probe launched into an ice sheet always causes melting with subsequent refreezing, the behaviour of such a probe in a low pressure environment is quite different. We report on the results of some experiments with a simple “melting probe" prototype with two different kinds of hot tips in a vacuum environment. For one of the tips the probe moved into two types of ice samples: (i) compact water ice and (ii) porous water ice with a snow (firn) like texture. It was also found that the penetration behaviour was basically different for the two sample types even when the same kind of tip was used. While in the porous sample the ice was only subliming, the phase changes occurring during the interaction of the tip with the compact ice are much more complex. Here alternating phases of melting and sublimation occur. The absence of the liquid phase has severe consequences on the performance of a “melting probe" under vacuum conditions: In this environment we find a high thermal resistance between the probe surface and the underlying ice. Therefore, only a low percentage of the heat that is generated in the tip is used to melt or sublime the ice, the bulk of the power is transferred towards the rear end of the probe. This is particularly a problem in the initial phases of an ice penetration experiment, when the probe has not yet penetrated the ice over its whole length. In the compact ice sample, phases could be observed, where a high enough gas pressure had built up locally underneath the probe, so that melting becomes possible. Only during these melting periods the thermal contact between the probe and the ice is good and in consequence the melting probe works effectively.  相似文献   

3.
The possibility of generating water vapor and other gaseous products during nonvolcanic explosive eruptions in lithospheres of icy satellites is discussed. Explosive eruptions of ice, with its fragmentation into micro-and nanofragments, can occur in the extensive deep layers of such icy satellites as Europa, Ganymede, Enceladus, etc., if giant cracks are episodically formed in the lithospheres of these satellites. Such cracks can be produced by tidal forces, synchronous resonances of satellites, or especially powerful impacts. The model is based on the recently obtained experimental evidence that explosive ice instability (Bridgman effect) is formed at a strong nonuniform compression in the regions of high pressures and low temperatures. Water films, the thicknesses of which reach several microns, can be formed during the process of the mutual friction of ice fragments during their quasi-liquid flow at the instant of an explosive eruption. About 1–10 dm3 of a water film can be produced in 1 m3 of erupted ice fragments. Water vapor can be formed from a water film when this water boils up after a rapid pressure drop as a result of an ice-water mixture eruption from cracks. A certain amount of gaseous products in the form of hydrogen, oxygen, and ammonia molecules and radicals on their basis can be generated during the sputtering induced by electrons and ions and the dissociation of nanofragments of ice during the process of ice explosive fragmentation as a result of fracto-, tribo-, and secondary emission. The estimates indicate that the volume of water vapor erupted on satellites can be larger than that of discharged ionized gases by a factor of not less than 105–107. Water vapor and microscopic ice fragments can be erupted from cracks in the lithospheres of small Enceladus-type satellites at velocities higher than the second cosmic velocity. Gaseous products generated in such episodic processes can, most probably, substantially contribute to the density of the atmosphere that exists on small icy satellites, but can only insignificantly contribute to this density on large satellites. The stick-slip motions of the most condensed plumes of water vapor and dust, normal to the satellite surface, along the mouths of gigantic cracks may indicate that the proposed model is realistic. Such wanderings of water vapor plumes can result in the synchronous motions of thermal patches on the satellite surface along crack mouths at velocities of about 10 km/h.  相似文献   

4.
We model the chemical evolution of Titan, wherein primordial NH3 reacts with sulfate-rich brines leached from the silicate core during its hydration. The resulting differentiated body consists of a serpentinite core overlain by a high-pressure ice VI mantle, a liquid layer of aqueous ammonium sulfate, and a heterogeneous shell of methane clathrate, low-pressure ice Ih and solid ammonium sulfate. Cooling of the subsurface ocean results in underplating of the outer shell with ice Ih; this gravitationally unstable system can produce compositional plumes as ice Ih ascends buoyantly. Ice plumes may aid in advection of melt pockets through the shell and, in combination with surface topography, provide the necessary hydraulic pressure gradients to drive such melts to the surface. Moreover, contact between the magma and wall rock (methane clathrate) will allow some methane to dissolve in the magma, as well as eroding fragments of wall rock that can be transported as xenoliths. Upon rising to the clathrate decomposition depth (∼2 MPa, or 1700 m), the entrained xenoliths will break down to ice + methane gas, powering highly explosive eruptions with lava fountains up to several kilometers high. Hence we predict that Titan is being resurfaced by cryoclastic ash consisting of ice and ammonium sulfate (or its tetrahydrate), providing an abundance of sedimentary grains, a potential source of bedload for fluvial transport and erosion, and of sand-sized material for aeolian transport and dune-building. The infrared reflectance spectrum of ammonium sulfate makes it a plausible candidate for the 5 μm-bright material on Titan's surface.  相似文献   

5.
Martha S. Hanner 《Icarus》1981,47(3):342-350
Evaporation of icy grains over the distance scale of the visible cometary coma sets very specific limits on their temperature. Unless the grains are very pure water ice, the maximum size of an icy grain halo will be limited to a few hundred kilometers at heliocentric distances ?2.5 AU. It is unlikely that the 1.5- or 2-μm ice band could be detected in the scattering by icy grains. Detection of the 3?μm ice band might be possible in comets which display a coma at large heliocentric distances.  相似文献   

6.
We performed high-pressure experiments on the crystallization of water ice I and III in the ammonia-water (NH3)x(H2O)(1−x) system, and apply the results to the interiors of icy bodies in the Solar System. Phase equilibrium lines between an entirely liquid solution and a liquid solution in which water ice forms (liquidus lines) were determined for ammonia concentration by mass X equal to 0.034, 0.0472, 0.111, 0.176, and 0.229. Growth-melting of ice I as well as ice III crystals were observed. Application of the results to icy satellites that are potential bearers of ammonia shows that ammonia admixture decreases the depth of the liquidus surface. A shift of the liquidus temperature within a satellite depends on three parameters: the ammonia concentration, X; the temperature gradient, α; and the product of density and gravity, ρg.  相似文献   

7.
The complex geology of Europa is evidenced by many tectonic and cryomagmatic resurfacing structures, some of which are “painted” into a more visible expression by exogenic alteration processes acting on the principal endogenic cryopetrology. The surface materials emplaced and affected by this activity are mainly composed of water ice in some areas, but in other places there are other minerals involved. Non-ice minerals are visually recognized by their low albedo and reddish color either when first emplaced or, more likely, after alteration by Europan weathering processes, especially sublimation and alteration by ionizing radiation. While red chromophoric material could be due to endogenic production of solid sulfur allotropes or other compounds, most likely the red substance is an impurity produced by radiation alteration of hydrated sulfate salts or sulphuric acid of mainly internal origin. If the non-ice red materials or their precursors have a source in the satellite interior, and if they are not merely trace contaminants, then they can play an important role in the evolution of the icy crust, including structural differentiation and the internal dynamics. Here we assume that these substances are major components of Europa's cryo/hydrosphere, as some models have predicted they should be. If this is an accurate assumption, then these substances should not be neglected in physical, chemical, and biological models of Europa, even if major uncertainties remain as to the exact identity, abundance, and distribution of the non-ice materials. The physical chemical properties of the ice-associated materials will contribute to the physical state of the crust today and in the geological past. In order to model the influence of them on the thermal state and the geology, we have determined the thermal properties of the hydrated salts. Our new lab data reveal very low thermal conductivities for hydrated salts compared to water ice. Lower conductivities of salty ice would produce steeper thermal gradients than in pure ice. If there are salt-rich layers inside the crust, forming salt beds over the seafloor or a briny eutectic crust, for instance, the high thermal gradients may promote endogenic geological activity. On the seafloor, bedded salt accumulations may exhibit high thermochemical gradients. Metamorphic and magmatic processes and possible niches for thermophilic life at shallow suboceanic depths result from the calculated thermal profiles, even if the ocean is very cold.  相似文献   

8.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

9.
The population of Saturn's outermost tenuous E-ring is dominated by tiny water ice particles. Active volcanism on the moon Enceladus, embedded in the E-ring, has since late 2005 been known to be a major source of particles replenishing the ring. Therefore particles in the vicinity of Enceladus may provide crucial information about the dynamical and chemical processes occurring below the moon's icy surface. Here we present a statistical evaluation of more than 2000 impact ionisation mass spectra of Saturn's E-ring particles, with sizes predominantly below 1 μm, detected by the Cosmic Dust Analyser onboard the Cassini spacecraft. We focus on the identification of non-water features in spectra otherwise dominated by water ice signatures. Here we specify the categorisation of two different spectrum types, which probably represent two particle populations. Type I spectra imply pure water ice particles, whereas in Type II spectra organic compounds and/or silicate minerals are identified as impurities within the icy particles. This finding supports the hypothesis of a dynamic interaction of Enceladus' rocky core with liquid water.  相似文献   

10.
We report a study on the broadband ultraviolet photolysis of methane-water ice mixtures, at low methane concentrations and temperatures relevant to the icy satellites of the outer Solar System. The photochemistry of these mixtures is dominated by the action of hydroxyl radicals on methane and the resulting products. This implies that, given sufficient exposure time, the methane will eventually be completely oxidized to carbon dioxide. The presence of methane inhibits the formation of hydrogen peroxide by serving as a trap for hydroxyl radicals. The distribution of photochemical products is broadly similar to that previously conducted using ion and electron sources, with some differences possibly attributable to the difference in radiation source. The results are applicable to a variety of icy bodies in the Solar System. On Enceladus, where methane mixed with water is measured in the plumes, methane in the surface ices is subject to oxidation and will eventually be converted to CO2. The CH stretch feature detected in the VIMS spectra of the Enceladus surface ice suggests that methane is currently being supplied to the surface ice, likely from re-condensation of the plume gas.  相似文献   

11.
Hauke Hussmann  Frank Sohl 《Icarus》2006,185(1):258-273
The detection of induced magnetic fields in the vicinity of the jovian satellites Europa, Ganymede, and Callisto is one of the most surprising findings of the Galileo mission to Jupiter. The observed magnetic signature cannot be generated in solid ice or in silicate rock. It rather suggests the existence of electrically conducting reservoirs of liquid water beneath the satellites' outermost icy shells that may contain even more water than all terrestrial oceans combined. The maintenance of liquid water layers is closely related to the internal structure, composition, and thermal state of the corresponding satellite interior. In this study we investigate the possibility of subsurface oceans in the medium-sized icy satellites and the largest trans-neptunian objects (TNO's). Controlling parameters for subsurface ocean formation are the radiogenic heating rate of the silicate component and the effectiveness of the heat transfer to the surface. Furthermore, the melting temperature of ice will be significantly reduced by small amounts of salts and/or incorporated volatiles such as methane and ammonia that are highly abundant in the outer Solar System. Based on the assumption that the satellites are differentiated and using an equilibrium condition between the heat production rate in the rocky cores and the heat loss through the ice shell, we find that subsurface oceans are possible on Rhea, Titania, Oberon, Triton, and Pluto and on the largest TNO's 2003 UB313, Sedna, and 2004 DW. Subsurface oceans can even exist if only small amounts of ammonia are available. The liquid subsurface reservoirs are located deeply underneath an ice-I shell of more than 100 km thickness. However, they may be indirectly detectable by their interaction with the surrounding magnetic fields and charged particles and by the magnitude of a satellite's response to tides exerted by the primary. The latter is strongly dependent on the occurrence of a subsurface ocean which provides greater flexibility to a satellite's rigid outer ice shell.  相似文献   

12.
We present spectrophotometry in the 27–41 μm spectral region for icy satellites of Saturn (Tethys, Dione, Rhea, Iapetus, and Hyperion) and Jupiter (Europa, Ganymede, and Callisto). The 3.6-μm reflectance peak characteristic of fine-grained water ice is observed prominently on the satellites of Saturn, faintly on the leading side of Europa, and not all on Ganymede, Callisto, or the dark side of Iapetus. The spectral reflectances of these icy satellites may be affected by their equilibrium surface temperatures and magnetospheric effects.  相似文献   

13.
Rainer Merk  Dina Prialnik 《Icarus》2006,183(2):283-295
We have calculated the early thermal evolution of trans-neptunian objects by means of a thermal evolution code that takes into account simultaneous accretion. The set of coupled partial differential equations for 26Al radioactive heating, transformation of amorphous to crystalline ice and melting of water ice was solved numerically for small porous icy (cometary-like) bodies growing to final radii between 2 and 32 km and accreting between 20 and 44 AU. Accretion within a swarm of gravitationally interacting small bodies was calculated self-consistently with a simple accretion algorithm and thermal evolution of a typical member of the swarm was tracked in a parameter-space survey. We find that including accretion in numerical modeling of thermal evolution leads to a broad variety of thermally processed icy bodies and that the early occurrence of liquid water and extended crystalline ice interiors may be a very common phenomenon. The pristine nature of small icy bodies becomes thus restricted to a particular set of initial conditions. Generally, long-period comets should be more thermally affected than short-period ones.  相似文献   

14.
H.J Melosh  A.P Showman  R.D Lorenz 《Icarus》2004,168(2):498-502
A 100 km deep liquid water ocean probably underlies the icy exterior of Jupiter's satellite Europa. The long-term persistence of a liquid ocean beneath an ice shell presents a thermal conundrum: Is the temperature of the ocean equal to the freezing point of water at the bottom of the ice shell, or is it equal to the somewhat warmer temperature at which water attains its maximum density? We argue that most of the ocean is at the temperature of maximum density and that the bulk of the vigorously convecting ocean is separated from the bottom of the ice shell by a thin “stratosphere” of stably stratified water which is at the freezing point, and therefore buoyant. If Europa's subsurface water ocean is warm, it could explain the widespread geologic evidence for apparent melt-through events observed on its surface and may constrain the overall age of its surface.  相似文献   

15.
Roger N. Clark 《Icarus》1982,49(2):244-257
Water ice has such a low absorption coefficient at visual wavelengths (~0.01 cm?1) that a very small amount of particulate material can significantly darken an icy surface. A variety of ice plus particle mixtures were studied to show that particulate contaminations of ~1% by weight (even 0.1% or less in some cases) in ice or frosts result in reflectance levels close to that of the contaminants. In a very clear ice (no bubbles) it is plausible to have a reflectance < 0.05 for particulate contaminations ~10?7 by weight for submicron dark particles, such as carbon lampblack. Scattering conditions compete for domination with contaminants for control of visual reflectance, implying that the apparent reflectivity level and color of a surface is a poor indicator of ice content. A dark surface (e.g., albedo 0.05) does not necessarily imply that there us very little water ice present. Infrared JHK colors of water ice and other minerals, including ice-mineral mixtures, show that some orthopyroxenes can have JHK colors very similar to fine-grained water frosts. In general, it is possible that the JHK colors of an ice plus particulate mixture can fall anywhere in the classical J-H versus H-K diagram, thus the diagram cannot be used to distinguish a predominately “rock” surface from one which is predominantely ice for one specific case. An important exception is the case where both the J-H and H-K colors are ??0.2. It appears that such colors indicate a relatively pure icy surface. In some cases, the diagram might be used as a statistical tool to distinguish between the compositions of surfaces within a class of objects, but the validity of such comparisons decreases for different classes, such as the main-belt asteroids when compared to outer solar system satellites, where water ice is more stable.  相似文献   

16.
Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a ‘honeycomb’ structure created by sublimation. This ice could have a density as low as c. 450 kg m−3 and a thermal conductivity as low as 1.6 W m−1 K−1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will act to reduce the surface temperature, and hence rate of sublimation, thereby prolonging the lifespan of any liquid water beneath.  相似文献   

17.
The observational evidence given by Galileo spacecraft about Europa supports an icy rigid layer of several kilometers over another ductile layer of ice in convection, which floats over an internal ocean of liquid water. Before the onset of convection, heat is transmitted into the crust by conduction. The heat flow analysis in the potentially convective layer gives values higher than those obtained previously by tidal dissipation models, and suggests that the ice may be limited to a thin layer of ∼4 km total thickness. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The surface of Enceladus consists almost completely of water ice. As the band depths of water ice absorptions are sensitive to the size of particles, absorptions can be used to map variations of icy particles across the surface. The Visual and Infrared Mapping Spectrometer (VIMS) observed Enceladus with a high spatial resolution during three Cassini flybys in 2005 (orbits EN 003, EN 004 and EN 011). Based on these data we measured the band depths of water ice absorptions at 1.04, 1.25, 1.5, and 2 μm. These band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 μm and 1 mm. The agreement between the experimental (VIMS) and model values supports the assumption that pure water ice characterizes the surface of Enceladus and therefore that variations in band depth correspond to variations in water ice particle diameters. Our measurements show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively “fresh” surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles (∼0.2 mm) are concentrated in the so called “tiger stripes” at the south pole. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening.  相似文献   

19.
This paper reviews the properties of vapor-deposited water ice in connection with icy surfaces in the outer solar system. The emphasis is on knowledge gained during the last decade, and on the properties of the amorphous phase, especially those affected by the presence of microporosity. The paper discusses the role played by the properties of different phases of ice and the effect of irradiation on the icy surfaces of satellites in the outer solar system: sputtering, phase transformation, the production and trapping of molecular radiation products, and stress induced cracking. The understanding of how growth and irradiation processes affect the optical properties of ice will lead to extract better information from optical remote sensing than is possible today. It is argued that cracks in ice induced by stresses are the main reason causing low-temperature ices to be strongly scattering.  相似文献   

20.
A.D. Kuzmin  B.Y.A Losovsky 《Icarus》1973,18(2):222-223
A model of an icy surface and interior for Callisto gives a predicted thermal radio emission in good agreement with experimental radio astronomical data. The radio brightness temperature of an icy surface will not depend on wavelength. This may be a method to test icy surface hypotheses. The brightness temperatures of other satellites with icy surfaces will be equal to 200–220°K and will not depend on wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号