首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reprocessing program to enhance the correlation between the surface geology and the seismic data has been completed for seismic line 9 (eastern 100 km) and line 10 in the central region of the Trans-Hudson Orogen of Saskatchewan, Canada. The new seismic images through lateral continuity of reflectivity provide sufficient detail to resolve the discrepancy between the low-dipping, layer-parallel and dextral-reverse nature of the Sturgeon-Weir shear zone (line 9) observed in the field and its steeply dipping (apparent) normal displacement character interpreted on the basis of the initial processing. Furthermore, the new interpretation provides a strong confirmation of the role of Pelican Thrust as a major detachment zone — the main `sole thrust' — along which juvenile allochthons have been carried across the Archaean microcontinental block. The images are also refined enough to suggest: (a) a boundary within the Pelican Thrust between its internal and external suites; (b) a possible boundary separating a lower (older?) Archaean basement from its upper (younger?) counterpart; and (c) sub-Moho events (M2) which reveal possible involvement of the upper mantle in the collisional tectonic process in addition to the well defined Moho (M1) which probably represents the youngest of the post-collisional detachments.  相似文献   

2.
The existence of peridotitic komatiites in the Archaean suggests that the Archaean mantle was significantly hotter than the modern mantle. This evidence is contradicted by estimates of Archaean continental geothermal gradients, based on the pressure and temperature recorded in metamorphic rocks, which suggest that there is no marked difference between Archaean and modern continental geothermal gradients.Numerical modelling shows that small changes in the mantle temperature can have an important influence on convection. If the average temperature of the upper mantle is increased by 200°C, convection within the mantle becomes chaotic and an upper mantle partial melt zone encircles the globe. The crust formed during this period will be komatiitic in composition but will be unstable and will be mixed back into the mantle by subduction. Later, when the mantle temperature falls to 100°C above its present level, the upper mantle partial melt zone contracts away from subduction areas.It is suggested that the first primitive felsic magmas were generated at subduction zones. The appearance of these magmas at ~3.8 Ga permitted the formation of buoyant continents and eventually led to crustal thickening. As a consequence of this thickening the proto-continents, consisting of a bimodal suite of basalts and sodic granodiorites, contained two types of latent energy: (1) radioactive energy held in elements such as Th, K and U; and (2) potential energy resulting from the elevation of the continents above sea level. The potential energy of the continents led to sedimentation. The increase in the rate of sedimentation during the Archaean resulted from increased crustal buoyancy. At the same time heat released by radioactive elements in the deep crust built up under the insulating blanket of the upper crust. This caused a major metamorphic, metasomatic and crustal melting event which produced the potassic granites of the late Archaean. Once the radioactive elements had been removed from the lower crust, that region of the continent become tectonically stable. The Proterozoic shelf sediments were deposited at the margins of these stable cratons.Convection models of the Archaean mantle show hot diapirs rising from the boundary layer above the core—mantle interface. We suggest that these diapirs began to melt at a depth of ~ 450 km, giving rise to komatiitic magmas. This model requires the average temperature of the Archaean upper mantle to be ~ 100°C above that of the modern mantle. The similarity between Archaean and modern continental geothermal gradients can be explained if Archaean continents formed above subduction zones.Raising the temperature of the Archaean mantle by 100°C (1) halves the thickness of the oceanic lithosphere, (2) increases the oceanic geothermal gradient at the mid-point of a convection cell, (3) decreases the viscosity of the mantle by at least an order of magnitude. The combination of these effects produces a marked decrease in the strength of the Archaean lithosphere and mantle. Thus the form of Archaean tectonics can be expected to have been very different from modern tectonics.  相似文献   

3.
The paper discusses the mantle structure along superlong seismic profiles in Russia examined using the method of homogenous functions. Two-dimensional heterogeneous sections of the upper mantle were calculated from travel-time curves to a depth of 500–600 km with allowance for the Earth’s curvature without using any a priory information. The presentation of sections as surfaces with a shaded relief combined with velocity contours allowed discerning the principal interfaces in the lithosphere and in the upper mantle, the internal structure of layers, and local heterogeneities of different shapes (convective cells and slabs) in the sections.  相似文献   

4.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   

5.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   

6.
《Gondwana Research》2014,25(3-4):849-864
We have imaged the lithospheric structure beneath the central and western North China Craton (NCC) with Rayleigh wave tomography. The Rayleigh waveforms of 100 teleseismic events recorded by 208 broadband stations are used to yield high-resolution phase velocity maps at 13 periods from 20 s to 143 s. A 3-D S-wave velocity model is constructed based on the phase velocity maps. Our S-wave velocity model is broadly consistent with the results of previous tomography studies, but shows more detailed variations within the lithosphere. The Trans-North China Orogen (TNCO) is generally characterized by low-velocity anomalies but exhibits great heterogeneities. Two major low-velocity zones (LVZs) are observed in the north and south, respectively. The northern LVZ laterally coincides with sites of Cenozoic magmatism and extends to depths greater than 200 km. We propose that a small-scale mantle upwelling is present, confined to the north of the TNCO. A high-velocity patch in the uppermost mantle is also observed between the two LVZs adjacent to the narrow transtensional zone of the Cenozoic Shanxi–Shaanxi Rift (SSR). We interpret this as the remnant of a cratonic mantle root. The Ordos Block in the western NCC is associated with high-velocity anomalies, similarly reflecting the existence of cratonic mantle root, but a discernible low-velocity layer is observed at depths of 100–150 km in this location. We interpret that this mid-lithospheric structure was probably formed by metasomatic processes during the early formation of the NCC. Based on the observations from our S-wave velocity model, we conclude that the current highly heterogeneous lithospheric structure beneath the TNCO is the result of multiphase reworking of pre-existing mechanically weak zones since the amalgamation of the craton. The latest Cenozoic lithospheric reworking is dominated by the far-field effects of both Pacific plate subduction and the India–Eurasia collision.  相似文献   

7.
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.  相似文献   

8.
Distant earthquake data recorded by seven sub-arrays of the ongoing WOMBAT rolling seismic array deployment in southeast Australia are combined for the first time to constrain 3-D variations in upper mantle P-wavespeed via teleseismic tomography. The seven arrays comprise a total of 276 short period recorders spaced at intervals of approximately 50 km, thus allowing unprecedented resolution of the upper mantle over a large region. In the mantle lithosphere immediately below the crust (~ 50 km depth), dominant variations in velocity tend to strike east–west, and share little resemblance to Palaeozoic boundaries in the shallow crust inferred from surface geology and potential field data. A broad region of elevated wavespeed beneath northern Victoria may represent the signature of underplated igneous rocks associated with detachment faulting during the break-up of Australia and Antarctica. A distinct low velocity anomaly in southern Victoria appears to correlate well with the Quaternary Newer Volcanic Provinces. Towards the base of the mantle lithosphere, the dominant structural trend becomes north–south, and five distinct velocity zones become apparent. Of particular note is a transition from higher wavespeed in the west to lower wavespeed in the east beneath the Stawell Zone, implying that the Proterozoic lithosphere of the Delamerian Orogen protrudes eastward beneath the Western subprovince of the Lachlan Orogen. This transition zone extends northwards from southern Victoria into central New South Wales (the northward limit of the arrays), and is one of the dominant features of the model. Further east, there is a transition from lower to higher wavespeeds in the vicinity of the boundary between the Western and Central subprovinces of the Lachlan Orogen, which has several plausible explanations, including the existence of a Proterozoic continental fragment beneath the Wagga–Omeo Zone. The presence of elevated wavespeeds beneath the Melbourne Zone in Victoria, although not well constrained due to limited data coverage, provides some support to the Selwyn Block model, which proposes a northward extension beneath Bass Strait of the Proterozoic core of Tasmania.  相似文献   

9.
Group velocity dispersion data of fundamental-mode Rayleigh and Love waves for 12 wave paths within southeastern China have been measured by applying the multiple-filter technique to the properly rotated three-component digital seismograms from two Seismic Research Observatory stations, TATO and CHTO. The generalized surface wave inversion technique was applied to these group velocity dispersion data to determine the S-wave velocity structures of the crust and upper mantle for various regions of southeastern China. The results clearly demonstrate that the crust and upper mantle under southeastern China are laterally heterogeneous. The southern China region south of 25°N and the eastern China region both have a crustal thickness of 30 km. The eastern Tibet plateau along the 100°E meridian has a crustal thickness of 60 km. Central China, consisting mainly of the Yangtze and Sino-Korean platforms, has a crustal thickness of 40 km. A distinct S-wave low-velocity layer at 10–20 km depth in the middle crust was found under wave paths in southeastern China. On the other hand, no such crustal low-velocity layer is evident under the eastern Tibet plateau. This low-velocity layer in the middle crust appears to reflect the presence of a sialic low-velocity layer perhaps consisting of intruded granitic laccoliths, or possibly the remnant of the source zone of widespread magmatic activities known to have taken place in these regions since the late Carboniferous.  相似文献   

10.
The key features in the distribution of geoelectric and velocity heterogeneities in the Earth’s crust and the upper mantle of Kamchatka are considered according to the data of deep magnetotelluric sounding and seismotomography. Their possible origin is discussed based on the combined analysis of electric conductivity and seismic velocity anomalies. The geoelectric model contains a crustal conducting layer at a depth of 15–35 km extending along the middle part of Kamchatka. In the Central Kamchatka volcanic belt, the layer is close to the ground surface to a depth of 15–20 km, where its conductivity considerably increases. Horizontal conducting zones with a width of up to 50 km extending into the Pacific Ocean are revealed in the lithosphere of eastern Kamchatka. The large centers of current volcanism are confined to the projections of the horizontal zones. The upper mantle contains an asthenospheric conducting layer that rises from a depth of 150 km in western Kamchatka to a depth of 70–80 km beneath the zone of current volcanism. According to the seismotographic data, the low- and high-seismic-velocity anomalies of P-waves that reflect lateral stratification, which includes the crust, the rigid part of the upper mantle, the asthenospheric layer in a depth range of ~70–130 km, and a high-velocity layer confined to a seismofocal zone, are identified on the vertical and horizontal cross sections of eastern Kamchatka. The cross sections show low-velocity anomalies, which, in the majority of cases, correspond to the high-conductivity anomalies caused by the increased porosity of rocks saturated with liquid fluids. However, there are also differences that are related to the electric conductivity of rocks depending on pore channels filled with liquid fluids making throughways for electric current. The seismic velocity depends, to a great extent, on the total porosity of the rocks, which also includes isolated and dead-end channels that can be filled with liquid fluids that do not contribute to the electric-current transfer. The data on electric conductivity and seismic velocity are used to estimate the porosity of the rocks in the anomalous zones of the Earth’s crust and the upper mantle that are characterized by high electric conductivity and low seismic velocity. This estimate serves as the basis for identifying the zones of partial melting in the lithosphere and the asthenosphere feeding the active volcanoes.  相似文献   

11.
We present new results on the structure resulting from Palaeoproterozoic terrane accretion and later formation of one of the aulacogens in the East European Platform. Seismic data has been acquired along the 530-km-long, N–S-striking EUROBRIDGE'97 traverse across Sarmatia, a major crustal segment of the East European Craton. The profile extends across the Ukrainian Shield from the Devonian Pripyat Trough, across the Palaeoproterozoic Volyn Block and the Korosten Pluton, into the Archaean Podolian Block. Seismic waves from chemical explosions at 18 shot points at approximately 30-km intervals were recorded in two deployments by 120 mobile three-component seismographs at 3–4 km nominal station spacing. The data has been interpreted by use of two-dimensional tomographic travel time inversion and ray trace modelling. The high data quality allows modelling of the P- and S-wave velocity structure along the profile. There are pronounced differences in seismic velocity structure of the crust and uppermost mantle between the three main tectonic provinces traversed by the profile: (i) the Pripyat Trough is a ca. 4-km-deep sedimentary basin, fully located in the Osnitsk–Mikashevichi Igneous Belt in the northern part of the profile. The velocity structure is typical for a Precambrian craton, but is underlain by a ca. 5-km-thick lowest crustal layer of high velocity. The development of the Pripyat Trough appears to have only affected the upper crust without noticeable thinning of the whole crust; this may be explained by a rheologically strong lithosphere at the time of formation of the trough. (ii) Very high seismic velocity and Vp/Vs ratio characterise the Volyn Block and Korosten Pluton to a depth of 15 km and probably also the lowest crust. The values are consistent with an intrusive body of mafic composition in the upper crust that formed from bimodal melts derived from the mantle and the lower crust. (iii) The Podolian Block is close to a typical cratonic velocity structure, although it is characterised by relatively low seismic velocity and Vp/Vs ratio. A pronounced SW-dipping mantle reflector from Moho to at least 70 km depth may represent the Proterozoic suture between Sarmatia and Volgo–Uralia, the structure from terrane accretion, or a later shear zone in the upper mantle. The sub-Moho P-wave seismic velocity is high everywhere along the profile, with the exception of the area above the dipping reflector. This velocity change further supports a plate tectonic origin of the dipping mantle reflector. The profile demonstrates that structure from Palaeoproterozoic plate tectonic processes are still identifiable in the lithosphere, even where younger metamorphic equilibration of the crust has taken place.  相似文献   

12.
A passive teleseismic experiment (TOR), traversing the northern part of the Trans-European Suture Zone (TESZ) in Germany, Denmark and Sweden, recorded data for tomography of the upper mantle with a lateral resolution of few tens of kilometers as well as for a detailed study of seismic anisotropy. A joint inversion of teleseismic P-residual spheres and shear-wave splitting parameters allows us to retrieve the 3D orientation of dipping anisotropic structures in different domains of the sub-crustal lithosphere. We distinguish three major domains of different large-scale fabric divided by first-order sutures cutting the whole lithosphere thickness. The Baltic Shield north of the Sorgenfrei–Tornquist Zone (STZ) is characterised by lithosphere thickness around 175 km and the anisotropy is modelled by olivine aggregate of hexagonal symmetry with the high-velocity (ac) foliation plane striking NW–SE and dipping to NE. Southward of the STZ, beneath the Norwegian–Danish Basin, the lithosphere thins abruptly to about 75 km. In this domain, between the STZ and the so-called Caledonian Deformation Front (CDF), the anisotropic structures strike NE–SW and the high-velocity (ac) foliation dips to NW. To the south of the CDF, beneath northern Germany, we observe a heterogeneous lithosphere with variable thickness and anisotropic structures with high velocity dipping predominantly to SW. Most of the anisotropy observed at TOR stations can be explained by a preferred olivine orientation frozen in the sub-crustal lithosphere. Beneath northern Germany, a part of the shear-wave splitting is probably caused by a present-day flow in the asthenosphere.  相似文献   

13.
The Tibet Geoscience Transect (Yadong-Golmud-Ejin) has revealed the basic structures, tectonic evolution and geodynamic process of the lithosphere of the Qinghai-Tibet plateau. The evidence of northward thrusting of the Indian plate beneath the Himalayans on the southern margin and to southward compression of the Alxa block on the northern margin has been found. They were the driving forces causing the plateau uplift. The plateau is a continent resulting from amalgamation of eight terranes. These tenanes are separated by sutures or large-scale faults, and different terranes have different lateral inhomogeneities and multi-layered lithospheric structures. At depths of about 20-30 km of the crust in the ulterior of the plateau there commonly exists a low-velocity layer. It is an uncoupled layer of the tectonic stress; above the layer, the upper crustal slices were thrust and overlapped each other and the rocks underwent brittle deformation, thus leading to shortening and thickening of the upper crust Belo  相似文献   

14.
Ramon Carbonell   《Tectonophysics》2004,388(1-4):103
A seismic survey with a receiver spacing of 50 m provided one of the most densely sampled wide-angle seismic reflection images of the lithosphere. This unique data set, recorded by an 18-km-long spread, reveals that at wide-angles the shallow subcrustal mantle features high amplitude reflectivity which contrasts with a lack of reflectivity at latter travel times. This change in the seismic signature is located at approximately 120–150 km depth, which correlates with the depth estimates of the lithosphere–asthenosphere boundary (LAB) of previous DSS studies. This seismic signature can be simulated by two-layer mantle model. Both layers with similar average velocities differ in their degree of heterogeneity. The shallow heterogeneous layer and the deeper and more homogeneous one correlate with the lithosphere and the asthenosphere, respectively. Studies involving surface outcrops of ultramafic massifs and mantle xenoliths infer that the upper mantle is a heterogeneous mixture of ultramafic rocks (lherzolites, harzburgites, pyroxenites, peridotites, dunites, and small amounts of eclogites). Laboratory measurements of physical properties of these mantle rocks indicate that compositional variations alone can account for the wide-angle reflectivity. A temperature increase would homogenize the mixture, decreasing the seismic reflection properties due to melting processes. It is proposed that this would take place below 120–150 km (1200 °C, the LAB).  相似文献   

15.
This paper presents some data and results from a seismic refraction experiment, completed mainly in 1979 in the Rhenish Massif, Federal Republic of Germany and extending through Luxembourg and Belgium into the Paris Basin in France.Velocity-depth functions have been derived for each record section independently, based on the assumption that velocity varies only with depth: these models are being improved upon by time-term and ray-tracing methods capable of handling laterally varying velocity structures and by calculating synthetic seismograms.The Pg phase which is observed very clearly on all record sections represents a refracted wave, with velocity generally > 6 km/s, from depths below 1.5–5.5 km. Along the 600 km long main profile one intracrustal reflection can usually be recognized, while from the three shorter crossing profiles in the massif two intracrustal reflectors can always be seen. Beneath much of the main profile the crust-mantle boundary is either a first order discontinuity or thin (< 1 km) transition zone at ~30 km depth. However, beneath the Ardennes and West Eifel there is a 6–12 km thick transition zone before a velocity of 8.1 km/s is reached at ~36 km depth. Beneath the crossing profiles, there is generally a transition zone < 3 km thick between crust and mantle. In some cases, there can be recognized at the top of the mantle a thin high velocity layer which is underlain by a low velocity layer which, in turn, is underlain by a reflector 4–11 km below the crust-mantle boundary.  相似文献   

16.
We present a new three-dimensional model of P-velocity anomalies in the upper mantle beneath the Circum-Arctic region based on tomographic inversion of global data from the catalogues of the International Seismological Center (ISC, 2007). We used travel times of seismic waves from events located in the study area which were recorded by the worldwide network, as well as data from remote events registered by stations in the study region. The obtained mantle seismic anomalies clearly correlate with the main lithosphere structures in the Circum-Arctic region. High-velocity anomalies down to 250–300 km depth correspond to Precambrian thick lithosphere plates, such as the East European Platform with the adjacent shelf areas, Siberian Plate, Canadian Shield, and Greenland. It should be noted that lithosphere beneath the central part of Greenland appears to be strongly thinned, which can be explained by the effect of the Iceland plume which passed under Greenland 50–60 million years ago. Beneath Chukotka, Yakutia, and Alaska we observe low-velocity anomalies which represent weak and relatively thin actively deformed lithosphere. Some of these low-velocity areas coincide with manifestations of Cenozoic volcanism. A high-velocity anomaly at 500–700 km depth beneath Chukotka may be a relic of the subduction zone which occurred here about 100 million years ago. In the oceanic areas, the tomography results are strongly inhomogeneous. Beneath the North Atlantic, we observe very strong low-velocity anomalies which indicate an important role of the Iceland plume and active rifting in the opening of the oceanic basin. On the contrary, beneath the central part of the Arctic Ocean, no significant anomalies are observed, which implies a passive character of rifting.  相似文献   

17.
This paper examines 3.8 Ga peridotites from Greenland and Labrador to test claims that these samples are unmodified early Archaean mantle. Geochemical criteria were applied in which samples were compared to the mantle array in Mg/Si versus Al/Si (wt%) space, their REE patterns were compared to those of different mantle types and their chromite compositions were compared to mantle chromite compositions as expressed by their cr# and fe#. Geochemical data were used from the previously published works of Friend et al. (2002) and Bennett et al. (2002). Only two samples, from the region south of Isua satisfied all criteria, indicating that the area south of the Isua Greenstone Belt in west Greenland is a suitable place to search for early Archaean mantle. This study also confirms the observation by Friend et al. (2002) that early Archaean mantle from south of Isua is of a different character from Archaean mantle from the subcontinental lithosphere. Calculations presented here show that some mantle fragments from south of Isua experienced a lower degree of melt extraction and were probably more oxidising than early Archaean mantle preserved in the subcontinental lithosphere. Elemental concentrations of Os in early Archaean mantle are lower than the new estimate for the primitive upper mantle of Becker et al. (2006). Peridotites from the Isua greenstone belt are not mantle, but have an affinity with the layered intrusions found south of Isua.  相似文献   

18.
为了探讨东海陆架盆地西湖凹陷岩石圈热流变性质,本文以实测地温数据为依据,模拟西湖凹陷岩石圈热结构,在此基础上,应用流变学原理模拟确定西湖凹陷岩石圈流变性质。结果表明,西湖凹陷岩石圈为一个冷地壳-热地幔、强地壳-弱地幔的"奶油蛋糕"型岩石圈。西湖凹陷平均地表热流密度为71 m W/m~2,地幔热流密度为40~65 m W/m~2,对地表热流密度的贡献度达73%~79%,地表热流受地幔热流控制,莫霍面温度在700℃左右,热岩石圈平均厚度为66 km。西湖凹陷岩石圈流变分层明显,上、中地壳基本为脆性层,下地壳和岩石圈上地幔为韧性层,岩石圈总流变强度平均约为2.65′10~(12) N/m,其中地壳流变强度为2.12′10~(12) N/m,地幔流变强度为5.29′10~(11) N/m,有效弹性厚度为11.7~14.5 km,地壳的流变性质控制了岩石圈的流变行为。此外,西湖凹陷岩石圈总强度较低,在构造应力作用下易于变形,且存在壳幔解耦现象。西湖凹陷岩石圈热状态及流变性质决定了西湖凹陷东部地区主要以浅部地壳的断层滑动和地层破裂来调节深部的构造应力。  相似文献   

19.
周华伟  林清良 《地学前缘》2002,9(4):285-292
文中介绍有关西藏—喜马拉雅碰撞带的一项地震层析成像研究。根据一个用天然地震数据产生的全球波速模型 ,印度板块有可能以近水平状俯冲于整个西藏高原之下至 16 5~ 2 6 0km深度。西藏岩石圈具有低波速地壳和高波速下岩石圈 (75~ 12 0km深 )。在 12 0~ 16 5km深度范围 ,西藏岩石圈与俯冲的印度板块之间有一层低速软流圈物质。高原中部从地表到 310km深处有一低速体 ,说明地幔物质有可能穿过俯冲板块的脆弱部位上隆。这些结果以及野外实测的地壳缩短值说明高原的抬升得助于印度板块的近水平俯冲。我们推论俯冲印度板块的升温上浮以及上覆软流层的存在是造成西藏高原高海拔抬升以及内部地表仍相对平坦的主要原因。2 0 0 1年 1月 2 6日在印度西部发生的毁灭性大地震有可能是俯冲应力在印度板块后缘薄弱处引发的岩石圈大断裂。  相似文献   

20.
A passive seismic experiment across the Longmenshan (LMS) fault belt had been conducted between August 2006 and July 2007 for the understanding of geodynamic process between the Eastern Tibet and Sichuan basin. We herein collected 3677 first P arrival times with high precision from seismograms of 288 teleseismic events so as to reconstruct the upper mantle velocity structure. Our results show that the depth of the Lithosphere–asthenosphere boundary (LAB) changes from 70 km beneath Eastern Tibet to about 110 km beneath Longquanshan, Sichuan Basin, which is consistent with the receiver function imaging results. The very thin mantle part of the lithosphere beneath Eastern Tibet may suggest the lithosphere delamination due to strong interaction between the Tibetan eastward escaping flow and the rigid resisting Sichuan basin, which can be further supported by the existences of two high-velocity anomalies beneath LAB in our imaging result. We also find there are two related low-velocity anomalies beneath the LMS fault belt, which may indicate magmatic upwelling from lithosphere delamination and account for the origin of tremendous energy needed by the devastating Wenchuan earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号