首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Digital elevation model (DEM) is one of the input data derived from different satellite sensors for hydrologic and hydraulic modelings. Two prime questions could be answered before using these DEMs. First, the acceptability of datasets for our use and second appropriate resolution of the dataset. Three widely used DEMs SRTM 30m, ASTER 30m and SRTM 90m are analyzed to evaluate their suitability to delineate river network and basin boundary area. The hydrology tool of spatial analyst extension inbuilt in ArcGIS 10.2 (which uses the D8 method for calculation of flow direction) has been used for the delineation of both river networks and basin boundary. The assessment of river network alignment and boundary delineation is carried out in the seven sub-catchments of Gandak river basin having different morphological characteristics. The automatically delineated boundary area for all the three DEMs reflects a significant difference when compared with the digitized basin area from the Ganga flood control commission (GFCC) map. The maximum boundary area delineation error is 39137.20 km2 forASTER 30m, and minimum delineation error of 13239.28 km2 for SRTM 90m. In the stream network, delineation accuracy is good for SRTM 90m while, except Gandak trunk, ASTER 30m DEM shows better delineation accuracy indicated by mean absolute error (MAE) and standard deviation (SD).  相似文献   

2.
The combination of wind measurements and remotely sensed geomorphometry indices provides a valuable resource in the study of desert landforms, because arduous desert environments are difficult to access. In this research, we couple wind data and geomorphometry to separate and classify different sand dunes in Kashan Erg in central Iran. Additionally, the effect of sand-fixing projects on sand dune morphology was assessed using geomorphometry indices (roughness, curvature, surface area, dune spacing and dune height). Results showed that a Digital Elevation Model of the National Cartographic Center of Iran (NCC DEM) with 10-m resolution and accuracy of 54% could discriminate geomorphometry parameters better than the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 30-m resolution and Shuttle Radar Topography Mission (SRTM) data with 90-m resolution and 45.2 and 1.6% accuracy, respectively. Low classification of SRTM DEM was associated with too many non-value points found in the DEM. Accuracy assessment of comparison ground control points revealed that ASTER DEM (RMSE = 4.25) has higher accuracy than SRTM and NCC DEMs in this region. Study of curvature showed that transverse and linear sand dunes were formed in concave topography rather than convex. Reduced slopes in fixed sand dunes were established due to wind erosion control projects. Measurements of dune height and spacing show that there is significant correlation in compound dunes (R 2 = 0.546), linear dunes (R 2 = 0.228) and fixed dunes (R 2 = 0.129). In general, the height of dunes in Kashan Erg increases from the margin of the field to the center of the field with a maximum height of 120 m in star dunes. Analysis of wind data showed that sand drift potential is in low-medium class in Kashan Erg. Linear sand dunes in Kashan Erg show that they are following a global trend in forming of these. Finally, established of geomorphometry method in dune classification will help researchers to identify priority of land management and performance assessment of sand dunes fixing projects in arid arduous environment.  相似文献   

3.
The successful operation of the TanDEM-X satellite mission is the start of a new era of globally consistent and accurate digital elevation data for planet Earth. In this work available 12 m-resolution intermediate TanDEM-X products (DEM: digital elevation model; HEM: height error map; COV: coverage map; WAM: water indication mask) are evaluated over Tasmania. Elevations from the TanDEM-X intermediate digital elevation model (IDEM) are compared with (a) other global DEMs (30 m-resolution SRTM1 USGS v3 and 30 m-resolution Advanced Spaceborne Thermal Emission Reflectometer (ASTER GDEM2), (b) the local 25 m-resolution DEM made available by Tasmanian environmental authority (DPIPWE), and (c) over 15 000 accurate ground-control-points (GCPs) from the Australian National Gravity Database (ANGD). The comparison with ASTER and SRTM over the area of Tasmania involves over 500 million valid TanDEM-X IDEM elevations. The root-mean-square (RMS) of 8.8 m indicates a reasonable to good agreement of TanDEM-X IDEM and SRTM, while ASTER shows almost twice the disagreement in terms of RMS (~16.5 m). Both, ASTER and SRTM show a (mean) offset of –1.9 m and –2.3 m w.r.t. TanDEM-X IDEM, respectively. By comparisons with GCPs, we find that SRTM and ASTER overestimate the terrain height. The comparison with the AGND GCPs also allows an estimate of the absolute accuracy of the IDEM, which is found to be superior to that of SRTM or ASTER. The RMS error of 6.6 m shows that the IDEM is close to the officially denoted 4 m absolute vertical accuracy considering that the GCPs are not error free. The height error map information layer is found to a suitable first indicator of the (local) accuracy of the IDEM in a relative sense. However, we find that the HEM tends to underestimate observed differences to the GCPs. Terrain-type analyses reveal that the TanDEM-X IDEM is a very consistent elevation database over Tasmania. In conclusion, our study demonstrates that the new TanDEM-X elevation data sets provide improved high-resolution terrain information over Tasmania and beyond.  相似文献   

4.
http://www.sciencedirect.com/science/article/pii/S1674987114000036   总被引:1,自引:0,他引:1  
The paper evaluates sensitivity of various spaceborne digital elevation models (DEMs), viz., Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mapping Mission (SRTM) and Global Multi-resolution Terrain Elevation Data 2010 (GMTED), in comparison with the DEM (TOPO) derived from contour data of 20 m interval of Survey of India topographic sheets of 1 : 50,000 scale. Several topographic attributes, such as elevation (above mean sea level), relative relief, slope, aspect, curvature, slope-length and -steepness (LS) factor, terrain ruggedness index (TRI), topo- graphic wetness index (TWI), hypsometric integral (lhyp) and drainage network attributes (stream number and stream length) of two tropical mountain river basins, viz. Muthirapuzha River Basin and Pambar River Basin are compared to evaluate the variations. Though the basins are comparable in extent, they differ in respect of terrain characteristics and climate. The result.,; suggest that ASTER and SRTM provide equally reliable representation of topography portrayed by TOP() and the topographic attributes extracted from the spaceborne DEMs are in agreement with those derived from TOPO. Despite the coarser resolution, SRTM shows relatively higher vertical accuracy (RMSE -- 23 and 20 m respectively in MRB and PRB) compared to ASTER (RMSE - 33 and 24 m) and GMTED (RMSE - 59 and 48 m). Vertical accuracy of all the spaceborne DEMs is influenced by relief of the terrain as well as type of vegetation. Further, GMTED shows significant deviation for most of the attributes, indicating its inability for mountain-river-basin-scale studies.  相似文献   

5.
This study investigates the quality (in terms of elevation accuracy and systematic errors) of three recent publicly available elevation model datasets over Australia: (i) the 9 arc second national GEODATA DEM-9S ver3 from Geoscience Australia and the Australian National University; (ii) the 3 arc second SRTM ver4.1 from CGIAR-CSI; and (iii) the 1 arc second ASTER-GDEM ver1 from NASA/METI. The main features of these datasets are reported from a geodetic point of view. Comparison at about 1 billion locations identifies artefacts (e.g. residual cloud patterns and stripe effects) in ASTER. For DEM-9S, the comparisons against the space-collected SRTM and ASTER models demonstrate that signal omission (due to the ~270 m spacing) may cause errors of the order of 100–200 m in some rugged areas of Australia. Based on a set of geodetic ground control points over Western Australia, the vertical accuracy of DEM-9S is ~9 m, SRTM ~6 m and ASTER ~15 m. However, these values vary as a function of the terrain type and shape. Thus, CGIAR-CSI SRTM ver4.1 may represent a viable alternative to DEM-9S for some applications. While ASTER GDEM has an unprecedented horizontal resolution of ~30 m, systematic errors present in this research-grade version of the ASTER GDEM ver1 will impede its immediate use for some applications.  相似文献   

6.
In Sahel-Doukkala, which is characterized by lands of a relatively low relief, global DEMs and DEMs generated from digitizing topographic maps, have been the primary source of several multidisciplinary researches. Although these products present a great value of the conducted research, the level of the given accuracy is not sufficient enough for detailed geospatial analysis. These requirements led us to generate a high-resolution DEM as an alternative of available global DEMs or/and DEMs generated from digitizing topographic maps. In this study, we present a workflow to extract high-resolution DEM at 5 m resolution and derived orthoimages from ALOS-PRISM data over Sahel-Doukkala, through photogrammetric techniques, using a variation of GCPs obtained from topographic maps at scale 1:25,000. The accuracy of the generated products is reported according to NSSDA standards. Using ten GCPs, a PRISM-DEM with 3.88 m vertical accuracy and 11.60 m horizontal accuracy, both at 95% confidence level is obtained. This DEM will serve as base dataset for further detailed geospatial analysis and mapping applications in order to identify the relationship between surface parameters and groundwater, and also to assess and understand all factors influencing the development of karst landscapes and consequently subsurface stability in the investigated area.  相似文献   

7.
DEM数据源及分辨率对HEC-HMS水文模拟的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
DEM数据源及分辨率会影响流域特征参数的提取,进而影响水文模拟结果.将ASTER 30 m DEM、SRTM 90 m DEM及基于ASTER 30 m DEM的40 m、50 m、60 m、70 m、80 m、90 m重采样DEM作为HEC-geoHMS模型输入,提取流域特征,采用HEC-HMS模型,以西笤溪流域为研究区域,分析2011年6月和2011年8—9月的两场降雨径流过程中,DEM数据源和分辨率对水文模拟输出的影响.研究结果表明,两次径流模拟结果与实测数据拟合都较好,模型确定性系数都大于0.82,但是单峰的洪水模拟效果总体更好,基于SRTM 90 m的模型确定性系数比基于ASTER 30 m DEM、重采样90 m DEM的模型确定性系数都大.基于重采样DEM的模型确定性系数变化较大,而且与分辨率的变化呈非线性关系.在HEC-HMS的模拟中,基于ASTER 30 m DEM和基于SRTM 90 m DEM的模拟输出结果相对误差相差3%~5%,基于SRTM 90 m DEM和基于重采样90 m DEM的模拟输出结果相对误差相差2%~4%,基于重采样DEM的模拟输出结果相对误差相差最大达到了11%.  相似文献   

8.
Digital elevation models (DEMs) are widely relied upon as representations of the Earth's topographic morphology. The most widely used global DEMs available are ETOPO5, TerrainBase and JGP95E at a 5‐arc‐minute spatial resolution, and the GTOPO30 and GLOBE (version 1) global DEMs at a 30‐arc‐second spatial resolution. This paper presents the results of intercomparisons of these global DEMs over Australia, and with the GEODATA 9‐arc‐second DEM (version 1) of Australia. These DEMs were also compared to an independently produced, altimeter‐derived orthometric height database. This allows not only a totally independent assessment of the quality of these different DEMs over Australia, but also an insight into the ERS‐1 radar altimeter's ability to measure orthometric heights on land. The results of all these comparisons reveal large differences among the DEMs, with the greatest difference between JGP95E and ETOPO5 (mean 49 m, standard deviation ±274 m). The comparison with the altimeter‐derived database shows good agreement with the version 1 GEODATA DEM (mean 2 m, standard deviation ±27 m), thus demonstrating that the altimeter is a viable method for quality assessment of DEMs in lowland regions. A further conclusion is that the representation of the Australian land surface in both the JGP95E and TerrainBase global DEMs is more accurate than the higher resolution GLOBE (version 1) global DEM, even though JGP95E displays a disparity along the 140°E meridian because of the different data sources used in its construction.  相似文献   

9.
The BASINS model, developed by the United States EPA, is a popular simulation tool for predicting watershed responses, such as runoff, pollution exports, and water quality. It requires large amounts of data to set parameters. Many studies state that model input is a major source of model uncertainty. Thus, improvements to the quality and completeness of the data will improve the certainty of the model. The objective of this study is to discuss the effects of spatial data, including digital elevation models (DEMs) and spatial rainfall records, on predictions of runoff from the BASINS model. The result shows that both DEMs and rainfall data can significantly influence peak flow and runoff volume. Rainfall input has more influence on the curve shape of hydrograph than DEM resolution. DEM resolution can have more impact on peak flow predictions than rainfall input. Because the model uncertainties from DEMs and rainfall records influence each other, the prediction error does not always decrease when DEM resolution increases. The present results show that the BASINS model produces reliable answers in the case area when the grid size is less than 100 m × 100 m and the precipitation records from the Bihu Rainfall Station are correct and complete.  相似文献   

10.
高亚洲冰川区SRTM C-波段DEM数据透射深度研究   总被引:1,自引:0,他引:1  
SRTM数据是研究冰量变化的重要数据之一。基于SRTM C-波段和X-波段的高程数据,对高亚洲不同冰川区SRTM C-波段数据的透射深度进行了研究。结果表明:高亚洲地区SRTMC透射深度的空间分布特征存在较大差异,其中藏色岗日地区的透射深度最大为(5.3±2.1) m,中天山和念青唐古拉西段地区的透射深度最小仅为(0.8±0.6) m。透射深度整体空间分布呈由高亚洲边缘地区向青藏高原内陆先减小后增大,到羌塘高原地区SRTMC的透射深度最大的趋势。气温和降水量的空间差异共同作用是导致SRTMC透射深度呈上述分布状况的主要因素。此外,SRTM X-波段数据的覆盖状况和冰川样本数量的选择会导致不同研究估算出的SRTMC透射深度存在不确定性。  相似文献   

11.
Undulating landscapes of Chhotanagpur plateau of the Indian state of Jharkhand suffer from soil erosion vulnerability of varying degrees. An investigation was undertaken in some sections of the Upper Subarnarekha River Basin falling within this state. An empirical equation known as Universal Soil Loss Equation (USLE) was utilized for estimating the soil loss. Analysis of remote sensing satellite data, digital elevation model (DEM) and geographical information system (GIS)–based geospatial approach together with USLE led to the soil erosion assessment. Erosion vulnerability assessment was performed by analyzing raster grids of topography acquired from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM data. LANDSAT TM and ETM+ satellite data of March 2001 and March 2011 were used for inferring the land use–land cover characteristics of the watershed for these years, respectively. USLE equation was computed within the GIS framework to derive annual soil erosion rates and also the areas with varying degrees of erosion vulnerability. Erosion vulnerability units thus identified covered five severity classes of erosion ranging from very low (0–5 ton ha?1 yr?1) to very severe (> 40 ton ha?1 yr?1). Results indicated an overall increase of erosion in the year 2011 as compared to the erosion computed for the year 2001. Maximum soil erosion rate during the year 2001 was found up to 40 ton ha?1 yr?1, whereas this went up to 49.80 ton ha?1 yr?1 for the year 2011. Factors for the increase in overall erosion could be variation in rainfall, decrease in vegetation or protective land covers and most important but not limited to the increase in built-up or impervious areas as well.  相似文献   

12.
The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are responsible for initiation and development of ephemeral gullies.As the topographic features of an area significantly influences on the erosive power of the water flow,it is an important task the extraction of terrain features from DEM to properly research gully erosion.Alongside,topography is highly correlated with other geo-environmental factors i.e.geology,climate,soil types,vegetation density and floristic composition,runoff generation,which ultimately influences on gully occurrences.Therefore,terrain morphometric attributes derived from DEM data are used in spatial prediction of gully erosion susceptibility(GES)mapping.In this study,remote sensing-Geographic information system(GIS)tech-niques coupled with machine learning(ML)methods has been used for GES mapping in the parts of Semnan province,Iran.Current research focuses on the comparison of predicted GES result by using three types of DEM i.e.Advanced Land Observation satellite(ALOS),ALOS World 3D-30 m(AW3D30)and Advanced Space borne Thermal Emission and Reflection Radiometer(ASTER)in different resolutions.For further progress of our research work,here we have used thirteen suitable geo-environmental gully erosion conditioning factors(GECFs)based on the multi-collinearity analysis.ML methods of conditional inference forests(Cforest),Cubist model and Elastic net model have been chosen for modelling GES accordingly.Variable's importance of GECFs was measured through sensitivity analysis and result show that elevation is the most important factor for occurrences of gullies in the three aforementioned ML methods(Cforest=21.4,Cubist=19.65 and Elastic net=17.08),followed by lithology and slope.Validation of the model's result was performed through area under curve(AUC)and other statistical indices.The validation result of AUC has shown that Cforest is the most appropriate model for predicting the GES assessment in three different DEMs(AUC value of Cforest in ALOS DEM is 0.994,AW3D30 DEM is 0.989 and ASTER DEM is 0.982)used in this study,followed by elastic net and cubist model.The output result of GES maps will be used by decision-makers for sustainable development of degraded land in this study area.  相似文献   

13.
The accurate delineation of area plays a key role in the surveying of land change detection and the classification of land covers. In a hydrologic system, the watershed delineation and the detection of the boundaries among watershed is a basic method for performing spatial analyses. After recent advances in image processing and raster-based spatial analysis in geographic information systems, and being easily accessible data via various sources especially through remote sensing, the reliable determination of topographical boundaries possible is possible. Therefore, an integrated approach of data analysis and modeling can accomplish the task of delineation. The main aim in this research is to evaluate the delineation method of watershed boundary using four different digital elevation models (DEM) including advanced spaceborne thermal emission and reflection radiometer (ASTER), Shuttle Radar Topographic Mission (SRTM), digital topography, and topographic maps. In order to determine a true reference of boundary of watershed, sample data were also obtained by field survey and using global positioning system (GPS). The comparison reference points and the results of these data showed the average distance difference between reference boundary, and the result of ASTER data was 43 m. However, the average distance between GPS reference and the other data was high; the difference between the reference data and SRTM was 307 m, and for digital topographic map, it was 269 m. The average distance between topographic map and the GPS points differed 304 m as well. For the statistical analysis of comparison, the coordinates of 230 points were determined; the paired comparisons were also performed to measure the coefficient of determination, R 2, as well as analysis of variance in SPSS software. As a result, the R 2 values for the ASTER data with the digital topography and topographic map were 0.0157 and 0.171, respectively. The results showed that there were statistically significant differences in distances among the four means of the selected models. Therefore, considering other three methods, the ASTER DEM is the most suitable applicable data to delineate the borders of watersheds, especially in rugged terrains. In addition, the calculated flow directions of stream based on ASTER are close to natural tributaries as well as real positions of streams.  相似文献   

14.
One of the most serious limitations in studying the surface morphometry of a badland landscape is the nonavailability of a very fine resolution data which is essential for such types of studies. Local relief of most of the badlands in India and also from other parts of the world exhibit limited relief amplitude, often within a few meters. The paper reports a case study carried out in a riverine badland formed along the Western Deccan Trap Region. An attempt has been made in the present paper to extract the morphometric variables of the landscape from the DEMs derived from a high resolution field generated data, because the accuracy of the DEM derived values are dependent on the pixel resolution of the DEM from which they are generated. The size of the pixel resolution should be fixed differently for different landscapes depending on the landscape process in the area. The local relief of the area is around 10 m and for such types of landscapes the topographical maps and also the web-available DEMs are of very coarse resolutions which are not suitable for the analysis. Therefore two well defined tributary catchments were chosen from the area under investigation and theodolite surveys were carried out, contours were generated with 10 cm interval, DEMs were derived by using Arc GIS software. SRTM (Shuttle Radar Topography Mission) 90 m resolution data were utilized to generate DEM for the whole basin. Hypsometric and the drainage basin parameters were extracted from these data by using the same software. Fractal dimension of the whole basin and the sample basins were also obtained for the same data. The morphometric data generated were used to understand the geomorphic processes operating in the area.  相似文献   

15.
航天飞机雷达地形测绘(shuttle radar topography mission, SRTM)和先进星载热发射和反射辐射成像仪全球数字高程模型(advanced spaceborne thermal emission and reflection radiometer global digital elevation model, ASTER GDEM)提供了全球覆盖面积最广的数字高程模型(digital elevation model, DEM)数据, 但其高程精度还未得到充分验证, 传统地面测量方法很难适用于验证大面积范围的DEM精度.以冰、云和陆地高程卫星/地学激光测高系统(ICESat/GLAS)高程数据为参考, 综合利用地理信息系统(geographic information system, GIS)空间分析、三维可视化与统计分析方法, 对中国典型低海拔沿海平原地区和高海拔山地的两种DEM数据高程精度进行了对比分析.结果表明, 高程值小于20m的低海拔地区, SRTM高程精度达到2.39m, ASTER GDEM的精度达到4.83m, 均远远高于这两种数据的标称精度; 而在西南山地, 这两种DEM的精度大约为20m, 与标称精度相当.最后, 建立了ICESat/GLAS与SRTM和ASTER GDEM的一元线性回归模型, 该模型具有较高的拟合度和显著线性关系, 可用于改善这两种DEM的高程精度.   相似文献   

16.
The DEM generalization is the foundation of expressing and analyzing the terrain and the basis of multi-scale observation. Meanwhile, it is also the core of building the multi-scale geographic database. This paper would like to propose a new algorithm using profile simplification in four directions(4-DP). This algorithm is composed of two parts, namely extraction of terrain feature points in local window as well as in global profile line and reconstruction of DEMs. The paper used the 5 m resolution DEM of the Suide in Loess Plateau of China as the original data. In the experiment, this paper has achieved the generalized DEM with 5 m and 25 m resolution by removed small details and computed out the optimal threshold. In contrast to the classic algorithms, VIP and Aggregate, based on three evaluation methods. The results show that this method is able to retain the main geographical information effectively in terrain surface.  相似文献   

17.
The recent development of digital representation has stimulated the development of automatic extraction of topographic and hydrologic information from digital elevation model input, using geographic information system (GIS) and hydrologic models that integrate multiple databases within a minimal time. The objective of this investigation is to compare the drainage extracted from Shuttle Radar Topography Mission (SRTM) data with the drainage digitized from topographic data (1:50,000) and also to draw attention to the functions of an add-on tool in ArcGIS 9.2 (Arc Hydro v.2) of Kuttiyadi River basin. The analysis reveals that the watershed extracted from the SRTM digital elevation model (DEM) (90 m resolution) is having an area of 668 km2 and that from toposheet is 676 km2. The river mouth in the drainage network from the SRTM DEM is found to be shifted to the northern side from where it actually exists. The drainage network from SRTM DEM at stream threshold 15 (0.0002 % of maximum flow accumulation) is delivering best results than the other threshold value in comparison with the drainage pattern derived from toposheets. The study reveals the importance, reliability, and quaintness of drainage network and watershed derived from the SRTM using the Arc Hydro Tool, an extension for Environmental Systems Research Institute ArcGIS. The advantage of the Arc Hydro Tool is that it would help a novice with little GIS knowledge to run the model to obtain watershed and drainage network.  相似文献   

18.
孙杰  刘静  仲振维 《地质通报》2009,28(6):726-737
河流地貌和侵蚀是构造地貌研究的核心内容。90m分辨率的SRTM3数字高程模型被广泛运用于构造地貌学的研究,但数据空白区是其在河流地貌定量研究中的瓶颈。对SRTM3数据与中国1:25万DEM数据的对比分析表明,1:25万DEM数据在生成数字河网和河流纵剖面方面不如SRTM3数据,尤其是其在平原区数字河网提取中易发生错误,但在高山峡谷地区数据质量较好,而这正是SRTM3数据空洞的主要区域。对比国内外各种SRTM空洞填补方法发现,相对于算法的改进,高精度数据的参与是填充SRTM3数据空洞的关键。因此,利用SRTM3与1:25万DEM数据的互补性,对SRTM3进行数据优化,是现阶段青藏高原河流地貌定量研究的基础。详细介绍了SRTM3空洞充填的步骤,具有实际参考价值。  相似文献   

19.
河流地貌和侵蚀是构造地貌研究的核心内容。90m分辨率的SRTM3数字高程模 型被广泛运用于构造地貌学的研究,但数据空白区是其在河流地貌定量研究中的 瓶颈。对SRTM3数据与中国1∶25万DEM数据的对比分析表明,1∶25万DEM数据在 生成数字河网和河流纵剖面方面不如SRTM3数据,尤其是其在平原区数字河网提 取中易发生错误,但在高山峡谷地区数据质量较好,而这正是SRTM3数据空洞的主 要区域。对比国内外各种SRTM空洞填补方法发现,相对于算法的改进,高精度数 据的参与是填充SRTM3数据空洞的关键。因此,利用SRTM3与1∶25万DEM数据的互 补性,对SRTM3进行数据优化,是现阶段青藏高原河流地貌定量研究的基础。详细 介绍了SRTM3空洞充填的步骤,具有实际参考价值。  相似文献   

20.
数字高程模型分辨率对流域地形特征参数的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
地形特征(如高程和坡度)和水文特征(如河流长度和河流坡度)是分布式流域水文水质模型的基础输入参数,用于量化描述模型模拟流域的自然特征。这些特征参数的准确性直接影响水文水质过程模拟的准确性。应用数字高程模型(Digital Elevation Model,DEM)在4个不同地形的子流域研究了10种不同分辨率DEM对平均高程、流域面积、坡度、河流坡度、最长河长等参数的影响。结果表明,随着DEM分辨率降低,流域地形变缓,流域平均坡度逐渐减小;随着DEM网格分辨率的变化,子流域划分范围和河道位置也都可能发生变化,且该变化在地形起伏较小的丘陵平原地区较明显,子流域集水面积和河长进一步随之改变;河流坡度随DEM分辨率降低则呈无规则变化。从地形和水文参数两方面揭示了DEM 分辨率在分布式流域模型中的不确定性影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号