首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We present new zircon U–Pb–Hf and whole-rock geochemical data for volcanic rocks along the eastern margin of the Xing'an Massif of NE China in order to further our understanding of the history of subduction towards the SE and the spatial extent of the Mongol–Okhotsk tectonic regime. Zircon U–Pb dating indicates that the Triassic volcanism in the Xing'an Massif occurred in two stages during the Middle (ca. 242 Ma) and Late (ca. 223–228 Ma) Triassic. Middle Triassic basaltic andesites in the Heihe area have an affinity to arc-type volcanic rocks. The zircon εHf(t) values (+ 8.5 to + 12.7) suggest that the primary magma was generated by the partial melting of a relatively depleted mantle wedge that had been metasomatized by subduction-related fluids. The Late Triassic andesites in the Handaqi area exhibit geochemical affinities to high-Mg adakitic andesites. Their zircon εHf(t) values (+ 11.5 to + 14.5) and TDM2 ages (313–484 Ma) indicate that their primary magma was derived from the partial melting of a young subducted oceanic crust, followed by interaction with melts derived from mantle peridotite. The Late Triassic basaltic andesites, andesites, and dacites in the Zhalantun–Moguqi area have features similar to those of igneous rocks formed in subduction zones. Their zircon εHf(t) values (+ 8.4 to + 15.4) and TDM1 ages (260–542 Ma) indicate that their primary magma was derived from the partial melting of a depleted mantle wedge that had been metasomatized by subduction-related fluids. These data suggest that the Triassic volcanic rocks of the Xing'an Massif formed in an active continental margin setting associated with the southward subduction of the Mongol–Okhotsk oceanic plate towards the SE. We conclude that the Mongol–Okhotsk tectonic regime extended at least as far as the eastern margin of the Xing'an Massif, and that the tectonism spanned the period from the late Permian to early Early-Cretaceous.  相似文献   

2.
The Jiadanggen porphyry Cu–(Mo) deposit is newly discovered and located in the Eastern Kunlun metallogenic belt of Qinghai Province, China. Here, we present a detailed study of the petrogenesis, magma source, and tectonic setting of the mineralization causative granodiorite porphyry. The new data indicate that the granodiorite porphyry is characterized by high SiO2 (68.21–70.41 wt.%) and Al2O3, relatively high K2O, low Na2O, and low MgO and CaO concentrations, and is high-K calc-alkaline and peraluminous. The granodiorite porphyry has low Mg# (38–46) values that are indicative of no interaction between the magmas and the mantle. The samples that we have examined have low Nb/Ta (9.17–10.3) and Rb/Sr (0.28–0.39) ratios, which are indicative of crustal-derived magmas. Source region discrimination diagrams indicate that the magmas that formed the granodiorite porphyry were derived from melting of a mixed amphibolite source in the lower crust. The samples have ISr values of 0.70954–0.70979, εNd(t) values of − 8.3 to − 7.9, and t2DM ages ranging from 1644 to 1677 Ma. These indicate that the magmas that formed this intrusion were generated by melting of Mesoproterozoic lower crustal material. Higher K(Rb) contents of the samples indicate that the magma source is high potassium basaltic material in the lower crust, which could be derived from an enriched mantle source. LA-ICP-MS zircon U–Pb dating of the granodiorite porphyry yields a late Indosinian age (concordia age of 227 ± 1 Ma; MSWD = 0.31), which is close to the molybdenite Re–Os isochron age (227.2 ± 1.9 Ma), indicating further the close relationship between the granodiorite porphyry and the Cu–(Mo) mineralization. These samples are LREE and LILE (e.g., Rb, K, Ba, and Sr) enriched, and HFSE (e.g., Nb, Ta, P, and Ti) depleted, especially in P and Ti, similar to the characteristics of volcanic arc magmas. This intrusion most likely formed during the later stage of Indosinian deep subduction of oceanic slab. This was associated with underplating of mantle-derived magmas, which provided heat for crustal melting. Similar to the Jiadanggen granodiorite porphyry, Indosinian hypabyssal intermediate-felsic intrusive rocks, formed under subduction tectonism or a transitional regime from subduction to syn-collision, make up the most important targets for porphyry Cu(Mo) deposits in the Eastern Kunlun metallogenic belt.  相似文献   

3.
The Xinan Cu–Mo deposit, newly-discovered in the Zijinshan Au–Cu–Mo Orefield (the largest porphyry–epithermal system in SE China), is featured by the presence of abundant multi-phase granitoids, which reflects the complex Mesozoic tectono-magmatic evolution in the region.New and published LA-ICP-MS zircon U–Pb age data reveal that the Mesozoic Zijinshan magmatism occurred in two major phases: (1) Middle to Late Jurassic (ca. 169–150 Ma), forming the Zijinshan complex granite and the Xinan monzogranite; (2) late Early Cretaceous to earliest Late Cretaceous (ca. 112–98 Ma), forming the Shimaoshan volcanic rocks, Sifang granodiorite, and the Xinan (fine-grained) granodiorite porphyry, porphyritic granodiorite and late aplite dykes. Additionally, a possible earliest Cretaceous magmatism (ca. 141 Ma) may have occurred based on inherited zircon evidence. Major and trace element geochemistry indicates that all the Zijinshan igneous rocks show subduction-related geochemical affinities. Zircon Ce4 +/Ce3 + values of the late Early Cretaceous to earliest Late Cretaceous granitoids (Ce4 +/Ce3 + = 190–1706) are distinctly higher than the Middle to Late Jurassic ones (Ce4 +/Ce3 + = 27–457), suggesting that the former were derived from more oxidized parental magma. The Middle to Late Jurassic Zijinshan complex granite and monzogranite have εHf (t) values of − 8.02 to − 10.00, with the two-stage Hf model ages (TDM2) of 1.72 to 1.84 Ga (similar to the Paleoproterozoic metamorphosed Cathaysia Block basement), suggesting that they were derived from partial melting of the basement. The late Early Cretaceous to earliest Late Cretaceous Sifang granodiorite and Xinan (fine-grained) granodiorite porphyry, porphyritic granodiorite and aplite dykes contain higher and wider range of εHf (t) values (0.66 to − 6.05), with TDM2 of 1.12 to 1.56 Ga, indicating that they were also partial melting product of the Cathaysia basement but with more mantle and/or juvenile mafic lower crustal input. We propose that the Zijinshan Orefield was in a compressive, Pacific subduction-related tectonic setting during the Middle to Late Jurassic. The regional tectonic regime may have changed to extensional in the late Early Cretaceous to earliest Late Cretaceous, during which the Pacific plate subduction direction change and the accompanying subduction roll-back and slab window-opening occurred. The tectonic regime transition, high oxygen fugacity and mantle/mafic lower crustal materials involvement in the late Early Cretaceous to earliest Late Cretaceous may have generated the Zijinshan porphyry-related Au–Cu–Mo mineralization.  相似文献   

4.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

5.
《Gondwana Research》2014,25(2):561-584
The aim of this paper is to review the main features of the Meso-Neoarchaean Belomorian eclogite province (BEP) in the northeastern Fennoscandian Shield, including regional and local geology, geochemistry, petrology and geochronology and to compare the Belomorian eclogites with Precambrian eclogites elsewhere. Two eclogite associations have been recognized within Belomorian TTG gneisses: (1) the subduction-type Salma association and (2) Gridino eclogitized mafic dykes. Protoliths of the Salma eclogites represent a sequence comprising gabbro, Fe–Ti gabbro and troctolites, formed at ~ 2.9 Ga in a slow-spreading ridge setting (like the Southwest Indian Ridge). The main subduction and eclogite-facies events occurred between ~ 2.87 and ~ 2.82 Ga. Injection of mafic magma into an active continental margin setting, recorded by the Gridino dyke swarm, is attributed to subduction of a mid-ocean ridge, commencing at 2.87 Ga. Crustal delamination of the active margin and subsequent involvement of the lower crust in subduction between 2.87 and 2.82 Ga ago caused high-pressure metamorphism of the Gridino dykes, culminating in eclogite-facies conditions between 2.82 and 2.78 Ga and accompanying amalgamation of the Karelia, Kola and Khetolamba blocks and formation of the Mesoarchaean Belomorian accretionary–collisional orogen. The clockwise PT paths of the Salma and Gridino associations cross the granulite-facies PT field. Detailed metamorphic studies indicate a complicated post-eclogite history with thermal events and fluid infiltration, related to plume activity at 2.72–2.70, ~ 2.4 and ~ 1.9 Ga. The eclogite assemblages were exhumed to mid-to-lower crustal depths at ~ 1.7 Ga, while erosion or younger tectonic events were responsible for final exhumation to the surface. Comparison of PTt paths and data for peak metamorphic parameters demonstrates the general similarity of the Archaean and Palaeoproterozoic eclogites worldwide and their association with anomalously “hot” environments. The occurrence of high-T conditions during eclogite-facies metamorphism can be attributed to either subduction of a mid-ocean ridge (Archaean, BEP) or to interaction with mantle plumes (Proterozoic).  相似文献   

6.
《Gondwana Research》2016,29(4):1391-1414
Experiments on the origin of the Udachnaya-East kimberlite (UEK) have been performed using a Kawai-type multianvil apparatus at 3–6.5 GPa and 900–1500 °C. The studied composition represents exceptionally fresh Group-I kimberlite containing (wt.%): SiO2 = 25.9, TiO2 = 1.8, Al2O3 = 2.8, FeO = 9.0, MgO = 30.1, CaO = 12.7, Na2O = 3.4, K2O = 1.3, P2O5 = 1.0, Cl = 0.9, CO2 = 9.9, and H2O = 0.5. The super-solidus assemblage consists of melt, olivine (Ol), Ca-rich (26.0–30.2 wt.% CaO) garnet (Gt), Al-spinel (Sp), perovskite (Pv), a CaCO3 phase (calcite or aragonite), and apatite. The low pressure assemblage (3–4 GPa) also includes clinopyroxene. The apparent solidus was established between 900 and 1000 °C at 6.5 GPa. At 6.5 GPa and 900 °C Na–Ca carbonate with molar ratio of (Na + K)/Ca  0.44 was observed. The UEK did not achieve complete melting even at 1500 °C and 6.5 GPa, due to excess xenogenic Ol in the starting material. In the studied PT range, the melt has a Ca-carbonatite composition (Ca# = molar Ca/(Ca + Mg) ratio = 0.62–0.84) with high alkali and Cl contents (7.3–11.4 wt.% Na2O, 2.8–6.7 wt.% K2O, 1.6–3.4 wt.% Cl). The K, Na and Cl contents and Ca# decrease with temperature. It is argued that the primary kimberlite melt at depths > 200 km was an essentially carbonatitic (< 5 wt.% SiO2), but evolved toward a carbonate–silicate composition (up to 15–20 wt.% SiO2) during ascent. The absence of orthopyroxene among the run products indicates that xenogenic orthopyroxene was preferentially dissolved into the kimberlite melt. The obtained subliquidus phase assemblage (Ol + Sp + Pv + Ca-rich Gt) at PT conditions of the UEK source region, i.e. where melt was in the last equilibrium with source rock before magma ascent, differs from the Opx-bearing peridotitic mineral assemblage of the UEK source region. This difference can be ascribed to the loss of substantial amounts of CO2 from the kimberlite magma at shallow depths, as indicated by both petrological and experimental data. Our study implies that alkali-carbonatite melt would be a liquid phase within mantle plumes generated at the core–mantle boundary or shallower levels of the mantle, enhancing the ascent velocity of the plumes. We conclude that the long-term activity of a rising hot mantle plume and associated carbonatite melt (i.e. kimberlite melt) causes thermo-mechanical erosion of the subcontinental lithosphere mantle (SCLM) roots and creates hot and deformed metasomatic regions in the lower parts of the SCLM, which corresponds to depths constrained by PT estimates of sheared Gt-peridotite xenoliths. The sheared Gt-peridotites undoubtedly represent samples of these regions.  相似文献   

7.
The Qinling Orogenic Belt, linking the Kunlun and Qilian Mountains to the west and continuing farther east to the Dabie Mountain, was assembled by the convergence and collision between the Greater South China and the North China blocks. The precise timing of the subduction and collision processes between these continental blocks and tectonic regime switchover is very equivocal. Zircon in-situ LA-ICP-MS U–Pb dating in this contribution indicates that the biotite monzogranite and monzogranite phases of the Dangchuan complex were crystallized at ca. 239.8 ± 2.3 Ma and 227.8 ± 1.2 Ma, respectively. The ca. 240 Ma biotite monzogranite displays εHf(t) values ranging from −2.4 to +2.9, and corresponding TDM2 of 1.72–1.94 Ga and TDM1 of 0.77–0.88 Ga. The ca. 228 Ma monzogranite exhibits εHf(t) values ranging from −4.3 to +1.9, and corresponding TDM2 of 1.73–2.08 Ga and TDM1 of 0.81–0.88 Ga. Lutetium–Hf isotopic composition indicates that the biotite monzogranite and monzogranite probably have the same parental magmas which were originated from hybrid sources of both reworking of Paleoproterozoic ancient crust and partial melting of the Neoproterozoic juvenile crust. The more negative εHf(t) values of the monzogranite suggest more contribution of the ancient crust during the source contamination, or more possible crustal assimilation during their crystallization at ca. 228 Ma than precursor biotite monzogranite. Integrated with previous research and our detailed petrography, we propose that the Dangchuan complex underwent an episodic growth documenting the tectonic regime switchover from early Paleozoic to Triassic. The ca. 439 Ma inherited zircon recorded the persistent subduction of the oceanic crust, the ca. 240 Ma biotite monzogranite emplaced during the northward subduction of the Mianlue oceanic crust beneath the South Qinling block, and the ca. 228 Ma monzogranite emplaced during the syn-collisional process in a compressional setting.  相似文献   

8.
The latest hydraulic fracturing and stress relief measurement data in the Chinese mainland were collected. The total of 3856 data entries are measured at 1474 locations. The measured area covers 75–130°E and 18–47°N, and the depth range varies from surface to 4000 meters depth, which generally includes each active tectonic block of China and each segment of North–South seismic belt. We investigated the tectonic stress field by removing the effect of gravity. For this, we assume lateral constraints and Heim’s rule. The gravity contribution is removed by using the assumption of lateral constraint and Heim’s rule. Our results show: (1) the maximum and the minimum horizontal principal stress σH, σh and the vertical stress σV in the shallow crust of China all increase linearly with depth: σH = 0.0229D + 4.738, σh = 0.0171D + 1.829, σV = 0.0272D. Maximum and minimum horizontal tectonic stress varies as a function of depth D linearly 4.738 < σT < 0.0139D + 4.738 and 1.829 < σt < 0.0162D + 1.829. The horizontal tectonic differential stress is σT  σt = 0.0058D + 2.912. (2) The intermediate value of σT1 (regression value of tectonic stress inferred from the assumption of lateral constraint at 2000 m depth) changes in different areas, the maximum value of which is 45.6 MPa, while the minimum value of which is 26.8 MPa. Horizontal tectonic differential stress σT  σt increases linearly with depth and the maximum and minimum of σT  σt is 25.3 MPa and 13.0 MPa, respectively. In general, the stress magnitude is much higher in western than in eastern China. This indicates that the strong Indo-Eurasian collision dominates the present tectonic stress field in Chinese mainland. (3) Compared with other study regions, the northward crustal compression to the Qinghai-Tibet block is relatively lower in magnitude in the shallow subsurface and higher at deeper depth. (4) The orientations of σT in China mainland generally form a radial scattering pattern centered in Tibetan Plateau. From western to eastern China, they rotate gradually clockwise from NS to NNE, NE, NEE, and SE, which is consistent with the result of focal mechanism solutions.  相似文献   

9.
Mafic and semi-pelitic granulites from the Qinling-Tongbai orogen in central China preserve petrological evidence and mineral paragenesis suggesting four distinct stages of metamorphic evolution. The prograde history (M1) is recorded by the occurrence of cordierite, orthopyroxene and biotite inclusions in garnet porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by cooling with minor decompression (M3), which formed symplectites and coronitic textures. The greenschist facies retrograde metamorphic assemblage (M4) is represented by hydrous minerals replacing minerals of the M2 and M3 assemblages. We present LA-ICPMS zircon U-Pb data which show ages of 432 ± 4 Ma for the peak metamorphism and 403 to 426 Ma for the retrograde stage. Microstructural analysis, P–T pseudosections, and mineral isopleths in conjunction with the zircon U-Pb ages define an anticlockwise PTt path. The P–T estimates for peak metamorphic conditions of 880–920 °C and 8.0–10 kbar suggest that these rocks witnessed extreme crustal metamorphism under ultrahigh-temperature conditions. The anticlockwise trajectory reported in this study is comparable with similar PT paths recorded from subduction–collision settings, and correlate the Tongbai granulites to hot orogens developed within a Paleozoic collisional suture. We propose a ridge subduction and slab window setting to explain the formation of the Tongbai orogen, in a convergent plate setting associated with the northward subduction of the Paleo-Tethyan Qinling Ocean.  相似文献   

10.
《Chemical Geology》2007,236(1-2):42-64
Carboniferous volcanic rocks in the Alataw area, Northern Tianshan Range (Xinjiang), consist of early Carboniferous (ca. 320 Ma) adakites and Nb-enriched arc basalts and basaltic andesites (NEBs), and late Carboniferous (ca. 306–310 Ma) mainly high-K calc-alkaline andesites, dacites and rhyolites. The adakites are calc-alkaline, and characterized by high Na2O/K2O (1.52–3.32) ratios, negligible to positive Eu anomalies, strong depletion of heavy rare earth elements (e.g., Yb = 0.74–1.47 ppm) and Y (6.7–14.9 ppm), positive Sr and Ba but negative Nb and Ti anomalies, and relatively constant εNd(T) values (+ 3.4–+ 6.6) and (87Sr/86Sr)i ratios (0.7035–0.7042). Some andesitic and dacitic adakite samples exhibit high MgO contents similar to magnesian andesites. The NEBs are sodium-rich (Na2O/K2O = 2.03–8.06), and differ from the vast majority of arc basalts in their higher Nb, Zr, TiO2 and P2O5 contents and Nb/Th, Nb/La and Nb/U ratios, and minor negative to positive anomalies in Ba, Nb, Sr, Zr and Ti. They have the highest εNd(T) values (+ 6.4–+ 11.6) but varying (87Sr/86Sr)i ratios (0.7007–0.7063). The high-K calc-alkaline suite is similar to typical ‘normal’ arc volcanic rocks in terms of moderately fractionated rare earth abundance and distinctly negative Eu, Nb, Sr and Ti anomalies. They have εNd(T) values (+ 1.2–+ 6.4) and (87Sr/86Sr)i ratios (0.7018–0.7059). Geochemically, they are similar to coeval I-type granitoids in the Alataw area. Given the presence of early Carboniferous ophiolites in the Northern Tianshan Range, and the isotopically inappropriate compositions of Proterozoic metamorphic basement in the Alataw area, we argue that the Alataw adakites were most probably related to the melting of young subducted crust of the Northern Tianshan Ocean. The NEBs likely originated from mantle wedge peridotites metasomatized by adakites and minor slab-derived fluids. The later high-K calc alkaline suite was generated by AFC processes that acted on melts derived from a mantle wedge metasomatized by hydrous fluids. The larger range of isotopic compositions exhibited by both the NEB and high-K suite, relative to the adakites, suggests that the mantle wedge was heterogeneous prior to slab- or fluid-mediated metasomatism.Continental crustal growth of the Central Asian orogenic belt was dominated by contributions of the juvenile materials from the depleted mantle prior to 270 Ma and possibly afterwards. The results of this study suggest that other Carboniferous Nb-enriched basalts in the Tianshan Range were generated by subduction processes rather than by intraplate tectonics as previously proposed.  相似文献   

11.
The Dabie ultrahigh-pressure (UHP) metamorphic belt, central China, contains two contrasting types of ultramafic–mafic complex. The Bixiling peridotite in the southern Dabie terrane contains abundant garnet (21–32 vol.%) and thus has high CaO +Al2O3 (9.94–15.3 wt.%). The peridotite also has high REE contents with flat REE patterns, high contents of S and other incompatible trace elements, together with low-Mg# olivine and pyroxene and low Ni and PGE contents. Zircons from this peridotite mostly have low Th/U ratios, interpreted to reflect a metamorphic origin, and give dominantly Triassic ages (ca. 210 Ma). Other zircons with high Th/U ratios give upper intercept ages of 745 Ma. Most zircons have positive ?Hf (+- 3.6 ~ +- 8.1) values with depleted-mantle model ages (TDM) of 0.6–1.0 Ga (mean 0.8 Ga) and crustal model ages (Tcrust) of 0.8–1.4 Ga (mean 1.1 Ga). We interpret that the Bixiling complex was formed as cumulates in a Neoproterozoic asthenosphere-derived magma chamber in the continental crust, and was later carried to garnet-stable depths (ca. ~ 4.4 GPa) during the subduction of the Yangtze Craton in the Triassic. In contrast, the Raobazhai peridotite in the northern Dabie terrane was metamorphosed at lower P/T conditions (i.e. 15 Kb and 1000 °C). All zircon grains from the peridotite yield Triassic ages (ca. 212 Ma) and have negative ?Hf values (? 16.6 ~ ? 3.2), Mesoproterozoic model ages (TDM = 1.0–1.5 Ga) and Paleoproterozoic crustal model ages (Tcrust = 1.5–2.3 Ga). The peridotite is enriched in LREE ((La/Yb)n ≈ 3.5), has high-Mg# olivine and pyroxene, high Ni and PGEs but low Pd/Ir (mean 3.0). It represents a highly refractory residue of partial melting (up to 18%) of primitive mantle, and is similar to the cratonic mantle xenoliths in Phanerozoic igneous rocks from the eastern North China Craton (e.g. Mengyin and Hebi areas). Negative Ce, Eu and HFSE anomalies in the peridotites suggest that their protolith was derived from the shallow part of the mantle wedge (e.g. plagioclase-stable field) of the North China Craton, and was pulled to a deeper level (e.g. spinel-stable field) during the subduction of the Yangtze Craton. The mantle wedge, like peridotitic xenoliths in the Jurassic Xinyang diatremes at the southern edge of the North China Craton, was metasomatised by fluids/melts released from the subducted continental crust. The fragments of this modified mantle wedge were incorporated into the Yangtze crust during its subduction.  相似文献   

12.
Alan R. Hastie  Andrew C. Kerr 《Earth》2010,98(3-4):283-293
The Caribbean oceanic plateau formed in the Pacific realm when it erupted onto the Farallon plate from the Galapagos hotspot at ~ 90 Ma. The plateau was subsequently transported to the northeast and collided with the Great Arc of the Caribbean thus initiating subduction polarity reversal and the consequent tectonic emplacement of the Caribbean plate between the North and South American continents. The plateau represents a large outpouring of mafic volcanism, which has been interpreted as having formed by melting of a hot mantle plume. Conversely, some have suggested that a slab window could be involved in forming the plateau. However, the source regions of oceanic plateaus are distinct from N-MORB (the likely source composition for slab window mafic rocks). Furthermore, melt modelling using primitive (high MgO) Caribbean oceanic plateau lavas from Curaçao, shows that the primary magmas of the plateau contained ~ 20 wt.% MgO and were derived from 30 to 32% partial melting of a fertile peridotite source region which had a potential temperature (Tp) of 1564–1614 °C. Thus, the Caribbean oceanic plateau lavas are derived from decompression melting of a hot upwelling mantle plume with excess heat relative to ambient upper mantle. Extensional decompression partial melting of sub-slab asthenosphere in a slab window with an ambient mantle Tp cannot produce enough melt to form a plateau. The formation of the Caribbean oceanic plateau by melting of ambient upper mantle in a slab window setting, is therefore, highly improbable.  相似文献   

13.
《Gondwana Research》2014,25(2):464-493
We discuss possible scenarios of continental collision, and their relation to mechanisms of exhumation of HP and UHP rocks, inferred from thermo-mechanical numerical models accounting for thermo-rheological complexity of the continental lithosphere. Due to this complexity, mechanisms of continental convergence are versatile and different, in many aspects from those that control oceanic subduction. Elucidating these mechanisms from conventional observations is difficult, and requires additional constraints such as those derived from petrological data. Indeed, exhumation of HP/UHP rocks is an integral part of convergent processes, and burial/exhumation dynamics inferred from metamorphic PTt paths provides strong constraints on the collision scenarios. Metamorphic rocks also play an active role due to their contrasting physical properties (rheology, density, fluid transport capacity). Numerical thermo-mechanical experiments suggest that HP/UHP exhumation can only be produced in subduction contexts, as well as that long-lasting (> 10 Myr) continental subduction can only occur in case of cold strong lithospheres (TMoho < 550 °C, the equivalent elastic thickness Te > 50 km) and of relatively high convergence rates (> 3–5 cm yr 1 ). In this case, high density UHP material in the crustal part of subduction interface provides additional pull on the slab and is not always exhumed to the surface. In case of slower convergence and/or weaker lithosphere (Te < 40 km), continental subduction is a transient process that takes a limited time span in the evolution of collision zone. Under these conditions, hot mechanically weak UHP rocks enhance decoupling between the upper and lower plate while their exhumation may be rapid (faster than convergence rate) and abundant. Therefore, the UHP exhumation paths can be regarded as sensitive indicators of subduction. Rheological changes and fluid exchanges associated with low-to-middle pressure phase transitions along the subduction interface, such as serpentinization during the oceanic phase and schisting, play a major role producing necessarily mechanical softening of the subduction interface and of the hydrated mantle wedge. The oceanic UHP rocks are exhumed thanks to mixing with low-density continental crustal units during transition from oceanic to continental subduction. At the continental phase, the UHP exhumation occurs as a result of a multi-stage process: at the deep stage (< 40 km depth) the exhumation is rapid and is driven by buoyancy of partly metamorphosed (or partly molten) UHP material often mixed with non-metamorphosed crustal volumes. At final stages, exhumation takes common slow path through the accretion prism mechanism and the erosional denudation. The experiments suggest that formation of UHP rocks requires that continental subduction starts at higher oceanic subduction rate. It then may progressively slow down until the lockup of the subduction interface and/or slab-break-off. A rate of ~ 1–2 cm yr 1 is generally sufficient to drive continental subduction during the first several Myr of convergence, but pertinent subduction requires faster convergence rates (> 3–5 cm yr 1). We suggest that most continental orogenic belts could have started their formation from continental subduction but this process has been generally limited in time.  相似文献   

14.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

15.
A prograde pressure–temperature (P–T) path is estimated for pelitic schists from the latest Precambrian Kokchetav ultrahigh-pressure massif, Kazakhstan, using compositional zoning and mineral inclusions in coarse-grained and inclusion-rich garnets. Ti-bearing inclusions are abundant in garnet and display a zonal distribution. Ilmenite occurs in the inner-core, where most of it makes a composite inclusion with rutile, whereas monomineralic rutile occurs in the outer-core to mantle domains. In the rim region both ilmenite and rutile are present, although in small amounts. Application of the ilmenite-garnet thermometer yields a systematic temperature increase towards rim from 500 to 750 °C. The pressure-sensitive reaction: 3 Fe-Ilm (in Ilm) + Ky + 2 Qtz = 3 Rt + Alm (in Grt) yielded pressures of 1.2–1.3 GPa for the outer-core inclusions.A petrogenetic grid in the K2O–CaO–FeO–MgO–Al2O3–SiO2–H2O model system was used to estimate the equilibrium compositions of the garnet. The change of the grossular component along the model P–T path expected from the forward modelling is close to the observed compositional profile of the outer-core to rim domains. No constraint is available from thermobarometry in the inner-core; however, the forward modelling of garnet zoning provides information on the early stage of the P–T path during the garnet growth.The estimated P–T path is counter-clockwise in the prograde stage with a steep bend at around 700 °C and 1.2–1.5 GPa. This is similar to the metamorphic P–T gradient of the Kokchetav massif. This result contrasts markedly with the traditional clockwise P–T path in many collisional metamorphic terranes, and is regarded to represent a subduction geotherm at the Precambrian–Cambrian boundary. The P–T path proposed in this study also supports the models for the recovery of the “snowball Earth” from late-Proterozoic glaciation through effect of water in the solid Earth mantle.  相似文献   

16.
Archean tectonic history of the North China Craton (NCC) involved complex processes of amalgamation of microcontinents along multiple subduction zones prior to the consolidation of the major crustal blocks and their assembly into unified cratonic architecture. Here we report a suite of granitoids, diabase, metabasalts, volcanic tuff, banded iron formations and quartzite from the Yishui Complex along the southern margin of the Jiaoliao microblock within the Eastern Block of the NCC. The geochemical features of the magmatic suite are consistent with calc-alkaline magmatism in a convergent margin setting. In tectonic discrimination diagrams, the mafic suite shows variable IAB, MORB and OIB affinities typical of rocks formed in an arc-related subduction environment. Zircon grains in most of the rocks from Yishui Complex display core–rim texture with the cores showing magmatic crystallization and the narrow structureless rims corresponding to metamorphic overgrowth. The 207Pb/206Pb ages of magmatic zircons show 2504 ± 19 Ma for the volcanic tuff, 2581 ± 21 Ma for the granitoid, 2501 ± 19 Ma for the metavolcanics, 2537 ± 38 Ma for the pyroxenite, and 2506 ± 13 Ma for the diabase. Metamorphism is constrained from the 2451 ± 18 Ma and 2466 ± 23 Ma age groups in the metavolcanics and (meta-) pyroxenites. Zircons from BIF show multiple population with the oldest showing a spot age of 2503 Ma, followed by a number of distinct groups of Paleoproterozoic zircons corresponding to later thermal events. The oldest population of magmatic zircons from the quartzite shows 207Pb/206Pb mean age of 2495 ± 24 Ma. The dominantly positive εHf(t) values of the magmatic zircons from the Yishui suite are broadly consistent with a depleted mantle source with only minor input of crustal components. Their Hf crustal residence ages (TDMC) range from 2586 to 3181 Ma and Hf depleted mantle model ages (TDM) are in the range of 2548–2927 Ma. The data indicate that magma production involved Meso- to Neoarchean juvenile sources within a continental arc setting, suggesting the Jiaoliao microblock as one of the ancient continental nuclei in the NCC. We trace the continuity of a Neoarchean subduction system along the western and southern margins of the Jiaoliao microblock with convergence of the Qianhuai and Xuhuai microblocks towards the Jiaoliao microblock with subduction–accretion–collision during the Archean–Proterozoic transition.  相似文献   

17.
The relationship among subducted oxidized oceanic crust and oxidation state of the subarc mantle, and arc magmas is one of the important aspects to evaluate convergent margin tectonics. However details of the oxidized mass transferred from buried oceanic crust to the overlying subarc mantle wedge remain obscure. Here we investigate the Songduo eclogites from south Tibet formed by the subduction of the paleo-Tethyan oceanic crust, and identify an abrupt decrease in pyrope and increase in almandine contents from the mantle to rim of garnet grains. This is coupled with a decrease in the Fe3 + content of epidote and Fe3 +/(Fe2 ++ Fe3 +) ratios from garnet core to rim domains, as well as speciation of calcite, a new mineral phase, in the rock matrix. Minor sulfates occur only as inclusions in garnet core domains, whereas sulfides are confined to the matrix as an accessory mineral phase. Aegirine augite occurs as relics or inclusions in garnet and omphacite. These features clearly suggest that oxidized components, Fe3 + and S6 +, were reduced as Fe2 + and S2 , respectively, at the subduction zone. Thermodynamic modeling in the P–T-log10fO2 space using updated Perplex_X programs further revealed that the Songduo eclogites experienced oxygen fugacity variation of up to 8 log10 units, with decreasing pressure. Petrological observations further suggest that the strong redox processes took place, after breaking of garnet, during the initial exhumation of the eclogites. CO2 and minor sulfur are subsequently transferred from the cold oceanic subduction zone to the overlying mantle wedge, partially released by arc volcanoes to atmosphere. Our study presents a case of C and S recycling between the Earth's exterior and interior.  相似文献   

18.
Devonian magmatism was very intensive in the tectonic evolutionary history of the Chinese Altai, a key part of the Central Asian Orogenic Belt (CAOB). The Devonian Keketuohai mafic–ultramafic complex in the Chinese Altai is a zoned intrusion consisting of dunite, olivine gabbro, hornblende gabbro and pyroxene diorite. The pyroxene diorite gives a zircon U–Pb age of 409 ± 5 Ma. Variations in mineral assemblage and chemical composition suggest that the petrogenesis of the Keketuohai Complex was chiefly governed by fractional crystallization from a common magma chamber. Low SiO2, K2O and Na2O contents, negative covariations between P2O5, TiO2 and Mg# value suggest insignificant crustal assimilation/contamination. Thus the positive εNd(t) values (0 to + 2.7) and slight enrichments in light rare earth elements (e.g., La/YbN = 0.98–3.64) suggest that their parental magma was possibly produced by partial melting of the lithospheric mantle. Model calculation suggests that their parental magma was high-Mg (Mg# = 66) tholeiitic basaltic melt. The Keketuohai intrusion was coeval with diverse magmatism, high temperature metamorphism and hydrothermal mineralization, which support a previously proposed model that ridge subduction most likely played an important role in the tectonic evolution of the Chinese Altai.  相似文献   

19.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

20.
《Chemical Geology》2006,225(3-4):222-229
First principles phase diagram calculations were performed for the system NaCl–KCl. Plane-wave pseudopotential calculations of formation energies were used as a basis for fitting cluster expansion Hamiltonians, both with and without an approximation for the excess vibrational entropy (SVIB). Including SVIB dramatically improves the agreement between calculated and experimental phase diagrams: experimentally, the consolute point is {XC = 0.348, TC = 765 K}Exp; without SVIB, it is {XC = 0.46, TC  1630 K}Calc; with SVIB, it is {XC = 0.43, TC  930 K}Calc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号