首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
Characteristic features of the two solar wind-magnetosphere interaction mechanisms, i.e. the viscous drag and magnetic merging, are discussed in the paper. The main difference between them is that the viscous drag acts mainly near the equatorial cross-section of the magnetopause, whereas the magnetic merging acts near the noon-midnight meridian cross-section. Energy input to the tail due to viscous drag action decreases as the magnetic flux in the tail lobes increases, whereas the energy input due to magnetic merging does not depend on the magnetotail flux. A concept is developed that a combined action of these two mechanisms is intimately related to substorm occurrence. In this paper large scale cross-tail electric fields and their relation to energy conversion processes in the tail are analysed qualitatively and interpreted. An induced part of the tail electric fields is taken into account and the relationship between polar cap electric fields and energy conversions in the tail is discussed.  相似文献   

2.
萧耐园  成灼 《天文学报》1998,39(2):131-140
在日月引潮力势作用下地球产生弹性形变.地幔粘滞性子致这个形变对于引潮力滞后,成为引起地球自转长期减慢的原因之一.地幔滞弹性也使有效洛夫数k增加,并使自转变化的周期项位相滞后,即产生反常位相项.本文首先用Hamilton方法计算了地球的形变.然后考虑到地幔的滞弹性,计算了在日月引潮力作用下的地球自转长期减慢和滞弹性对周期(带谐)变化的影响.  相似文献   

3.
We consider the Rayleigh–Taylor instability in the early evolution of the rarefied radio bubbles (cavities) observed in many cooling-flow clusters of galaxies. The top of a bubble becomes prone to the Rayleigh–Taylor instability as the bubble rises through the intracluster medium (ICM). We show that while the jet is powering the inflation, the deceleration of the bubble–ICM interface is able to reverse the Rayleigh–Taylor instability criterion. In addition, the inflation introduces a drag effect which increases substantially the instability growth time. The combined action of these two effects considerably delays the onset of the instability. Later on, when the magnitude of the deceleration drops or the jet fades, the Rayleigh–Taylor and the Kelvin–Helmholtz instabilities set in and eventually disrupt the bubble. We conclude that the initial deceleration and drag, albeit unable to prevent the disruption of a bubble, may significantly lengthen its lifetime, removing the need to invoke stabilizing magnetic fields.  相似文献   

4.
FRW models of universe in the presence of viscous fluid are investigated in the cosmological theory based on Lyra’s Manifold. By considering the deceleration parameter to be a variable and the viscosity coefficient of bulk viscous fluid to be a constant, exacts solutions have been obtained from which three forms of model of the universe are derived. The physical properties of the models are also investigated.  相似文献   

5.
Exact solutions are obtained for an isotropic homogeneous universe with a bulk viscous fluid in the cosmological theory based on Lyra’s geometry. The viscosity coefficient of the bulk viscous fluid is assumed to be a power function of the mass density. Cosmological models with time dependent displacement field have been discussed for a constant value of the deceleration parameter. Finally some possibilities of further problems and their investigations have been pointed out.  相似文献   

6.
S. J. Tappin 《Solar physics》2006,233(2):233-248
A CME which was first seen in LASCO is tracked through SMEI and on out to Ulysses. These measurements allow us to determine the deceleration and compare different models of the deceleration process. It is found that both a simple “snow plough” model and an aerodynamic drag model predict a much more rapid deceleration in the lower solar wind than is observed. Therefore some driving force is needed over an extended range of distances to account for the motion of the transient. It is conjectured that at least part of this driving force may be provided by one of two low-latitude coronal holes which were close to the site of the CME.  相似文献   

7.
Numerical evidence shows that negative buoyancy regions at the top of cellular type compressible convection are caused by viscous drag.  相似文献   

8.
The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term Λ in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter q. Consequences of the four cases of phenomenological decay of Λ have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.  相似文献   

9.
An approximate semi-analytic solution of a two-body problem with drag is presented. The solution describesnon-lifting orbital motion in a central, inverse-square gravitational field. Drag deceleration is a non-linear function of velocity relative to a rotating atmosphere due to dynamic pressure and velocity-dependent drag coefficient. Neglected are aerodynamic lift, gravitational perturbations of the inverse-square field, and kinematic accelerations due to coordinate frame rotation at earth angular rate. With these simplifications, it is shown that (i) orbital motion occurs in an earth-fixed invariable plane defined by the radius and relative velocity vectors, and (ii) the simplified equations of motion are autonomous and independent of central angle measured in the invariable plane. Consequently, reduction of the differential equations from sixth to second-order is possible. Solutions for the radial and circumferential components of relative velocity are reduced to quadratures with respect to radial distance. Since the independent variable is radial distance, the solutions are singular at zero radial velocity (e. g., for circular orbits). General atmospheric density and drag coefficient models may be used to evaluate the velocity quadratures. The central angle and time variables are recovered from two additional quadratures involving the velocity quadratures. Theoretical results are compared with numerical simulation results.Presently affiliated with AVCO Systems Division, Wilmington, MA 01887, U.S.A.  相似文献   

10.
Mitra has suggested that the Superrotation of the upper atmosphere is caused by a deposition of meteoroids. The meteoroids are assumed to impart to the atmosphere the excess of their orbital angular momentum per unit mass over the Earth's angular momentum per unit mass. The process is to take place in the height region above 150 km. Only above this height is a Superrotation of the atmosphere observed. In this report the forces that tend to make the atmosphere corotate with the Earth are analysed. It is shown that the most important of these forces is ion drag, and not viscous drag as postulated by Mitra. As the net angular spin momentum imparted by the meteoroids seems to be less than Mitra's estimate and its main part is applied to the atmosphere at altitudes much lower than 150 km, the hypothesis that meteoroids provide a significant contribution to the Superrotation is rejected.  相似文献   

11.
We investigate, independently of specific emission models, the constraints on the value of the bulk Lorentz factor Γ of a fireball. We assume that the burst emission comes from internal shocks in a region transparent to Thomson scattering, and before deceleration caused by the swept-up external matter is effective. We consider the role of Compton drag in decelerating fast-moving shells before they interact with slower ones, thus limiting the possible differences in the bulk Lorentz factor of shells. Tighter constraints on the possible range of Γ are derived by requiring that the internal shocks transform more than a few per cent of the bulk energy into radiation. Efficient bursts may require a hierarchical scenario, where a shell undergoes multiple interactions with other shells. We conclude that fireballs with average Lorentz factors larger than 1000 are unlikely to give rise to the observed bursts.  相似文献   

12.
During the first phase of Huygens arrival into Titan's atmosphere the probe is subjected to gravitational and aerodynamic forces in aerodynamic hypersonic regime. Atmospheric drag exerts a strong deceleration on the capsule measured by Huygens atmospheric structure instrument (HASI) servo accelerometer. A 6 DOF (Degree of Freedom) model of the Huygens probe entry dynamics has been developed and used for data analysis. The accelerometer data are analysed and the model allows the retrieval of dynamics information of Huygens probe from 1545 km altitude down to end of the entry phase. Probe's initial conditions (velocity and position) were refined to match the measured deceleration profile resulting in a different altitude at interface epoch with respect to those of the Cassini Navigation Team. Velocity and position of probe at interface epoch are compatible with those used by Descent Trajectory Working Group (DTWG).Measurements acquired before atmosphere detection are used to estimate probe's angular rate, bound attitude and characterise the angle of attack profile which results to be lower than 4° during the whole entry. Probe's spin calculated (6.98 RPM) is slightly different with respect to DTWG of 7.28 RPM but considering a 2% error in the Inertia matrix these results are inside the 1-σ error band.  相似文献   

13.
Exact solutions of the field equations for a Bianchi type-I space-time, filled with a viscous fluid and cosmological constant, are obtained. We utilize the constancy of deceleration parameter to get singular and non-singular solutions. We investigate a number of solutions with constant and time-varying cosmological constant together with a linear relation between shear viscosity and expansion scalar. Due to dissipative processes, the mean anisotropy and shear of the model tend to zero at a faster rate.  相似文献   

14.
The Bianchi type-V cosmological model with viscous fluid and creation particle in Brans-Dicke theory has been considered. The present paper deals with Bianchi type-V cosmological model with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We have discussed two types of solutions of the average scale factor for a Bianchi type-V model by using a variation law of Hubble’s parameter, which yields a constant value of the deceleration parameter. The exact solutions to the corresponding field equations are obtained in quadrature form. The solutions to the Einstein field equations are obtained for power law and exponential form. The cosmological parameters have been discussed in detail.  相似文献   

15.
The three-dimensional flow of a viscous incompressible electrically conducting fluid near an infinite plate (or wall) of non-conductor, which is oscillating harmonically in a uniform rotating medium, is studied in the presence of a uniform magnetic field. The impressed uniform magnetic field is perpendicular to the plate and the induced magnetic field is considered. Exact solution of this problem is obtained for the velocity and magnetic fields. Neglecting the induced magnetic field we readily obtain the results of all the previous investigations. The effects of the rotation and the magnetic field are comparable with one another and are discussed for the whole problem. Also, the drag and the lateral stress on the plate are discussed.  相似文献   

16.
Auroral E region neutral winds determined from incoherent scatter radar observations at Chatanika, AK, during geomagnetic disturbances (15 May 1974) are compared with detailed theoretical calculations of neutral velocities for these conditions. The theoretical velocities are obtained by numerically solving the ion and neutral momentum equations in the ion drag approximation, including coriolis and viscous forces, using observed electric fields and electron densities. Large vertical gradients are found in the calculated velocities for altitudes below about 130 km. As a consequence of this structure and fluctuations in the electron density profiles, the data analysis procedure of Brekke et al. (1973) for obtaining neutral winds from radar data is found to underestimate the wind speed by up to 40%, but it determines the direction and temporal structure reasonably well. Comparison of observed neutral velocities with calculated values shows that ion drag alone cannot account for the observations. An equation is derived to estimate the pressure gradients required to resolve the discrepancy between calculated and observed neutral winds. Accelerations due to these pressure gradients are of the same order as those due to ion drag, but at least an order of magnitude larger than those due to solar heating. Directions of the horizontal pressure gradients are consistent with expected locations of auroral heating. During geomagnetic disturbances, ion drag and auroral heating both appear to play important roles in the generation and modification of neutral winds.  相似文献   

17.
Matter accreting onto black holes suffers a standing or oscillating shock wave in much of the parameter space. The post-shock region is hot, puffed up and reprocesses soft photons from a Keplerian disc to produce the characteristic hard tail of the spectrum of accretion discs. The post-shock torus is also the base of the bipolar jets. We study the interaction of these jets with the hard photons emitted from the disc. We show that radiative force can accelerate outflows but the drag can limit the terminal speed. We introduce an equilibrium speed υeq as a function of distance, above which the flow will experience radiative deceleration.  相似文献   

18.
Some natural satellites may have been captured due to the gas drag they experienced in passing through primordial circumplanetary nebulas. This paper models such an encounter and derives the testable parameters from the known properties of current solar system objects and Bodenheimer's (1977, Icarus 31) model of the earliest phases of Jupiter's evolution. We propose that the clusters of prograde and retrograde irregular satellites of Jupiter originated when two parent bodies were decelerated and fragmented as they passed through an extended primordial Jovian nebula. Fragmentation occured because the gas dynamic pressure exceeded the parent bodies' strengths. These events must have occurred only shortly before the primordial nebula experienced hydrodynamical collapse so that subsequently the fragments underwent only limited orbital evolution. Because self-gravity exceeded the relative drag force, the fragments initially remained together, only to be dispersed at a later time by a collision with a stray body. Predictions of this hypothesis, such as orbital distance of the irregular satellites and size of the parent bodies, are found to be consistent with the observed properties of Jupiter's irregular satellites. In addition nebular drag at a later time may have caused the inner three Galilean satellites to undergo a modest amount of orbital evolution, accounting for their present orbital resonance. Gas drag capture of Saturn's Phoebe and Iapetus and Neptune's Nereid and Triton may also be possible. Reasonable differences in properties could explain why these satellites, in contrast to the Jovian ones, did not fracture upon capture. The current irregular satellites represent only a tiny fraction of the bodies captured by primordial nebulas. The dominant fraction would have spiraled into the center of the nebula as a result of continued gas drag and thus offer one source for the heavy element cores of the outer planets. If one is willing to postulate the presence of a massive gaseous nebula around primordial Mars, then gas drag capture could account for the origin of the Martian moons. We hypothesize that a single parent body was captured in a region of the nebula where the gas velocity approached the Keplerian value, that it fragmented upon deceleration into at least two bodies, Phobos and Deimos, and that continued nebular drag led to the low eccentricity and inclination that characterize the satellites' current orbits. Following the dissipation of this nebula, the more massive Phobos tidally evolved to its current position.  相似文献   

19.
Galaxy disc formation must incorporate the multiphase nature of the interstellar medium. The resulting two-phase structure is generated and maintained by gravitational instability and supernova energy input, which yield a source of turbulent viscosity that is able to compete effectively in the protodisc phase with early angular momentum loss of the baryonic component via dynamical friction in the dark halo. Provided that star formation occurs on the viscous drag time-scale, this mechanism provides a means of accounting for disc sizes and radial profiles. The star formation feedback is self-regulated by turbulent gas pressure limited percolation of the supernova remnant heated hot phase, but can run away in gas-rich protodiscs to generate compact starbursts. A simple analytic model is derived for a Schmidt-like global star formation law in terms of the cold gas volume density.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号