首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
New theoretical electron-density-sensitive Fe xii emission line ratios $$R_1 = I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} )/I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 D_{5/2} )$$ and $$R_2 = I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 {}^2D_{5/2} )/I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^2 P_{3/2} )$$ are derived using R-matrix electron impact excitation rate calculations. We have identified the Fexii \(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} ,{\text{ }}3s^2 3p^3 {}^2P_{3/2} - 3s^3 3p^4 {}^2D_{5/2} ,{\text{ }}3s^2 3p^3 S_{3/2} - 3s^2 3p^3 P_{3/2} \) and \(3s^2 3p^3 {}^4S_{3/2} - 3s^2 3p^3 {}^2P_{1/2}\) transitions in an active region spectrum obtained with the Harvard S-055 spectrometer on board Skylab at wavelengths of 364.0, 382.8, 1241.7, and 1349.4 Å, respectively. Electron densities determined from the observed values of R 1 (log N e ? 11.0) and R 2(log N e ? 11.4) are significantly larger than the typical active region measurements, but are similar to those derived from some active region spectra observed with the Skylab 2082A instrument, which provides observational support for the atomic data adopted in the line ratio calculations, and also for the identification of the Fe xii transitions in the S-055 spectrum. However the observed value of R 3 = I(1349.4 Å)/I(1241.7 Å) is approximately a factor of two larger than one would expect from theory which, considering that the 1349.4 Å line lies at the edge of the S-055 wavelength coverage, may reflect errors in the instrument efficiency curve. Another possibility is that the 1349.4 Å transition is blended, probably with Si ii 1350.1 Å.  相似文献   

2.
In 1982 and 1993, we carried out highly accurate photoelectric WBVR measurements for the close binary IT Cas. Based on these measurements and on the observations of other authors, we determined the apsidal motion $\left[ {\dot \omega _{obs} = {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} \mathord{\left/ {\vphantom {{(11\mathop .\limits^ \circ 0 \pm 2\mathop .\limits^ \circ 5)} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ . This value is in agreement with the theoretically calculated apsidal motion for these stars $\left[ {\dot \omega _{th} = {{(14^\circ \pm 3^\circ )} \mathord{\left/ {\vphantom {{(14^\circ \pm 3^\circ )} {100 years}}} \right. \kern-0em} {100 years}}} \right]$ .  相似文献   

3.
EinsteinA-coefficients for transitions inSii, calculated with the atomic structure package CIV3, are used to derive the electron density sensitive emission line ratio
  相似文献   

4.
Published photoelectric measurements over a wide wavelength range (0.36–18 µm) are used to study the continuum spectrum of the star Θ1 Ori C. The model that assumes the following three radiation sources is consistent with observations: (1) a zero-age main-sequence O7 star (object 1) of mass M 1=20M , radius R 1=7.4R , effective temperature T 2=37 000 K, and absolute bolometric magnitude $M\mathop {bol}\limits^1 = - 7\mathop .\limits^m 7$ ; (2) object 2 with M 2=15M , R 2=16.2R , T 2=4000 K, and $M\mathop {bol}\limits^2 = - 5\mathop .\limits^m 1$ ; and (3) object 3 with R 310 700 R , T 3=190 K, and $M\mathop {bol}\limits^3 = - 0\mathop .\limits^m 6$ . The visual absorption toward the system is $A_V = 0\mathop .\limits^m 95$ and obeys a normal law. The nature of objects 2 and 3 has not been elucidated. It can only be assumed that object 2 is a companion of the primary star, its spectral type is K7, and it is in the stage of gravitational contraction. Object 3 can be a cocoon star and a member of the system, but can also be a dust envelope surrounding the system as a whole.  相似文献   

5.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

6.
Multi-colourWBVR photoelectric observations of the eclipsing binary AS Cam have been carried out and the photometric elements, absolute dimensions, and the angular velocity of a periastron motion ( \(\mathop \omega \limits^ \cdot _{obs}\) ) are determined. The obtained value of \(\mathop \omega \limits^ \cdot _{obs}\) is almost three times smaller than that theoretically predicted.  相似文献   

7.
The publication of the solution of the Ideal Resonance Problem (Garfinkelet al., 1971) has opened the way for a complete first-orderglobal theory of the motion of an artificial satellite, valid for all inclinations. Previous attempts at such a theory have been only partially successful. With the potential function restricted to $$V = - 1/r + J_2 P_2 (\sin \theta )/r^3 + J_4 P_4 (\sin \theta )/r^5 ,$$ the paper constructs aglobal solution of the first order in √J 2 for the Delaunay variablesG, g, h, l and for the coordinatesr, θ, and ?. As a check, it is shown that this solution includes asymptotically theclassical limit with the critical divisor 5 cos2 i?1. The solution is subject to thenormality condition $$eG^2 /(1 + \frac{{45}}{4}e^2 ) \geqslant O\left[ {\left| {\frac{1}{5}(J_2 + J_4 /J_2 )} \right|^{1/4} } \right],$$ which bounds the eccentricitye away from zero in deep resonance. A historical section orients this work with respect to the contributions of Hori (1960), Izsak (1962), and Jupp (1968).  相似文献   

8.
We propose a form of a lens corrector at the prime focus of a hyperboloidal mirror that provides a flat field of view up to 3° in diameter at image quality D80<0.8 arcsec in integrated (0.32–1.1 µm) light. The corrector consists of five lenses made of fused silica. All lens surfaces are spherical in shape, so the system is capable of achieving better images, if necessary, by aspherizing the surfaces. The optical system of the corrector is stable in the sense that its principal features are retained when optimized after significant perturbations of its parameters. As an example, we calculated three versions of the corrector for the Blanco 4-m telescope at Cerro Tololo Inter-American Observatory with \(2\mathop .\limits^ \circ 12\), \(2\mathop .\limits^ \circ 4\) and \(3\mathop .\limits^ \circ 0\) fields of view.  相似文献   

9.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

10.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

11.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

12.
13.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

14.
A plane-wave analysis on a simplified scheme based on the Boussinesq approximation and shallow convection is used to establish the necessary conditions for stability of a differentiallyrotating, compressible flow between two coaxial cylinders subject to non-axisymmetric perturbations. To test the adequateness of this simplification, the sufficient conditions for stability are again established which agree with those obtained by a normal-mode analysis on an exact scheme in an earlier paper by the author. This model is applicable to stellar models with rotation Ω=Ω(ω), where ω is the radial distance from the axis of rotation (thez-axis). A necessary condition for stability, in the non-dissipative case, is found to be that $$\frac{1}{\varrho }G_\varpi S_\varpi + \frac{{k_z^2 }}{M}\Phi - \frac{1}{4}\frac{{m^2 }}{M}\left( {D\Omega } \right)^2 \geqslant 0$$ everywhere. Here,m andk z are the wave numbers in the ø- andz-direction, \(M \equiv k_z^2 + m^2 /\varpi ^2 ,D \equiv d/d\varpi ,G_\varpi \equiv - \varrho ^{ - 1} Dp,\varrho \) the density,p the pressure,S ω and Φ the Schwarzschild and the Rayleigh discriminants defined as \(S_\varpi \equiv \left( {\gamma p/\varrho } \right)^{ - 2} Dp - D\varrho and \Phi \equiv ^{ - 3} d\left( {\varpi ^4 \Omega ^2 } \right)/d\varpi \) respectively, γ the ratio of specific heats. This condition is also a sufficient one. Some conjectures regarding the stabilizing influence of uniform rotation and the destabilizing influence of differential rotation are also verified. The most striking instability mechanism introduced by shear forces and by radiative dissipation is the excitation of the stable motion of small oscillations into that of oscillations with growing amplitude, i. e., overstability. In the case of radiative dissipation and axisymmetric perturbations, the Goldreich-Schubert criterion is only necessary but not sufficient for stability. Instability sets in as soon as the Schwarzschild criterion is violated. When the perturbations are non-axisymmetric, instability always sets in as overstability as long as rotation is differential. This may explain the convective turbulence in the upper atmosphere where the radiation is active.  相似文献   

15.
We present the results of polarimetric observations of the icymoons of Uranus (Ariel, Titania, Oberon, and Umbriel) performed at the 6-m BTA telescope of the SAO RAS with the SCORPIO-2 focal reducer within the phase angle range of $0_.^ \circ 06 - 2_.^ \circ 37$ . The parameters of the negative polarization branch (referred to the scattering plane) are obtained in the V filter: for Ariel the maximum branch depth of P min ≈ ?1.4% is reached at the phase angle of α min ≈ 1°; for Titania P min ≈ ?1.2%, $\alpha _{\min } \approx 1_.^ \circ 4$ ; for Oberon P min ≈ ?1.1%, $\alpha _{\min } \approx 1_.^ \circ 8$ . For Umbriel the polarization minimum was not reached: for the last measurement point at $\alpha _{\min } \approx 2_.^ \circ 4$ , polarization amounts to ?1.7%. The declining P min and shifting αmin towards larger phase angles correlate with a decrease of the geometric albedo of the Uranian moons. There is no longitudinal dependence of polarization for the moons within the observational errors which indicates a similarity in the physical properties of the leading and trailing hemispheres. The phase-angle dependences of polarization for the major moons of Uranus are quite close to those observed in the group of small trans-Neptunian objects (Ixion, Huya, Varuna, 1999 DE9, etc.), which are characterized by a large gradient of negative polarization, about ?1% per degree in the phase-angle range of $0_.^ \circ 1 - 1^ \circ$ .  相似文献   

16.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

17.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

18.
In this paper we discuss a perturbed extension of hyperbolic twist mappings to a 3-dimensional measure-preserving mapping $$\begin{array}{*{20}c} {T:\left\{ {\begin{array}{*{20}c} {x_{n + 1} = s(x_n \cos \varphi _n - y_n \sin \varphi _n ) + A\cos z_n ,} \\ {y_{n + 1} = s^{ - 1} (x_n \sin \varphi _n + y_n \cos \varphi _n ) + B\sin z_n ,} \\ {z_{n + 1} = z_n + C\cos (x_{n + 1} + y_{n + 1} ) + D,(\bmod 2\pi )} \\ \end{array} } \right.} \\ {\varphi _n = (x_n^2 + y_n^2 )^k } \\ \end{array}$$ wheres, k are parameters andA, B, C, D are perturbation parameters. We find that the ordered regions near the fixed point of the hyperbolic twist mapping is destroyed by the perturbed extension more easily than the ones distant from it. The size of the ordered region decreases with increasing perturbation parameters and is insensitive to the parameterD for the same parametersA, B, C.  相似文献   

19.
The analytical techniques of the Nekhoroshev theorem are used to provide estimates on the coefficient of Arnold diffusion along a particular resonance in the Hamiltonian model of Froeschlé et al. (Science 289:2108–2110, 2000). A resonant normal form is constructed by a computer program and the size of its remainder ||R opt || at the optimal order of normalization is calculated as a function of the small parameter ${\epsilon}$ . We find that the diffusion coefficient scales as ${D \propto ||R_{opt}||^3}$ , while the size of the optimal remainder scales as ${||R_{opt}|| \propto {\rm exp}(1/\epsilon^{0.21})}$ in the range ${10^{-4} \leq \epsilon \leq 10^{-2}}$ . A comparison is made with the numerical results of Lega et al. (Physica D 182:179–187, 2003) in the same model.  相似文献   

20.
The primary poles for (243) Ida and (134340) Pluto and its satellite (134340) Pluto : I Charon were redefined in the IAU Working Group on Cartographic Coordinates and Rotational Elements (WGCCRE) 2006 report (Seidelmann et al. in Celest Mech Dyn Astr 98:155, 2007), and 2009 report (Archinal et al. in Celest Mech Dyn Astr 109:101, 2011), respectively, to be consistent with the primary poles of similar Solar System bodies. However, the WGCCRE failed to take into account the effect of the redefinition of the poles on the values of the rotation angle W at J2000.0. The revised relationships in Table 3 of Archinal et al. 2011) are $$\begin{array}{llll} W & = & 274^{\circ}.05 +1864^{\circ}.6280070\, d\;{\rm for\; (243)\,Ida} \\ W & = & 302^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto,\; and}\\ W & = & 122^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto : I \,Charon}\end{array}$$ where d is the time in TDB days from J2000.0 (JD2451545.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号