首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全球地幔垂直流动速度研究   总被引:5,自引:0,他引:5       下载免费PDF全文
用高分辨率地震体波速度成像以及相关的地球物理资料,计算地幔垂直流动形式及流动速度,得到全球地幔流垂直运动模式.从全球尺度来看,地幔流基本可划分为以下几个区域:欧亚大陆—澳大利亚、北美洲—南美洲为两个大规模下降流区域,西印度洋—非洲及大西洋、中南太平洋及东太平洋为两个大规模地幔上升流区域.地幔上升流起源于核幔边界,主要表现在地幔中部和上地幔下部.地幔垂直流动速度约每年1~4cm.地幔流动对地表板块运动、海洋中脊和中隆、俯冲带和碰撞带的分布起着控制作用.地幔上升流与地表现代热点有密切关系.从东亚尺度看,地幔流大体分为三个区域:东亚边缘裂谷系和西太平洋边缘海为上升流、西伯利亚地幔深度表现为物质下降流、青藏高原—缅甸—印度尼西亚特提斯俯冲带地幔下降流,这三个区域地幔流动与地表的西太平洋构造域、亚洲构造域和特提斯构造域相吻合.勾勒出南海地区构造特征:从上到下的大体结构是上部呈“工"字型、中间为圆柱型、底部呈盾形的地幔上升流.  相似文献   

2.
The origin of large low shear-wave velocity provinces (LLSVPs) in the lowermost mantle beneath the central Pacific and Africa is not well constrained. We explore numerical convection calculations for two proposed hypotheses for these anomalies, namely, thermal upwellings (e.g., plume clusters) and large intrinsically dense piles of mantle material (e.g., thermochemical piles), each of which uniquely affects the topography on Earth's core–mantle boundary (CMB). The thermochemical pile models predict a relatively flat but elevated CMB beneath piles (presumed LLSVPs), with strong upwarping along LLSVP margins. The plume cluster models predict CMB upwarping beneath upwellings that are less geographically organized. Both models display CMB depressions beneath subduction related downwelling. While each of the two models produces a unique, characteristic style of CMB topography, we find that seismic models will require shorter length scales than are currently being employed in order to distinguish between the end-member dynamic models presented here.  相似文献   

3.
Indirect observations and theoretical predictions for the period of the free core nutation (FCN) differ by anywhere from 15 to 30 days, and various effects have been invoked in attempts to explain this difference. The favored explanation remains as much as 5% departure in the flattening of the core-mantle boundary (CMB) from that of its hydrostatic reference figure. This 5% ‘extra-flattening’ of the CMB is not seen at the Earth's surface, where the difference is only about 0.5%. In contrast to the a posteriori model adjustments used to determine this up to 5% value, and the kinematic results available from viscous flow modeling using the seismically determined lateral heterogeneity in density data, we consider this problem from the perspective of a forward-modeling dynamical study. More specifically, we investigate the related problem of flow-induced surface and CMB topography, arising from convection in the mantle. As such, we have completed a comparative and systematic study of relative surface and CMB topography resulting from numerical models of mantle convection. When effects resulting from boundary curvature are isolated, it appears that the magnitude of CMB topography produced is insufficient in producing a significant extra-flattening of the CMB. However, results concerning effects solely resulting from a depth-dependent mantle viscosity profile, indicate that this factor may indeed lead to enhanced topography at the CMB of the magnitude required to produce the extra-flattening there.  相似文献   

4.
We investigate the stability of hypothetical layered convection in the mantle and the mechanisms how the downwelling structures originating in the lower layer are generated. The stability is studied by means of numerical simulations of the double-diffusive convection in a 2D spherical model with radially dependent viscosity. We demonstrate that the stability of the layering strongly depends not only on the density contrast between the layers but also on the heating mode and the viscosity profile. In the case of the classical Boussinesq model with an internally heated lower layer, the density contrast of about 4% between the compositionally different materials is needed for the layered flow to be maintained. The inclusion of the adiabatic heating/cooling in the model reduces the temperature contrast between the two layers and, thus, enhances the stability of the layering. In this case, a density contrast of 2-3% is sufficient to preserve the layered convection on a time scale of billions of years. The generation of the downwelling structures in the lower layer occurs via mechanical or thermal coupling scenarios. If the viscosity dependent on depth and average temperature at each depth is considered, the low viscosity zone develops at a boundary between the two convecting layers which suppresses mechanical coupling. Then the downwelling structures originating in the lower layer develop beneath upper layer subductions, thus resembling continuous slab-like structures observed by seismic tomography.  相似文献   

5.
杨峰 《地震》2020,40(4):33-48
选取黑龙江、 吉林、 辽宁、 内蒙古区域地震台网, 以及NECESSArray流动台阵记录的223个远震事件的波形资料, 采用多道互相关方法得到了22569个P波相对走时数据, 并计算了相应的走时灵敏度核, 应用有限频率层析成像反演得到中国东北地区上地幔600 km以上的P波三维速度结构模型, 利用检测板评估了反演结果的分辨率。 结果表明, 松辽盆地下方80~200 km的深度上呈主体的低速异常, 与这一地区上地幔浅部的高地温值和低密度的特征相互对应, 可能暗示了部分熔融的地幔。 南北重力梯度带两侧的速度结构明显不同, 这一差异可以延伸到200 km以下, 表明在中国东北地区南北重力梯度带有可能是一条上地幔内部结构的变化带, 或是深部结构的分界线。 长白山火山区下呈大范围的低速异常, 并可从上地幔浅部延伸到地幔转换带中, 推测此低速异常可能反映了地幔转换带内上涌的热物质, 上涌的原因则主要是受到太平洋板块俯冲运动的作用。  相似文献   

6.
In order to study the relationship between mantle flow and global tectogenesis, we present a 3-D spherical shell model with incompressible Newtonian fluid medium to simulate mantle flow which fits the global tectogenesis quite well. The governing equations are derived in spherical coordinates. Both the thermal buoyancy force and the self-gravitation are taken into account. The velocity and pressure coupled with temperature are computed, using the finite-element method with a punitive factor. The results show that the lithosphere, as the boundary layer of the earth's thermodynamic system, moves with the entire mantle. Both its horizontal and vertical movements are the results of the earth's thermal motion. The orogenesis occurs not only in the collision zones at the plates' boundaries, but also occurs within the plates. If the core-mantle boundary is impermeable and the viscosity of the lower mantle is considerable, the vertical movement is mostly confined to the upper mantle. The directions of the asthenospheric movements are not fully consistent with those of the lithospheric movements. The depths of spreading movements beneath all ridges are less than 220 km. In some regions, the shear stresses, acting on the base of the lithosphere by the asthenosphere, are the main driving force; but in other regions, the shear stresses are the resisting force.  相似文献   

7.
Mass heterogeneities in the earth's mantle are retrieved from the gravity data and the topography of the core-mantle boundary as well as the topography of the earth's surface. A mantle circulation induced by the heterogeneities is modelled by solving the Stokes problem for incompressible Newtonian fluid. The derived models of mantle motions correlate well with the plate tectonics and point at a close relation between the surface tectonic activity and the processes in the vicinity of the core-mantle boundary.  相似文献   

8.
Global P-wave tomography: On the effect of various mantle and core phases   总被引:4,自引:0,他引:4  
In this work, many global tomographic inversions and resolution tests are carried out to investigate the influence of various mantle and core phase data from the International Seismological Center (ISC) data set on the determination of 3D velocity structure of the Earth's interior. Our results show that, when only the direct P data are used, the resolution is good for most of the mantle except for the oceanic regions down to about 1000 km depth and for most of the D″ layer, and PP rays can provide a better constraint on the structure down to the middle mantle, in particular for the upper mantle under the oceans. PcP can enhance the ray sampling of the middle and lower mantle around the Pacific rim and Europe, while Pdiff can help improve the spatial resolution in the lowermost mantle. The outer core phases (PKP, PKiKP and PKKP) can improve the resolution in the lowermost mantle of the southern hemisphere and under oceanic regions. When finer blocks or grid nodes are adopted to determine a high-resolution model, pP data are very useful for improving the upper mantle structure. The resulting model inferred from all phases not only displays the general features contained in the previous global tomographic models, but also reveals some new features. For example, the image of the Hawaiian mantle plume is improved notably over the previous studies. It is imaged as a continuous low velocity anomaly beneath the Hawaiian hotspot from the core-mantle boundary (CMB) to the surface, implying that the Hawaiian mantle plume indeed originates from the CMB. Low-velocity anomalies along some mid-oceanic ridges extend down to about 600 km depth. Our results suggested that later seismic phases are of great importance in better understanding the structure and dynamics of the Earth's interior.  相似文献   

9.
熊熊  单斌  王继业  郑勇 《地球物理学报》2010,53(7):1594-1604
上地幔小尺度对流是控制区域地球动力学过程的主要机制之一,蒙古-贝加尔地区的一些区域动力学过程被认为与上地幔小尺度对流相关.本文目的在于利用重力资料研究蒙古-贝加尔地区的上地幔小尺度对流,并探讨其与构造动力学的关系.基于区域均衡重力异常与上地幔小尺度对流的相关方程,本文利用区域均衡重力异常资料反演了蒙古-贝加尔地区上地幔小尺度对流流场及作用于岩石层底部的应力场.结果显示,蒙古-贝加尔地区地幔流场及对流应力场呈现非常复杂的图像,流场及应力场分布与地表构造具有很好的相关性.西伯利亚地台和蒙古褶皱带下地幔流场和对流应力场均较弱,这与这些地区现今较弱的构造活动性是一致的.贝加尔裂谷区下存在地幔上升流,对流应力场呈拉张状态,但应力场的幅值较小(约8 MPa),表明地幔对流不是贝加尔裂谷开裂的主要控制因素.Hangay高原、阿尔泰和戈壁-阿尔泰下存在地幔上升流,对流应力场为拉张状态,这一方面可能构成Hangay高原隆升的深部动力机制,另一方面,也为Amurian板块西边界划分提供了动力背景.  相似文献   

10.
Clear PKKP, a P wave reflects off the core-mantle boundary on the core side, is recorded by the transcontinental USArray from two deep earthquakes occurred in South America and Tonga, and one intermediate-depth earthquake in the Hindu Kush region. We compare the PKKP waveforms with the direct P waves to investigate the fine structures near the core-mantle boundary, with a primary focus on the core side. We find no evidence for the existence of a sedimentary layer of lighter elements with a thickness above a few hundreds of meters beneath the reflection points of the two deep events, which are located at the Ninety-East Ridge and South Africa. On the other hand the PKKP wave duration of the Hindu Kush event is almost twice as long as that of the P wave, suggesting that multiple reflections may be occurring at the core-mantle boundary located beneath the Antarctic, which is located inside the so-called tangent cylinder of the outer core. The tangent cylinder is an imaginary cylindrical region suggested by geodynamics studies, which has different flow pattern and may have a higher concentration in lighter elements as compared to the rest of the outer core. One possible explanation of the elongated PKKP is a thin distinct layer with a thickness of a few kilometers at the top of the outer core, suggesting that precipitation of lighter elements may occur at the core-mantle boundary. Our data also indicate an extremely low QP of 312, approximately 40% of the PREM average (~780), within the large-scale low-velocity anomaly in the lowermost mantle beneath Pacific.  相似文献   

11.
This study considers two-dimensional mantle flow beneath a rigid lithosphere. The lithosphere which forms the upper boundary of a convecting region moves with a prescribed uniform horizontal velocity, and thickens with distance from the accreting plate boundary as it cools. Beneath the lithosphere, the mantle deforms viscously by diffusion creep and is heated radiogenically from within. Solutions for thermal convection beneath the lithosphere are obtained by finite-difference methods. Two important conclusions have resulted from this study: (1) convective patterns of large aspect ratio are stable beneath a rigid moving lithosphere; (2) even for a lithosphere velocity as small as 3 cm/yr. and a Rayleigh number as large as 106, mantle circulation with large aspect ratio is driven dominantly by the motion of the lithosphere rather than by temperature gradients within the flow. Gravity, topography and heat flow are determined and implications for convection in the upper mantle are discussed.  相似文献   

12.
The two-dimensional surface deformation, gravity field and geoid are calculated from the temperature fields of a number of numerical models of constant viscosity three-dimensional convective flows, heated from within and from below, using the appropriate Green's functions. The admittance is positive, with positive gravity anomalies above hot rising regions, except for large aspect ratio circulations with undeformable lower boundaries. The surface deformation and the geoid are insensitive to the short wavelength features of the temperature variation. The gravity field is less smooth, though still does not clearly indicate the narrowness of the upwelling and downwelling regions at large Rayleigh numbers. When the lower boundary of the convecting region is deformable, the gravity field is dominated by lateral temperature variations within the upper thermal boundary layer, even when their contribution to the overall circulation is small. The variation of surface deformation with Rayleigh number agrees well with that expected from simple boundary layer arguments when the circulation is driven by heating from below, but less well when the heating is internal. These results suggest that the convective upwelling beneath regions showing positive geoid and residual depth anomalies is more localized than the horizontal extent of these features would suggest.  相似文献   

13.
The D″ layer is a dense and chemically distinct layer at the base of the convecting mantle. Numerical modeling of the entrainment of this layer by mantle convection requires the solution of the advective transport equation without introducing numerical diffusion across sharp material boundaries. We use our improved second moment numerical method to solve the equation. The method conserves the amount of material and the first and second moments of material distribution in each control volume. We first consider two examples of isothermal Rayleigh–Taylor instability to illustrate the performance of our method by comparing our results with those of a number of field, tracer and marker chain methods. We show that the performance of our method in minimizing the numerical diffusion is better than the field methods and comparable to the tracer and marker chain methods. We then study the instability of the dense D″ layer and its interaction with the overlying mantle. A range of density contrast between the D″ layer and the mantle, layer thickness, and the Rayleigh number, Ra, is examined. We show that for higher values of these parameters, the amount of entrainment decreases and the layer remains stable over longer periods of time. For very thick D″ layers and high Ra values, internal convection can take place within the layer.  相似文献   

14.
This article presents a suite of long-term numerical simulations that investigate the dynamical mechanisms controlling the circulation in the South Brazil Bight (SBB). The overarching goal of these simulations is to quantify the relative contributions of local wind forcing and the Brazil Current (BC) to the upwelling of nutrient-rich slope water onto the shelf. The model results indicate that the water mass structure of the SBB is controlled by the synergy between wind-driven, inner-shelf upwelling and geostrophic, shelf-break upwelling. The later extends yearlong but the former peaks during the austral summer and decreases towards the winter. The interaction between the poleward flow of the BC and the bottom topography greatly influences the shelf circulation, particularly in the bottom boundary layer. Changes of the SBB coastline direction and shelf width modulate the along-shore pressure gradient and the magnitude of the shelf-break upwelling and downwelling. Thus, although the summer upwelling winds extend over large part of the SBB surface temperatures are warmer in the south because of the cooling effect of the shelf-break upwelling in the northern region. At difference with previous studies of shelf-break dynamics the shelf-break upwelling in our model is not controlled by the uplifting associated with the presence of instabilities of the boundary current or nonlinear accelerations under a variable shelf width. The proposed mechanism is relatively simple. As the boundary current flows along the continental slope, changes in the coastline orientation and along-shore bottom topography modify the along-shore pressure gradient which through geostrophy leads to inshore bottom flow and hence shelf-break upwelling. Such a mechanism can provide insight into upwellings on other western boundary current regions where similar topographic variations exist.  相似文献   

15.
环渤海地区的地震层析成像与地壳上地幔结构   总被引:36,自引:8,他引:28       下载免费PDF全文
利用环渤海地区的天然地震P波到时资料,采用纬度和经度方向分别为05°×06°的网格划分,反演了该地区地壳上地幔的三维P波速度结构.初步结果表明,环渤海地区地壳上地幔的速度结构具有明显的横向不均匀性:京津唐地区地壳中上部的速度异常反映了浅表层的地质构造特征,造山带和隆起区对应于高速异常,坳陷区和沉积盆地对应于低速异常;地壳下部出现大规模的低速异常与华北地区广泛存在的高导层相对应,估计与壳内的滑脱层和局部熔融、岩浆活动有关;莫霍面附近的速度异常反映了地壳厚度的变化及壳幔边界附近热状态的差异;上地幔顶部大范围的低速异常可能是上地幔软流层热物质大规模上涌所致.  相似文献   

16.
地幔对流使得地球表面及核幔边界发生形变,这种由地球深部的动力学过程所引起的形变对大地水准面异常的贡献与地球内部密度异常的贡献具有相当的量级,但符号相反,而由于地表的短周期地质作用所引起的地球表面形变的屏蔽作用,这种长波长、长周期的动力地球表面形变在目前还无法直接观测出来。本文首先从观测大地水准面异常中将地球内部密度异常的贡献去掉,并根据地震层析所得出的核幔边界形变,求得了动力地球表面形变。其结果将对地球内部的动力学过程尤其是粘滞度分布提供十分有用的信息。  相似文献   

17.
Shock observations on melting of iron by Brown and McQueen with the inner core boundary (ICB) density contrast estimated by Masters are used with the assumption that the light ingredient of the outer core is oxygen to calculate the boundary temperature TICB = (5000 ± 900) K. Adiabatic extrapolation to the core-mantle boundary (CMB) gives TICB = (3800 ± 800) K. The temperature increment across the D″ layer is not well constrained, but is estimated to be TD = (800 ± 400) K and a slightly superadiabatic extrapolation to 670 km gives T670 + = (2300 ± 950) K. This is only about 300 K higher than the extrapolation to the same level from the upper mantle, T670? = (1970 ± 150) K. The difference is far too small to make a viable mid-mantle boundary layer. Remaining unceertainties are too large to discount such a boundary layer with certainty, but agreement of our new temperature profile with temperatures deduced from equation of state studies on the lower mantle and core encourages the view that we are converging to a well-determined temperature profile for the Earth.  相似文献   

18.
Mean S-wave residuals from 46 earthquakes within and on the margins of the Tibetan Plateau exhibit systematic lateral variations that do not correlate well with elevation or with simple aspects of the geologic history. The earliest S waves come from earthquakes in western Tibet, the Karakorum, and the western Himalaya, and the latest come from earthquakes in north-central Tibet. Although S-waves from earthquakes in the Himalaya tend to be early, the east-west variation in residuals across Tibet is at least as large as the north-south difference between the Himalaya and northern Tibet. If the variations in residuals are a reflection of temperature variations in the upper mantle associated with convection, then upwelling beneath north-central Tibet seems to be flanked by downwelling in western, eastern, and probably southern Tibet. This convective flow might reflect the detachment and removal of thickened mantle lithosphere beneath Tibet.  相似文献   

19.
Wide-angle refraction and multichannel reflection seismic data show that oceanic crust along the Galápagos Spreading Center (GSC) between 97°W and 91°25′W thickens by 2.3 km as the Galápagos plume is approached from the west. This crustal thickening can account for ∼52% of the 700 m amplitude of the Galápagos swell. After correcting for changes in crustal thickness, the residual mantle Bouguer gravity anomaly associated with the Galápagos swell shows a minimum of −25 mGal near 92°15′W, the area where the GSC is intersected by the Wolf-Darwin volcanic lineament (WDL). The remaining depth and gravity anomalies indicate an eastward reduction of mantle density, estimated to be most prominent above a compensation depth of 50-100 km. Melting calculations assuming adiabatic, passive mantle upwelling predict the observed crustal thickening to arise from a small increase in mantle potential temperature of ∼30°C. The associated thermal expansion and increase in melt depletion reduce mantle densities, but to a degree that is insufficient to explain the geophysical observations. The largest density anomalies appear at the intersection of the GSC and the WDL. Our results therefore require the existence of compositionally buoyant mantle beneath the GSC near the Galápagos plume. Possible origins of this excess buoyancy include melt retained in the mantle as well as mantle depleted by melting in the upwelling plume beneath the Galápagos Islands that is later transported to the GSC. Our estimate for the buoyancy flux of the Galápagos plume (700 kg s−1) is lower than previous estimates, while the total crustal production rate of the Galápagos plume (5.5 m3s−1) is comparable to that of the Icelandic and Hawaiian plumes.  相似文献   

20.
We selected relative travel-time residuals from teleseismic waveform data using the waveform correction method and imaged the P wave velocity structure beneath Northeast China.In combination with other geophysical data,we discussed the relation between the shallow and deep structures of the area.The results show that there is a primary high-velocity zone with some high- and low-velocity distribution characters beneath the Songliao basin.The low-velocity anomalies may extend down to the upper mantle,and may be the result of material upwelling.The low-velocity anomaly beneath the southern part of the Songliao basin is connected to those beneath the Changbaishan and A'ershan volcanic areas.It may be an upwelling channel from the mantle beneath the Songliao basin and adjacent area.This finding indicates the Songliao basin was a result of asthenospheric upwelling caused by subduction of the Pacific plate under the Eurasian plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号