首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In a previous paper by the present author a method was developed for direct interpretation of resistivity observations made with a Schlumberger electrode configuration. This method consisted of two steps. The first of these was to derive the kernel function in the integral expression for the apparent resistivity from the observed data; the second step was to derive the resistivity stratification from this kernel function. The first of these two steps depends on the electrode configuration that has been used. In the present paper the above mentioned method is modified so as to make it apply to a Wenner electrode configuration. The procedure is indicated by which the method may be adapted to any other electrode configuration in which the distances between the electrodes are finite. The second step in the interpretation, i.e. the derivation of the resistivity stratification from the kernel function, is independent of the electrode configuration used, and therefore needs no further discussion in the present context.  相似文献   

2.
In a previous publication (Koefoed 1968) a function called the “raised kernel function” has been introduced as an intermediate function in the interpretation of resistivity sounding data, and methods have been described both for the determination of the raised kernel function from the apparent resistivity function, and for the determination of the layer distribution from the raised kernel function. In the present paper a procedure is described by which the second step in this interpretation method–i.e. the determination of the layer distribution from the raised kernel function–is considerably accelerated. This gain in interpretation speed is attained by the use of a standard graph for a function which defines the reduction of the raised kernel function to a lower boundary plane.  相似文献   

3.
Dipole sounding resistivity measurements over layered earth can be interpreted directly by adapting the procedure given by Koefoed (1968) for Schlumberger system. To carry out the first step of the interpretation leading to the determination of the raised kernel function, partial resistivity functions for the dipole method are derived and given in the form of standard curves. The second step involving the derivation of layering parameters from the kernel being independent of the electrode configurations remains unaltered. The applicability and limitations of the method are discussed.  相似文献   

4.
This paper describes the procedure for interpreting the apparent resistivity data measured with the two-electrode array directly with the help of kernel function. The calculation of kernel function from the observed resistivity curve is done by the method of decomposition. In the method of decomposition the resistivity curve is approximated by a sum of certain functions, whose choice is only restricted by the requirement that the contribution to the kernel function corresponding to them should be easily computable. A few such functions are classified. These, and the standard curves for corresponding kernel functions obtained by utilising an integral expression for two-electrode array expressing the kernel explicitly in terms of the apparent resistivity functions, are plotted on log-log scale. The determination of layer parameters, that is, the layer resistivities and thicknesses from the kernel function can be carried out by a method proposed by Pekeris (1940).  相似文献   

5.
A numerical technique to compute the resistivity transform directly from the observed Wenner sounding data has been developed. In principle, the procedure is based on a decomposition method and consists of two steps: the first step determines a function that approximates the apparent resistivity data and the second step transforms this function into the corresponding kernel by an analytical operation. The proposed method is tested on some theoretical master curves. A high degree of precision is achieved with very little computer time. The applicability is shown on two field examples.  相似文献   

6.
The digital computer technique described for interpreting resistivity soundings over a horizontally stratified earth requires two steps. First, the kernel function is evaluated numerically from the inverse Hankel transform of the observed apparent resistivity curve. Special attention is given to the inversion of resistivity data recorded over a section with a resistant basement. The second step consists in the least-squares estimation of layer resistivities and thicknesses from the kernel function. For the case of S or T-equivalent beds only one layer-parameter can be obtained, either the longitudinal conductance, or the transverse resistance respectively. Two examples given in the paper show that a wide tolerance is permitted for Choosing the starting values of the layering parameters in the successive approximation procedure. Another important feature for practical applications is good convergence of the iterations. The method is probably best suited for interpreting profiles of electrical soundings with the purpose of mapping approximately horizontal interfaces at depth.  相似文献   

7.
In this paper a theorem is demonstrated which allows—after the introduction of a suitable dipole kernel function or dipole resistivity transform function—to write the apparent resistivity function as an Hankel transformable integral expression. As a practical application of the theorem a procedure of quantitative interpretation of dipole soundings is suggested in which the dipole resistivity transform function obtained after inversion of the original dipole apparent resistivity data is used to control the goodness of the set of layering parameters which have been derived with our previous method of transformation of dipole sounding curves into equivalent Schlumberger diagrams.  相似文献   

8.
A mathematical analysis is given of the phenomenon of equivalence in resistivity sounding, which is based upon the properties of the raised kernel function. Analysis of this function instead of the apparent resistivity function is justified because, as has been shown in a previous publication, variations in the apparent resistivity function lead to variations in the raised kernel function with relative values of the same order of magnitude The expression for the raised kernel function is expanded into a Mac Laurin series. Equivalence can occur only if the second order term of this series is negligible. The coefficient of the first order term depends on the resistivity and the thickness of the layer under consideration. There is an infinite set of combinations of values for these two quantities, for which the coefficient of the first order term has the same value. All these combinations represent equivalent layer distributions.  相似文献   

9.
This paper describes certain procedures for deriving from the apparent resistivity data as measured by the Wenner electrode configuration two functions, known as the kernel and the associated kernel respectively, both of which are functions dependent on the layer resistivities and thicknesses. It is shown that the solution of the integral equation for the Wenner electrode configuration leads directly to the associated kernel, from which an integral expression expressing the kernel explicitly in terms of the apparent resistivity function can be derived. The kernel is related to the associated kernel by a simple functional equation where K1(λ) is the kernel and B1(λ) the associated kernel. Composite numerical quadrature formulas and also integration formulas based on partial approximation of the integrand by a parabolic arc within a small interval are developed for the calculation of the kernel and the associated kernel from apparent resistivity data. Both techniques of integration require knowledge of the values of the apparent resistivity function at points lying between the input data points. It is shown that such unknown values of the apparent resistivity function can satisfactorily be obtained by interpolation using the least-squares method. The least-squares method involves the approximation of the observed set of apparent resistivity data by orthogonal polynomials generated by Forsythe's method (Forsythe 1956). Values of the kernel and of the associated kernel obtained by numerical integration compare favourably with the corresponding theoretical values of these functions.  相似文献   

10.
A simple unified equation of apparent resistivity for a general four-electrode array is developed. The main idea is the analytical integration of the Stefanescu expression for potential over a layered earth by writing an exponential approximation for the kernel function. Finally a matrix equation is developed to estimate the kernel function from observed apparent resistivity values. The general equation automatically reduces to the particular configuration once the electrode separations are modified suitably. Examples for Schlumberger and Wenner configurations are numerically calculated to estimate the precision of the method. Good results in a short execution time are obtained, irrespective of the shape of the apparent resistivity curve. Finally, the full interpretation of one theoretical resistivity curve and two field resistivity curves is demonstrated. The more stable ridge-regression estimation method is used in the identification of layer parameters from the kernel function.  相似文献   

11.
The electrical potential generated by a point source of current on the ground surface is studied for a multi-layered earth formed by layers alternatively characterized by a constant conductivity value and by conductivity varying linearly with depth. The problem is accounted for by solving a Laplace's differential equation for the uniform layers and a Poisson's differential equation for the transitional layers. Then, by a simple algorithm and by the introduction of a suitable kernel function, the general expression of the apparent resistivity for a Schlumberger array placed on the surface is obtained. Moreover some details are given for the solution of particular cases as 1) the presence of a infinitely resistive basement, 2) the absence of any one or more uniform layers, and 3) the absence of any one or more transitional layers. The new theory proves to be rather general, as it includes that for uniform layers with sharp boundaries as a particular case. Some mathematical properties of the kernel function are studied in view of the application of a direct system of quantitative interpretation. Two steps are considered for the solution of the direct problem: (i) The determination of the kernel function from the field measurements of the apparent resistivity. Owing to the identical mathematical formalism of the old with this new resistivity theory, the procedures there developed for the execution of the first step are here as well applicable without any change. Thus, some graphical and numerical procedures, already published, are recalled. (ii) The determination of the layer distribution from the kernel function. A recurrent procedure is proposed and studied in detail. This recurrent procedure follows the principle of the reduction to a lower boundary plane, as originally suggested by Koefoed for the old geoelectrical theory. Here the method differs mainly for the presence of reduction coefficients, which must be calculated each time when passing to a reduced earth section.  相似文献   

12.
For the two and three layer cases geo-electrical sounding graphs can be rapidly and accurately evaluated by comparing them with an adequate set of standard model graphs. The variety of model graphs required is reasonably limited and the use of a computer is unnecessary for this type of interpretation. For more than three layers a compilation of model graphs is not possible, because the variety of curves required in practice increases immensely. To evaluate a measured graph under these conditions, a model graph is calculated by computer for an approximately calculated resistivity profile which is determined, for example, by means of the auxiliary point methods. This model graph is then compared with the measured curve, and from the deviation between the curves a new resistivity profile is derived, the model graph of which is calculated for another comparison procedure, etc. This type of interpretation, although exact, is very inconvenient and time-consuming, because there is no simple method by which an improved resistivity profile can be derived from the deviations between a model graph and a measured graph. The aim of this paper is, on the one hand, to give a simple interpretation method, suitable for use during field work, for multi-layer geo-electrical sounding graphs, and, on the other hand, to indicate an automatic evaluation procedure based on these principles, suitable for use by digital computer. This interpretation system is based on the resolution of the kernel function of Stefanescu's integral into partial fractions. The system consists of a calculation method for an arbitrary multi-layer case and a highly accurate approximation method for determining those partial fractions which are important for interpretation. The partial fractions are found by fitting three-layer graphs to a measured curve. Using the roots and coefficients of these partial fractions and simple equations derived from the kernel function of Stefanescu's integral, the thicknesses and resistivities of layers may be directly calculated for successively increasing depths. The system also provides a simple method for the approximative construction of model graphs.  相似文献   

13.
Matrix equations are derived to transform the resistivity sounding data obtained in one type of a four-electrode array to the corresponding resistivity sounding data that would be obtained using a different four-electrode array. These expressions are based primarily on recent work in which we have established a linear relation between the apparent resistivity and the kernel function by using a powerful exponential approximation for the kernel function. It is shown that the resistivity sounding data of two different four-electrode arrays have a linear relation through an essentially non-singular matrix operator and, as such, one is derivable from the other for a one-dimensional model and it can also be extended to two-dimensions. Some numerical examples considering synthetic data are presented which demonstrates the efficiency of the method in such transformations. Two published field examples are also considered for transformation giving a reliable interpretation.  相似文献   

14.
Direct interpretation methods of resistivity curves are discussed, which use the kernel function of the apparent resistivity. This function results from the consideration of the problem of diverse electrodes configurations. Several expressions for the determination of the kernel function of the potential from the kernel function of the apparent resistivity are given.  相似文献   

15.
In this paper a fast method is developed for computing apparent resistivity curves for known layer configurations. The method is based on the application of a linear filter to determine the apparent resistivity curve from, the kernel function.  相似文献   

16.
从横向均匀介质满足的基本方程出发,得到视电阻率核函数的一阶非线性微分方程,通过方程求解,并利用滤波系数法容易得到电阻率随深度任意变化的视电阻率问题。当各层介质电性结构随深度呈指数变化时,还可得到各层之间核函数的递推关系,这对实际介质的正反演问题都有重要意义和应用价值。  相似文献   

17.
Summary The problem of roots' multiplicity in the method of expansion of the kernel function in theStefanescu integral into vulgar fractions is studied. This problem is discussed for the arbitrary substratum resistivity case. It is proved that the denominator of the kernel function in theStefanescu integral has no multiple roots.  相似文献   

18.
A method to calculate the resistivity transform of Schlumberger VES curves has been developed. It consists in approximating the field apparent resistivity data by utilizing a linear combination of simple functions, which must satisfy the following requirements: (i) they must be suitable for fitting the resistivity data; (ii) once the fitting function has been obtained they allow the kernel to be determined in an analytic way. The fitting operation is carried out by the least mean squares method, which also accomplishes a useful smoothing of the field curve (and therefore a partial noise filtering). It gives the possibility of assigning different weights to the apparent resistivity values to be approximated according to their different reliability. For several examples (theoretical resistivity curves in order to estimate the precision of the method and with field data to verify the practicality) yield good results with short execution time independent of shape the apparent resistivity curve.  相似文献   

19.
A numerical method is presented for direct interpretation of resistivity sounding measurements. The early part of the resistivity transform curve derived from field observations by standard methods is approximated by a two-layer curve. The resistivity of the first layer is determined from the arithmetic mean of the successive computations which are carried on each of three successive discrete values of the resistivity transform curve. Using this mean value of the resistivity, the thickness of the first layer is computed from the sample values in pairs of the resistivity transform curve. After these determinations, the top layer is removed by Pekeris's reduction equation. The parameters of the second layer are obtained from the discrete values of the reduced transform curve (which corresponds to the second part of the resistivity transform curve) by the same procedure as described for the first layer. The same computational scheme is repeated until the parameters of all intermediate layers are obtained. The resistivity of the substratum is determined from the reduction equation.  相似文献   

20.
We start from the Hankel transform of Stefanescu's integral written in the convolutionintegral form suggested by Ghosh (1971). In this way it is possible to obtain the kernel function by the linear electric filter theory. Ghosh worked out the sets of filter coefficients in frequency domain and showed the very low content of high frequencies of apparent resistivity curves. Vertical soundings in the field measure a series of apparent resistivity values at a constant increment Δx of the logarithm of electrode spacing. Without loss of information we obtain the filter coefficient series by digital convolution of the Bessel function of exponential argument with sine function of the appropriate argument. With a series of forty-one values we obtain the kernel functions from the resistivity curves to an accuracy of better than 0.5%. With the digital method it is possible to calculate easily the filter coefficients for any electrode arrangement and any cut-off frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号