首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
Abstract— The grain-size distribution of the regolith of asteroid 4 Vesta has been estimated by comparing its reflectance spectra (0.3–2.6 μm) with those of HED meteorites. The finest grain-size separate (<25 μm) of a particular howardite has a reflectance spectrum most similar to Vesta's. In order to better simulate Vesta's surface mineralogy, reflectance spectra of those finest HED meteorite powders were linearly combined, and Vesta's spectrum was scaled for the best fit between them. Both the albedo and the shape of reflectance spectrum of Vesta were well reproduced by regional mixtures of the finest (<25 μm) powders of HED meteorites. The result suggests the heterogeneity of Vesta's surface and provides an estimate of the visible reflectance of Vesta that is close to its IRAS albedo. Thus, this suggests that fine grains can be generated and retained by relatively small bodies (Vesta is approximately 500 km in diameter).  相似文献   

2.
Asteroids in general display only small or negligible variations in spectrum or albedo during a rotational cycle. Color variations with rotation are described in the literature but are usually comparable to the noise in the measurements. Twenty-four asteroids have been systematically monitored for such color changes. Only 3 Juno, 4 Vesta, 6 Hebe, 71 Niobe, 349 Dembowska, and 944 Hidalgo display color variations larger than 0.03 mag. In each of these cases the asteroid appears redder near maximum brightness. Of seven asteroids monitored polarimetrically, only 4 Vesta shows a convincing variation, attributed to an albedo change with rotation. The lightcurve can be explained by albedo differences alone; Vesta apparently has a nearly spheroidal shape. Notwithstanding the above results, the degree of uniformity of most asteroid surfaces is remarkable. If asteroids exist with large discrete domains of ferrosilicate, metallic, and/or carbonaceous material together on their surfaces, they have not yet been identified.  相似文献   

3.
Dawn spacecraft orbited Vesta for more than one year and collected a huge volume of multispectral, high-resolution data in the visible wavelengths with the Framing Camera. We present a detailed disk-integrated and disk-resolved photometric analysis using the Framing Camera images with the Minnaert model and the Hapke model, and report our results about the global photometric properties of Vesta. The photometric properties of Vesta show weak or no dependence on wavelengths, except for the albedo. At 554 nm, the global average geometric albedo of Vesta is 0.38 ± 0.04, and the Bond albedo range is 0.20 ± 0.02. The bolometric Bond albedo is 0.18 ± 0.01. The phase function of Vesta is similar to those of S-type asteroids. Vesta’s surface shows a single-peaked albedo distribution with a full-width-half-max ∼17% relative to the global average. This width is much smaller than the full range of albedos (from ∼0.55× to >2× global average) in localized bright and dark areas of a few tens of km in sizes, and is probably a consequence of significant regolith mixing on the global scale. Rheasilvia basin is ∼10% brighter than the global average. The phase reddening of Vesta measured from Dawn Framing Camera images is comparable or slightly stronger than that of Eros as measured by the Near Earth Asteroid Rendezvous mission, but weaker than previous measurements based on ground-based observations of Vesta and laboratory measurements of HED meteorites. The photometric behaviors of Vesta are best described by the Hapke model and the Akimov disk-function, when compared with the Minnaert model, Lommel–Seeliger model, and Lommel–Seeliger–Lambertian model. The traditional approach for photometric correction is validated for Vesta for >99% of its surface where reflectance is within ±30% of global average.  相似文献   

4.
We derive the following radii (in kilometers) and visual geometric albedos for nine asteroids from 10- and 20-μm radiometry: 1 Ceres (540, .16); 2 Pallas (275, .08); 3 Juno (125, .14); 4 Vesta (270, .21); 6 Hebe (110, .16); 15 Eunomia (135, .15); 51 Nemausa (80, .05); 433 Eros (12, .07); and 511 Davida (180, .04). Vesta has the highest albedo measured for an asteroid, while Davida, the lowest-albedo object in the sample, is one of the darkest known objects in the solar system. The median of all asteroid albedos measured to date is 0.1.  相似文献   

5.
Records of space weathering are important for understanding the formation and evolution of surface regolith on airless celestial bodies. Current understanding of space weathering processes on asteroids including asteroid‐4 Vesta, the source of the howardite–eucrite–diogenite (HED) meteorites, lags behind what is known for the Moon. In this study, we studied agglutinates, a vesicular glass‐coating lithic clast, and a fine‐grained sulfide replacement texture in the polymict breccia Northwest Africa (NWA) 1109 with electron microscopy. In agglutinates, nanophase grains of FeNi and FeS were observed, whereas npFe0 was absent. We suggested that the agglutinates in NWA 1109 formed from fine‐grained surface materials of Vesta during meteorite/micrometeorite bombardment. The fine‐grained sulfide replacement texture (troilite + hedenbergite + silica) should be a result of reaction between S‐rich vapors and pyroxferroite. The unique Fe/Mn values of relict pyroxferroite indicate a different source from normal HED pyroxenes, arguing that the reaction took place on or near the surface of Vesta. The fine‐grained sulfide replacement texture could be a product of nontypical space weathering on airless celestial bodies. We should pay attention to this texture in future returned samples by asteroid exploration missions.  相似文献   

6.
In March 2001, the Hayabusa spacecraft target, Asteroid 25143 Itokawa, made its final close approach to Earth prior to the spacecraft's launch. We carried out an extensive observing campaign from January to September 2001 to better characterize this near-Earth asteroid. Global physical properties of the surface of Itokawa were characterized by analyzing its photometric properties and behavior. Results included here capitalize on analysis of broadband photometric observations taken with a number of telescopes, instruments, and observers. We employed a Hapke model to estimate the surface roughness, single particle scattering albedo, single particle scattering characteristics, phase integral, and geometric and bond albedo. We find that this asteroid has a higher geometric albedo than average main belt S-class asteroids; this is consistent with results from other observers. The broadband colors of Itokawa further support evidence that this is an atypical S-class asteroid. Broadband colors show spectral characteristics more typically found on large-diameter main-belt asteroids believed to be space-weathered, suggesting the surface of this small diameter, near-Earth asteroid could likewise be space-weathered.  相似文献   

7.
We report a comprehensive review of the UV–visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20°, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ∼20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta’s rotational lightcurves is ∼10% throughout the range of wavelengths we observed, but is smaller at 950 nm (∼6%) near the 1-μm band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta’s average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible–near-infrared data.  相似文献   

8.
In this paper, we analyze the results of ground-based and space-born photometric observations of the major satellites of Uranus—Miranda, Ariel, Umbriel, Titania, and Oberon. All sets of photometric observations of the satellites available in the literature were examined for uniformity and systematic differences and summarized to a unified set by wavelength ranging from 0.25 to 2.4 μm. This set covers the interval of phase angles from 0.034° to 35°. The compound phase curves of brightness of the satellites in the spectral bands at 0.25, 0.41, 0.48, 0.56, 0.75, 0.91, 1.4, and 1.8 μm, which include a pronounced opposition surge and linear part, were constructed. For each satellite, the geometric albedo was found in different spectral bands taking into account the brightness opposition effect, and its spectral dependence was studied. It has been shown that the reflectance of the satellites linearly depends on the wavelength at different phase angles, but has different spectral gradients. The parameters of the phase functions of brightness, including the amplitude and the angular width of the brightness opposition surge, the phase coefficient, and the phase angle at which the nonlinear increase in brightness starts, were determined and their dependences on wavelength and geometric albedo were analyzed. Our investigations show that, in their optical properties, the satellites Miranda and Ariel, Titania and Oberon, and Umbriel present three types of surfaces. The observed parameters of the brightness opposition effect for the Uranian satellites, some ice satellites of Jupiter and Saturn, and the E-and S-type asteroids are analyzed and compared within the framework of the coherent backscattering and mutual shadowing mechanisms.  相似文献   

9.
We present near-infrared spectrometer (NIS) observations (0.8 to 2.4 μm) of the S-type asteroid 433 Eros obtained by the NEAR Shoemaker spacecraft and report results of our Hapke photometric model analysis of data obtained at phase angles ranging from 1.2° to 111.0° and at spatial resolutions of 1.25×2.5 to 2.75×5.5 km/spectrum. Our Hapke model fits successfully to the NEAR spectroscopic data for systematic color variations that accompany changing viewing and illumination geometry. Model parameters imply a geometric albedo at 0.946 μm of 0.27±0.04, which corresponds to a geometric albedo at 0.550 μm of 0.25±0.05. We find that Eros exhibits phase reddening of up to 10% across the phase angle range of 0-100°. We observe a 10% increase in the 1-μm band depth at high phase angles. In contrast, we observe only a 5% increase in continuum slope from 1.486 to 2.363 μm and essentially no difference in the 2-μm band depth at higher phase angles. These contrasting phase effects imply that there are phase-dependent differences in the parametric measurements of 1- and 2-μm band areas, and in their ratio. The Hapke model fits suggest that Eros exhibits a weaker opposition surge than either 951 Gaspra or 243 Ida (the only other S-type asteroids for which we possess disk-resolved photometric observations). On average, we find that Eros at 0.946 μm has a higher geometric albedo and a higher single-scatter albedo than Gaspra or Ida at 0.56 μm; however, Eros's single-particle phase function asymmetry and average surface macroscopic roughness parameters are intermediate between Gaspra and Ida. Only two of the five Hapke model parameters exhibit a notable wavelength dependence: (1) The single-scatter albedo mimics the spectrum of Eros, and (2) there is a decrease in angular width of the opposition surge with increasing wavelength from 0.8 to 1.7 μm. Such opposition surge behavior is not adequately modeled with our shadow-hiding Hapke model, consistent with coherent backscattering phenomena near zero phase.  相似文献   

10.
Submillimeter lightcurves of Vesta   总被引:1,自引:0,他引:1  
Thermal lightcurves of Asteroid Vesta with significant amplitude have been observed at 870 μm (345 GHz) using the MPIfR 19-channel bolometer of the Heinrich–Hertz Submillimeter Telescope. Shape and albedo are not sufficient to explain the magnitude of this variation, which we relate to global variations in thermal inertia and/or other thermophysical parameters. Vesta's lightcurve has been observed over several epochs with the same general shape. However, there are some changes in morphology that may in part be related to viewing geometry and/or asteroid season. Inconsistent night-to-night variations exhibit the inherent difficulties in photometry at this wavelength. We are able to match the observed brightness temperatures with a relatively simple thermal model that integrates beneath the surface and assumes reasonable values of thermal inertia, loss tangent and refractive index, and without having to assume low values of emissivity in the submillimeter. High flux portions of the submillimeter lightcurve are found to correspond to regions with weak mafic bands observed in Hubble Space Telescope images.  相似文献   

11.
The surface compositions of 110 asteroids are analyzed from statistically representative data sets of polarimetry as a function of phase angle, broad-band radiometry near 10 and 20 μm, and visible and near-infrared spectrophotometry. A comparison of albedos and diameters determined by polarimetry and radiometry shows that a modest upward revision of the radiometric albedo scale is needed and that a single law relating the slope of the polarization-phase curve to geometric albedo may not hold for very dark asteroids. We present reliable adopted albedos and diameters for 56 objects. Roughdi ameters for 52 additional objects are obtained from spectrophotometry using a correlation between albedo and color. Corrections for sampling bias permit investigation of asteroid compositions as a function of diameter, orbit, and other parameters.More than 90% of the minor planets fall into two broad compositional groups, defined by several optical parameters, designated by the symbols C and S. Comparisons with meteorite spectral albedo curves suggest that the two groups are compositionally similar to carbonaceous and stony-metallic meteorites, respectively. C-type asteroids predominate in the belt, especially in the outer half. An unusual distribution of compositions is found between 2.77 and 3.0 AU. Many S-type objects have diameters of 100–200 km; C-type objects are much more common at both larger and smaller sizes. Vesta is unique, being apparently the only differentiated asteroid remaining intact in the belt. The largest C-type objects are compositionally distinct from smaller ones and possibly are metamorphosed. We sketch some implications for meteoritics and for the early history of the solar system and point to the need for further systematic sampling of smaller and fainter objects by these three observational techniques.  相似文献   

12.
Since one does not know the photometric functions of various parts of Io, one cannot convert the observed geometric albedo of the satellite to a parameter more directly measurable in the laboratory. One must therefore convert laboratory reflectances to geometric albedos before quantitative comparisons between Io's surface and a laboratory sample are made. This procedure involves determining the wavelength dependence of the sample's photometric function. For substances such as sulfur, whose reflectance varies strongly with wavelength, it is incorrect to assume that the photometric function, and hence the ratio (laboratory reflectance/geometric albedo) is independent of wavelength. To illustrate this point, measurements of the color dependence of this ratio for sulfur are presented for the specific case in which the measured laboratory reflectance is the sample's normal reflectance. In general, unless the laboratory reflectance is precisely the geometric albedo, a wavelength-dependent correction factor must be determined before the laboratory sample can be compared quantitatively with Io's surface.  相似文献   

13.
Combined photometry and radiometry of Iapetus can be used to investigate the nature of its surface and, in particular, the distribution of albedo that is responsible for the large variations in its visible and infrared brightness as it rotates. We present new 20-μm radiometric observations made in 1971–1973 and discuss these together with the photometric studies by Widorn (in 1949), Mills (in 1971), Noland et al. (in 1972–1973), and Franklin and Cook (in 1972–1974). The linear phase coefficient varies as the satellite rotates from 0.028 to 0.068 mag deg?1. When corrected for this effect, the photometric variations suggest an albedo distribution characterized by a dark area covering most of the leading hemisphere and a bright trailing hemisphere and bright south polar cap. A combined analysis of the photometry and radiometry yields a radius of 800 to 850 km and mean geometric albedos for the light and dark faces of about 0.35 and 0.07, respectively. The average phase integral of the bright hemisphere is between 1.0 and 1.5. We offer no explanation for the unique photometric properties of this satellite.  相似文献   

14.
Photoelectric observations of the minor planet 127 Johanna were made in the UBV (RI)c photometric system during its apparition in 1991 at the Piszkéstetõ mountain-station of Konkoly Observatory from August to December, when it showed a brightness variation with an amplitude of about 0.2 magnitude. The derived H, G values in the two-parameter magnitude system in V are 8.459 ± 0.013 and 0.114 ± 0.020, respectively. The determined V linear phase coefficient is of 0.036 ± 0.001 (mag/deg). The value of G and the observed values of color indices (U-B), (B-V) confirm that this asteroid belongs to the C taxonomic class as it was previously classified. The estimated effective diameter is between 96 and 118 km if the assumed V geometric albedo is of 0.06 and 0.04, respectively. The available data suggest a pure principal axis rotation mode. The mean synodic rotational period of the asteroid 127 Johanna is 6.94 ± 0.29 h. The uncertainty is due to the changing of aspect geometry. This value of the synodic rotation period means that this asteroid has an intermediate rotation period. The sense of rotation is prograde as indicated by the temporal evolution of the time derivative of the ecliptic longitude of the phase angle bisector as well as with the increasing synodic period of rotation during the same interval (October/November and December in 1991). The composite lightcurves created for short arc time data reveal structures with breakings and linear portions in V; this fact and the Fourier coefficients indicate a probably irregularly shaped body. There are slight indications that the B-V is redder close to the brightness minimum and the V-Rc is redder at the brightness maximum, and the periodic behavior cannot be proved in V-Ic. The less full rotational phase coverage of the observational data is insufficient to construct a shape model. The accurate pole orientation obviously cannot be determined using one opposition lightcurve data only. Further observations are required to get a more accurate knowledge of the physical parameters of this asteroid. For this purpose, a good opportunity to perform observations arose in December 1996, when this asteroid was in opposition at the northernmost declination.  相似文献   

15.
Visual and infrared observations were made of Amor asteroid 1982 DV during its discovery apparition. Broadband visual and near-infrared photometry shows that it is an S-class asteroid. Narrowband spectrophotometry shows an absorption feature due to olivine or pyroxene or both centered at 0.93 μm. Applying a nonrotating thermal model to 10-μm photometry, the geometric albedo is calculated to be approximately 0.27. The geometric albedo for a slowly rotating, rocky surface was calculated for 1 night to be 0.15, consistent with S-class asteroid albedos. Thus, 1982 DV is either one of the most reflective S-class asteroids known, or a significant amount of bare rock is exposed on the asteroid's surface. For the nonrotating model, ellipsoidal dimensions for 1982 DV are 3.5 × 1.4 × 1.4 km.  相似文献   

16.
The Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) can be used to obtain direct determination of the sizes and the albedos of asteroids. We present results of the first attempt to carry out interferometric observations of asteroids with the Mid Infrared Interferometric Instrument (MIDI) at the VLTI. Our target was 1459 Magnya. This is the only V-type asteroid known to exist in the outer main-belt, and its IRAS-albedo turns out to be rather low for an object of this taxonomic class. Interferometric fringes were not detected, very likely due to the fact that the flux emitted by the asteroid was lower than expected and below the MIDI threshold for fringe detection. However, by fitting the Standard Thermal Model to the N-band infrared flux measured by MIDI in photometric mode and to the visible absolute magnitude, obtained from quasi-simultaneous B- and V-band photometric observations, we have derived a geometric visible albedo of 0.37±0.06 and an effective diameter of 17±1 km. This new estimate of the albedo differs from that previously obtained by IRAS and is more consistent with the V-type taxonomic classification of 1459 Magnya.  相似文献   

17.
In 1971 asteroid Vesta was observed in a region of the sky in which it had never been observed before. Its photometric lightcurve had two distinct maxima. Those observations have been the only strong evidence to support a rotation period of about 10 hr 41 min. Lightcurves made in 1982, when Vesta was at the same aspect as 1971, do not show two different maxima. It is concluded that there was a systematic error in the 1971 observations. At this time a definitive statement cannot be made about the true period of Vesta, although the 5 hr 20 min period does appear more plausible. Radar echoes in 1988 and 1992 should resolve the problem. The shorter rotation period was assumed and the photometric astrometry method applied. The sidereal period is 5 hr 20 min 31.68 sec 0.2225889 ± 0.0000002 days, the rotation is prograde, and the coordinates of the north pole are 103° longitude and +43° latitude with an uncertainty of abour 6°.  相似文献   

18.
The first results of the observational program devoted to simultaneous investigation of asteroid polarimetric and photometric opposition phenomena are presented. UBVRI polarimetric and V-band photometric observations of the S-type Asteroid 20 Massalia and the E-type Asteroids 214 Aschera and 620 Drakonia were carried out in 1996-1999 down to phase angles of 0.08°, 0.7°, and 1.2°, correspondingly. The S-type Asteroid 20 Massalia is characterized by the pronounced brightness opposition surge with an amplitude larger than that observed for the E-type asteroids. A sharp peak of negative polarization at small phase angles was not observed for this asteroid. The value of polarization degree at phase angle α<1° is less than 0.5% for both S and E types. The negative polarization branches of S and especially E-asteroids have an asymmetrical shape. The phase angle at which the polarization minimum occurs is close to the angle at which non-linear increase begins in the asteroid magnitude phase curves. A relation of the observed effects to the mechanism of coherent backscattering is discussed.  相似文献   

19.
We present the surface mapping of the southern hemisphere of Asteroid (4) Vesta obtained from Hubble Space Telescope (HST). From 105 images of Vesta through four filters in the wavelengths best to characterize the 1-μm pyroxene band, we constructed albedo and color-ratio maps of Vesta. These new maps cover latitudes −50° to +20°. The southern hemisphere of Vesta displays more diverse albedo and color features than the northern hemisphere, with about 15 new albedo and color features identified. The overall longitudinal albedo and color variations in the southern hemisphere are comparable with that of the northern hemisphere, with a range of about ±20% and ±10%, respectively. The eastern hemisphere is brighter and displays more diogenitic minerals than the western hemisphere. Correlations between 1-μm band depth and band width, as well as between 1-μm band depth and albedo, are present on a global scale, attributed to pyroxene composition variations. The lack of correlations between albedo and the spectral slope indicates the absence of globalized space weathering. The lack of a global correlation between 1-μm band depth and topography suggests that the surface composition of Vesta is not completely controlled by a single impact. The distribution of compositional variation on Vesta suggests a possible large impact basin. Evidence of space weathering is found in regions, including the bright rim of the south-pole crater where the steepest gravitational slope on Vesta is, and a dark area near a gravitationally flat area. We propose to divide the surface of Vesta into six geological units different from the background according to their 1-μm absorption features and spectral slopes, including two eucrite-rich units, a low-Ca eucrite unit, a diogenite-rich unit, a space weathered unit, and a freshly exposed unit. No evidence of olivine-rich area is present in these data.  相似文献   

20.
We investigate the depth, variability, and history of regolith on asteroid Vesta using data from the Dawn spacecraft. High‐resolution (15–20 m pixel?1) Framing Camera images are used to assess the presence of morphologic indicators of a shallow regolith, including the presence of blocks in crater ejecta, spur‐and‐gully–type features in crater walls, and the retention of small (<300 m) impact craters. Such features reveal that the broad, regional heterogeneities observed on Vesta in terms of albedo and surface composition extend to the physical properties of the upper ~1 km of the surface. Regions of thin regolith are found within the Rheasilvia basin and at equatorial latitudes from ~0–90°E and ~260–360°E. Craters in these areas that appear to excavate material from beneath the regolith have more diogenitic (Rheasilvia, 0–90°E) and cumulate eucrite (260–360°E) compositions. A region of especially thick regolith, where depths generally exceed 1 km, is found from ~100–240°E and corresponds to heavily cratered, low‐albedo surface with a basaltic eucrite composition enriched in carbonaceous chondrite material. The presence of a thick regolith in this area supports the idea that this is an ancient terrain that has accumulated a larger component of exogenic debris. We find evidence for the gardening of crater ejecta toward more howarditic compositions, consistent with regolith mixing being the dominant form of “weathering” on Vesta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号