首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
 Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events. Received: 18 August 1997 / Accepted: 19 December 1997  相似文献   

2.
Introduction In AD 1303, the great Hongtong, Shanxi, earthquake of magnitude 8 caused a very serious disaster, which killed over one hundred thousands people at least (Department of Earthquake Dis- *aster Prevention, State Seismological Bureau, 1995). On the occasion of commemorating this ca-tastrophe having occurred for 700 years, we have important problems that need to be answered: How long the average recurrence interval of the grea…  相似文献   

3.
An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two‐dimensional fracture planes, oriented near‐horizontally at one site, and near‐vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport.  相似文献   

4.
Neural network simulation of spring flow in karst environments   总被引:2,自引:2,他引:0  
Daily discharges of two springs lying in a karstic environment were simulated for a period of 2.5 years with the use of a multi-layer perceptron back-propagation neural network. Two models were developed for the springs, one relying on the original data and another where the missing discharge values were supplemented by assuming linear relationships during base flow conditions. For both springs the mean square error of the two models did not differ significantly, with an improvement exhibited at the extremes, during the network’s training phase, by the model that utilized the extended data set, the results of which are reported here. The time lag between precipitation and spring discharge differed significantly for the two springs indicating that in karstic environments hydraulic behavior is dominated, even within a few hundred meters, by local conditions. Optimum training results were attained with a Levenberg–Marquardt algorithm resulting in a network architecture consisting of two input layer neurons, four hidden layer neurons, and one output layer neuron, the spring’s discharge. The neural network’s predictions captured the behavior for both springs and followed very closely the discontinuities in the discharge time series. Under-/over-estimation of observed discharges for the two springs remained below 3 %, with the exception of a few local maxima where the predicted discharges diverged more strongly from observed values. Inclusion of temperature data did not add to the improvement of predictions. Finally, optimum predictions were attained when past discharge data were added to the input record and discharge differentials rather than direct discharges were calculated resulting in elimination of any local maximum discrepancy between observed and predicted discharge values.  相似文献   

5.
Seismic signals generated by avalanches have been recorded by theavalanche team of the Universitat de Barcelona at theVallée de la Sionne experimental site (Switzerland) since 1998. During these years avalanches of varying size and flowwere recorded by two sensors located at different positions.In the present paper we show the general features of the running spectra of the seismicsignals for the different type of recorded avalanches. Using this method we are able not only to detect avalanches with low amplitude signals but also to distinguishbetween avalanches and other seismic sources (i.e., local earthquakes) which have thesame frequency content but a different frequency evolution.  相似文献   

6.
Traditionally a streambed is treated as a layer of uniform thickness and low saturated hydraulic conductivity (K) in surface‐ and ground‐water studies. Recent findings have shown a high level of spatial heterogeneity within a streambed and such heterogeneity directly affects surface‐ and ground‐water exchange and can have ecological implications for biogeochemical transformations, nutrient cycling, organic matter decomposition, and reproduction of gravel spawning fish. In this study a detailed field investigation of K was conducted in two selected sites in Touchet River, a typical salmon spawning stream in arid south eastern Washington, USA. In‐stream slug tests were conducted to determine K following the Bouwer and Rice method. For the upper and lower sites, each 50 m long and 9 m wide and roughly 20 m apart, a sampling grid of 5 m longitudinally and 3 m transversely was used. The slug tests were performed for each horizontal coordinate at 0·3–0·45, 0·6–0·75, 0·9–1·05 and 1·2–1·35 m depth intervals unless a shallower impenetrable obstruction was encountered. Additionally, water levels were measured to obtain vertical hydraulic gradient (VHG) between each two adjacent depth intervals. Results indicated that K ranged over three orders of magnitude at both the upper and lower sites and differed between the two sites. At the upper site, K did not differ significantly among different depth intervals based on nonparametric statistical tests for mean, median, and empirical cumulative distribution, but the spatial pattern of K varied among different depth intervals. At the lower site, K for the 0·3–0·45 m depth interval differed statistically from those at other depth intervals, and no similar spatial pattern was found among different depth intervals. Zones of upward and downward water flow based on VHG also varied among different depth intervals, reflecting the complexities of the water flow regime. Detailed characterization of the streambed as attempted in this study should be helpful in providing information on spatial variations of streambed hydraulic properties as well as surface‐ and ground‐water interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
From the mid-1940s through the 1980s, large volumes of waste water were discharged at the Hanford Site in southeastern Washington State, causing a large-scale rise (>20 m) in the water table. When waste water discharges ceased in 1988, ground water mounds began to dissipate. This caused a large number of wells to go dry and has made it difficult to monitor contaminant plume migration. To identify monitoring wells that will need replacement, a methodology has been developed using a first-order uncertainty analysis with UCODE, a nonlinear parameter estimation code. Using a three-dimensional, finite-element ground water flow code, key parameters were identified by calibrating to historical hydraulic head data. Results from the calibration period were then used to check model predictions by comparing monitoring wells' wet/dry status with field data. This status was analyzed using a methodology that incorporated the 0.3 cumulative probability derived from the confidence and prediction intervals. For comparison, a nonphysically based trend model was also used as a predictor of wells' wet/dry status. Although the numerical model outperformed the trend model, for both models, the central value of the intervals was a better predictor of a wet well status. The prediction interval, however, was more successful at identifying dry wells. Predictions made through the year 2048 indicated that 46% of the wells in the monitoring well network are likely to go dry in areas near the river and where the ground water mound is dissipating.  相似文献   

8.
In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., KNMR) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated KNMR are within one order of magnitude of KFLUTe. The empirical parameters obtained from calibrating the NMR data suggest that “intermediate diffusion” and/or “slow diffusion” during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, “intermediate diffusion” dominates the relaxation time, therefore assuming “fast diffusion” in the interpretation of NMR data from fractured rock may lead to inaccurate KNMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable KNMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements.  相似文献   

9.
Numerical hydrogeological models should ideally be based on the spatial distribution of hydraulic conductivity (K), a property rarely defined on the basis of sufficient data due to the lack of efficient characterization methods. Electromagnetic borehole flowmeter measurements during pumping in uncased wells can effectively provide a continuous vertical distribution of K in consolidated rocks. However, relatively few studies have used the flowmeter in screened wells penetrating unconsolidated aquifers, and tests conducted in gravel-packed wells have shown that flowmeter data may yield misleading results. This paper describes the practical application of flowmeter profiles in direct-push wells to measure K and delineate hydrofacies in heterogeneous unconsolidated aquifers having low-to-moderate K (10(-6) to 10(-4) m/s). The effect of direct-push well installation on K measurements in unconsolidated deposits is first assessed based on the previous work indicating that such installations minimize disturbance to the aquifer fabric. The installation and development of long-screen wells are then used in a case study validating K profiles from flowmeter tests at high-resolution intervals (15 cm) with K profiles derived from multilevel slug tests between packers at identical intervals. For 119 intervals tested in five different wells, the difference in log K values obtained from the two methods is consistently below 10%. Finally, a graphical approach to the interpretation of flowmeter profiles is proposed to delineate intervals corresponding to distinct hydrofacies, thus providing a method whereby both the scale and magnitude of K contrasts in heterogeneous unconsolidated aquifers may be represented.  相似文献   

10.
The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain–digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.  相似文献   

11.
Applicability of spectral analysis to determine hydraulic diffusivity   总被引:1,自引:1,他引:0  
This study is to evaluate the applicability of estimating the one-dimensional horizontal hydraulic diffusivity of an unconfined aquifer with time-dependent fluctuation of lateral head and vertical recharge boundaries using observed water level spectra. Different models of boundary condition are imposed to evaluate the statistical significance between the calculated hydraulic diffusivity (ξ) with the given hydraulic diffusivity (ξ). The auto-spectra of the water level in observation wells tapping the same aquifer are closely related to those at the disturbed boundaries. For an aquifer with a constant hydraulic diffusivity, the water level fluctuation in the monitoring wells is linearly related to the water level spectra observed at the boundaries. The spectral density function of aquifer hydraulic head varies inversely with specific yield (S y) and directly with recharge. Given small variation in water level spectra at the disturbed boundaries, the water level fluctuation in the aquifer is affected by the recharge condition and the aquifer spectral density function is sensitive to S y. Using an iterative technique to estimate ξ from 1400 sets of given parameters, 99% of the ξ/ξ values deviated within only one order of magnitude with the model length (L) being equal to 1 km and 10 km. For L equal to 100 m, approximately 82% of the ξ/ξ population falls within two orders of magnitude. Therefore, spectral analysis of aquifer hydraulic head response can be used to estimate the hydraulic diffusivity of an unconfined aquifer which is affected by periodic variations in recharge and head at boundaries.  相似文献   

12.
J. Holden  T. P. Burt 《水文研究》2003,17(6):1227-1237
A key parameter used in wetland hydrological and landform development models is hydraulic conductivity. Head recovery tests are often used to measure hydraulic conductivity, but the calculation techniques are usually confined to rigid soil theory. This is despite reports demonstrating the misapplication of rigid soil theory to non‐rigid soils such as peats. Although values of hydraulic conductivity calculated using compressible techniques have been presented for fenland peats, these data have never, to the authors' knowledge, been compared with such calculations in other peat types. Head recovery tests (slug withdrawal) were performed on piezometers at depths ranging from 10 to 80 cm from the surface on north Pennines blanket peats. Results were obtained using both rigid and compressible soil theories, thus allowing comparison of the two techniques. Compressible soil theory gives values for hydraulic conductivity that are typically a factor of five times less than rigid soil calculations. Hydraulic conductivity is often assumed to decrease with depth in upland peats, but at the study site in the northern Pennines it was not found to vary significantly with depth within the range of peat depths sampled. The variance within depth categories was not significantly different to the variance between depth categories showing that individual peat layers did not have characteristic hydraulic conductivity values. Thus, large lateral and vertical differences in hydraulic conductivity over short distances create problems for modelling but may help account for the high frequency of preferential flow pathways within what is otherwise a low matrix hydraulic conductivity peat. Hydraulic conductivity was found to vary significantly between sampling sites, demonstrating that hillslope‐ or catchment‐scale variability may be more important than plot‐scale variability. Values for compressibility of the peats are also reported. These generally decline with depth, and they also vary significantly between sampling sites. There are implications for the way in which measurements of hydraulic conductivity and other properties of blanket peat are interpreted, as the effects of environmental change in one part of a peat catchment may be very different to those in another. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50–100 km from the source volcano and affected areas of 500–1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792.The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s–1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny.Debris avalanches can move faster than 100 ms–1 and travel tens of kilometers. When not confined by valley walls, avalanches can affect wide areas beyond the volcano's flanks. Tsunamis from debris avalanches at coastal volcanoes have caused more fatalities than have the landslides themselves or associated eruptions. The probable travel distance (L) of avalanches can be estimated by considering the potential vertical drop (H). Data from a catalog of around 200 debris avalanches indicates that the H/L rations for avalanches with volumes of 0.1–1 km3 average 0.13 and range 0.09–0.18; for avalanches exceeding 1 km3, H/L ratios average 0.09 and range 0.5–0.13.Large-scale deformation of the volcanic edefice and intense local seismicity precede many slope failures and can indicate the likely failure direction and orientation of potential lateral blasts. The nature and duration of precursory activity vary widely, and the timing of slope faliure greatly affects the type of associated eruption. Bandai-type eruptions are particularly difficult to anticipate because they typically climax suddenly without precursory eruptions and may be preceded by only short periods of seismicity.  相似文献   

14.
Widespread avalanching occurred at Mt. Vesuvius during its 1944 eruption, the latest activity of this volcano. The 1944 avalanche deposits display many of the morphological and structural features shown by common slides of the slump-earth flow variety, including levees, transverse ridge-and-trough topography, and preserved stratigraphy. The longest avalanche travelled 1.3 km, with an estimated volume of slightly more than one million cubic meters. Avalanches came to rest on moderately-inclined slopes. Internal structure includes low- and high-angle shears and tensional fractures. Deposits are poorly consolidated. Two lithologic types are observed; avalanches composed of both blocks and ash, with blocky rubble forming a capping layer, and avalanches composed almost wholly of ash. Block-and-ash avalanches were triggered where slopes of loose tephra had been preloaded with lava flows. Ash avalanches formed where heavy accumulations of ash were deposited by prevailing winds. Seismic activity accompanying eruption served as a trigger for avalanching.  相似文献   

15.
The variation in soil texture, surface moisture or vertical soil moisture gradient in larger scale atmospheric models may lead to significant variations in simulated surface fluxes of water and heat. The parameterization of soil moisture fluxes at spatial scales compatible with the grid size of distributed hydrological models and mesoscale atmospheric models ( 100 km2) faces principal problems which relate to the underlying microscopic or field scale heterogeneity in soil characteristics.

The most widely used parameterization in soil hydrology, the Darcy-Richards (DR) equation, is gaining increasing importance in mesoscale and climate modelling. This is mainly due to the need to introduce plant-interactive soil water depletion and stomatal conductance parameterizations and to improve the calculation of deep percolation and runoff. Covering a grid of several hundreds of square kilometres, the DR parameterization in soil-vegetation-atmosphere-transfer schemes (SVATs) is assumed to be scale-invariant. The parameters describing the non-linear, area-average soil hydraulic functions in this scale-invariant DR-equation should be treated as calibration-parameters, which do not necessarily have a physical meaning. The saturated hydraulic conductivity is one of the soil parameters to which the models show very high sensitivity. It is shown that saturated hydraulic conductivity can be scaled in both vertical and horizontal directions for large flow domains.

In this paper, a distinction is made between effective and aggregated soil parameters. Effective parameters are defined as area-average values or distributions over a domain with a single, distinct textural soil type. They can be obtained by scaling or inverse modelling. Aggregated soil parameters represent grid-domains with several textural soil types. In soil science dimensional methods have been developed to scale up soil hydraulic characteristics. With some specific assumptions, these techniques can be extrapolated from classical field-scale problems in soil heterogeneity to larger domains, compatible with the grid-size of large scale models. Particularly promising is the estimation of effective soil hydraulic parameters from area averaging measurements through inverse modelling of the unsaturated flow.

Techniques to scale and aggregate the soil characteristics presented in this paper qualify for direct or indirect use in large scale meteorological models. One of the interesting results is the effective behaviour of the reference curve, which can be obtained from similar media scaling. If the conclusions of this paper survive further studies, a relatively simple method will become available to parameterize soil variability at large scales. The inverse technique is found to provide effective soil parameters which perform well in predicting both the area-average evaporation and the area-average soil moisture fluxes, such as subsurface runoff. This is not the case for aggregated soil parameters. Obtained from regression relationships between soil textural composition and hydraulic characteristics, these aggregated parameters predict evaporation fluxes well, but fail to predict water balance terms such as percolation and runoff. This is a serious drawback which could eventually hamper the improvement of the representation of the hydrological cycle in mesoscale atmospheric models and in GCMs.  相似文献   


16.
The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to those of debris flows, are important to recognise when evaluating mass flow hazards at stratovolcanoes.  相似文献   

17.
Sustainable fuels legislation and volatility in energy prices have put additional pressures on the forestry sector to intensify the harvesting of biomass for “advanced biofuel” production. To better understand how residual biomass removal after harvest affects forest hydrology in relatively low slope terrain, a Before-After-Control-Impact (BACI) study was conducted in the USDA Forest Service's Marcell Experimental Forest, Minnesota, USA. Hydrological measurements were made from 2010–2013 on a forested hillslope that was divided into three treatment blocks, where one block was harvested and residual biomass removed (Biomass Removed), the second was harvested and residual biomass left (Biomass Left), and the last block was left as an Unharvested Control. The pre-harvest period (2 years) was 2010–11 and post-harvest (2 years) was 2012–13. Water table elevation at the upslope and downslope position, subsurface runoff, and soil moisture were measured between May–November. Mixed effect statistical models were used to compare both the before-after and “control” treatment ratios (ratios between harvested hillslopes and the Unharvested Control hillslope). Subsurface runoff significantly increased (p < .05) at both harvested hillslopes but to a greater degree on the Biomass Left hillslope. Greater subsurface runoff volumes at both harvested hillslopes were driven by substantial increases during fall, with additional significant increases during summer on the Biomass Left hillslope. The hydrological connectivity, inferred from event runoff ratios, increased due to harvesting at both hillslopes but only significantly on the Biomass Left hillslope. The winter harvest minimized soil disturbance, resulting in no change to the effective hydraulic conductivity distribution with depth. Thus, the observed hydrological changes were driven by increased effective precipitation and decreased evapotranspiration, increasing the duration that both harvested hillslopes were hydrologically active. The harvesting of residual biomass appears to lessen hydrological connectivity relative to leaving residual biomass on the hillslope, potentially decreasing downstream hydrological impacts of similar forestry operations.  相似文献   

18.
基于最小反演拟合差的重磁场源深度计算方法   总被引:2,自引:1,他引:1       下载免费PDF全文
以等效源及位场物性反演为基础,本文提出一种新的求取重磁场源深度的方法.该方法将一层等效源以一定的间隔从浅部向深部移动,并将等效源作为初始模型进行反演,当反演拟合差最小时,停止反演,此时的等效源底深即为所求场源的中心深度.由于仅需要反演一层等效源,比传统的物性反演计算时间大大减少,并且不需要进行深度加权约束.理论模型数据处理结果表明该方法能够获得较准确的场源深度:以长宽比为7.5的薄板模型为例,深度计算误差约为1个点距(25 m);以长宽比为0.5~1.5的厚板模型为例,深度计算误差小于1个点距(25m).将该方法应用于实测航磁梯度数据,计算的磁源中心深度在200~250m之间,钻井资料显示该异常由埋藏深度在200~300m的闪长岩引起,计算结果与钻井资料较吻合.  相似文献   

19.
Abstract. A simple closed-form expression relating saturated hydraulic conductivity to the van Genuchten capillary retention model parameters is derived. Application of this equation to an experimental data set shows reasonable agreement between measured and predicted saturated conductivity values. The proposed equation provides a consistent theoretical basis for estimating both saturated and unsaturated hydraulic conductivity from statistical pore structure models.  相似文献   

20.
The results of 3D numerical simulation of coupled flow and transport processes of light-waste migration in heterogeneous aquifer with brine are described. The study is based on the geological data and monitoring of deep-well injection of liquid waste at Chepetsk Mechanical Plant (ChMZ, Glazov). The buoyancy of light waste is simulated for the post-injection period of 300 years using different conceptual models of heterogeneity. The procedure of 3D geostatistical simulation based on transition probability analysis with TSIM code of the reservoir heterogeneity is presented. The results of the ascending waste migration simulation using SEAWAT2000 code indicate that both the variable fluid density and the hydraulic heterogeneity must be considered in the forecast models for determining the possible waste distribution during the injection and the post injection periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号