首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The areal geological-geophysical study of Quaternary sediments was carried out in two areas of the eastern Barents Sea (Central Deep and Murmansk Bank). This communication is mainly dedicated to the results of seismoacoustic investigations. It has been established that the Quaternary sequence unconformably overlying the pre-Cenozoic strata in the studied areas is as follows (from bottom to top): marine-glaciomarine Late Glacial-Holocene sediments, massive diamictons (the main part of the section), and glaciotectonites formed after the underlying Mesozoic unconsolidated sediments. The Pleistocene diamictons, origin of which is still debatable, are the main studied object. They constitute two seismostratigraphic complexes (SSC). According to the accepted stratigraphic subdivision, they are represented by the Upper Weichselian SSC III (Maximum Last Glaciation) and Lower Weichselian SSC V (Middle Weichselian SSC IV is eroded here). Complexes SSC V and SSC III composed of till overlie the older sediments with the exaration unconformity. Complex SSC V is preserved locally, while SSC III is characterized by the regional distribution. Complex SSC III is universally enveloped unconformably without erosional surface by an acoustically uniform thin-bedded member of Late Glacial-Holocene glaciomarine and marine sediments (SSC II+I). Unlike SSC V, SSC III demonstrates lateral heterogeneity in both studied areas consisting of two seismofacies, one of which forms very specific acoustically transparent bodies (ATBs). Sediments of SSC III avoided subsequent erosion. Therefore, their glacial nature is distinctly reflected in the complex distribution of thickness and peculiar morphology of corresponding bodies.  相似文献   

2.
A coastal cliff facing the ocean at the west coast of Spitsbergen has been studied, and seven formations of Weichselian and Holocene age have been identified. A reconstruction of the palaeoenvironment and glacial history shows that most of the sediments cover isotope stage 5. From the base of the section, the formation 1 and 2 tills show a regional glaciation that reached the continental shelf shortly after the Eemian. Formation 3 consists of glacimarine to marine sediments dated to 105,000–90,000 BP. Amino acid diagenesis indicates that they were deposited during a c . 10,000-year period of continuous isostatic depression, which indicates contemporaneous glacial loading in the Barents Sea. Foraminifera and molluscs show influx of Atlantic water masses along the west coast of Svalbard at the same time. Local glaciers advanced during the latter part of this period, probably due to the penetration of moist air masses, and deposited formation 4. A widespread weathering horizon shows that the glacial retreat was succeeded by subaerial conditions during the Middle Weichselian. Formation 5 is a till deposited during the Late Weichselian glacial maximum in this area. The glaciation was dominated by ice streams from a dome over southern Spitsbergen, and the last deglaciation of the outer coast is dated to 13,000 BP. A correlation of the events with other areas on Svalbard is discussed, and at least two periods of glaciation in the Barents Sea during the Weichselian are suggested.  相似文献   

3.
Ice-proximal sedimentological features from the northwestern Barents Sea suggest that this region was covered by a grounded ice sheet during the Late Weichselian. However, there is debate as to whether these sediments were deposited by the ice sheet at its maximum or a retreating ice sheet that had covered the whole Barents Sea. To examine the likelihood of total glaciation of the Late Weichselian Barents Sea, a numerical ice-sheet model was run using a range of environmental conditions. Total glaciation of the Barents Sea, originating solely from Svalbard and the northwestern Barents Sea, was not predicted even under extreme environmental conditions. Therefore, if the Barents Sea was completely covered by a grounded Late Weichselian ice sheet, then a mechanism (not accounted for within the glaciological model) by which grounded ice could have formed rapidly within the central Barents Sea, may have been active during the last glaciation. Such mechanisms include (i) grounded ice migration from nearby ice sheets in Scandinavia and the central Barents Sea, (ii) the processes of sea-ice-induced ice-shelf thickening and (iii) isostatic uplift of the central Barents Sea floor.  相似文献   

4.
A section, almost 20 km long and up to 80 m high, through alternating layers of diamict and sorted sediments is superbly exposed on the north coast of the Kanin Peninsula, northwestern Russia. The diamicts represent multiple glacial advances by the Barents Sea and the Kara Sea ice sheets during the Weichselian. The diamicts and stratigraphically older lacustrine, fluvial and shallow marine sediments have been thrust as nappes by the Barents Sea and Kara Sea ice sheets. Based on stratigraphic position, OSL dating, sea level information and pollen, it is evident that the sorted sediments were deposited in the Late Eemian-Early Weichselian. Sedimentation started in lake basins and continued in shallow marine embayments when the lakes opened to the sea. The observed transition from lacustrine to shallow marine sedimentation could represent coastal retreat during stable or rising sea level.  相似文献   

5.
New marine geological evidence provides a better understanding of ice-sheet dynamics along the western margin of the last Svalbard/Barents Sea Ice Sheet. A suite of glacial sediments in the Kongsfjordrenna cross-shelf trough can be traced southwards to the shelf west of Prins Karls Forland. A prominent moraine system on the shelf shows minimum Late Weichselian ice extent, indicating that glacial ice also covered the coastal lowlands of northwest Svalbard. Our results suggest that the cross-shelf trough was filled by a fast-flowing ice stream, with sharp boundaries to dynamically less active ice on the adjacent shelves and strandflats. The latter glacial mode favoured the preservation of older geological records adjacent to the main pathway of the Kongsfjorden glacial system. We suggest that the same model may apply to the Late Weichselian glacier drainage along other fjords of northwest Svalbard, as well as the western margin of the Barents Ice Sheet. Such differences in glacier regime may explain the apparent contradictions between the marine and land geological record, and may also serve as a model for glaciation dynamics in other fjord regions.  相似文献   

6.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   

7.
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17 000 calendar years ago. During the Late Weichselian (25 000-10 000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.  相似文献   

8.
The Taymyr Peninsula constitutes the eastern delimitation of a possible Kara Sea basin ice sheet. The existence of such an ice sheet during the last global glacial maximum (LGM), i.e. during the Late Weichselian/Upper Zyryansk, is favoured by some Russian scientists. However, a growing number of studies point towards a more minimalistic view concerning the areal extent of Late Weichselian/Upper Zyryansk Siberian glaciation. Investigations carried out by us along the central Byrranga Mountains and in the Taymyr Lake basin south thereof, reject the possibility of a Late Weichselian/Upper Zyryansk glaciation of this area. Our conclusion is based on the following: Dating of a continuous lacustrine sediment sequence at Cape Sabler on the Taymyr Lake shows that it spans at least the period 39-17 ka BP. Even younger ages have been reported, suggesting that this lacustrine environment prevailed until shortly before the Holocene. The distribution of these sediments indicates the existence of a paleo-Taymyr lake reaching c. 60 m above present sea level. A reconnaissance of the central part of the Byrranga Mountains gave no evidence of any more recent glacial coverage. The only evidence of glaciation - an indirect one - is deltaic sequences around 100-120 m a.s.l., suggesting glacio-isostatic depression and a large input of glacial meltwater from the north. However, 14C and ESR datings of these marine sediments suggest that they are of Early Weichselian/Lower Zyryansk or older age. As they are not covered by till and show no glaciotectonic disturbances, they support our opinion that there was no Late Weichselian/Lower Zyryansk glaciation in this area. We thus suggest that the Taymyr Peninsula was most probably glaciated during the early part of the last glacial cycle (when there was only small- to medium-scale glaciation in Scandinavia), but not glaciated during the later part of that cycle (which had the maximum ice-sheet coverage over north-western Europe). This fits a climatic scenario suggesting that the Taymyr area, like most of Siberia, would come into precipitation shadow during times with large-scale ice-sheet coverage of Scandinavia and the rest of north-western Europe.  相似文献   

9.
Three Pleistocene tills can be distinguished in a coastal cliff section near Heiligenhafen, northern Germany, on the basis of structural and petrographic characteristics. The Lower and Middle Tills had previously been ascribed to the Saalian, and the Upper Till to the Late Weichselian. The former two tills are folded, and unconformably overlain by the Upper Till. In this paper, structural and sedimentological observations are used to investigate whether the Lower and Middle Tills belong to one glacial advance, or two separate (Saalian) advances, as was suggested in earlier studies based on fine gravel stratigraphy.From the contact with local rocks to the top of the MT there is a steady increase in allochtonous components (Scandinavian rocks) and decrease in parautochtonous (chalk and flint) and autochtonous components (local Eocene siltstone and meltwater sediments). This is paralleled by a trend towards increasing deformation (finite strain) from the bedrock to the top of the section. The most obvious aspect of this latter trend is the massive appearance of the MT which can be interpreted as the result of homogenization by repeated folding and attenuation of sediment lenses which have been incorporated into the till. This interpretation is supported by macroscopic and microscopic observations of structures in both tills.The structural analysis of the tills is based on the marked contrast in symmetry between sections parallel and perpendicular to the shear direction. Structures on all scales in the LT as well as in the MT indicate E–W (dextral) shearing, except in the western part of the section, where this is overprinted by W–E (sinistral) shearing.The sediment inclusions in the chalk-rich LT are mainly fragments of one or more strongly extended glaciofluvial delta bodies with a depositional direction towards WSW. Locally these delta sediments rest on Eocene siltstone and contain numerous angular fragments of this local bedrock. Boudins and lenses of sorted sediments are incorporated into the till and occur as “islands of low strain” in a high strain homogeneous matrix.It is concluded that the LT and MT do not belong to two stratigraphically separate Saalian advances. The section is alternatively interpreted as one subglacial shear zone (deformation till) with upward increasing strain and allochtonous component content. It probably formed during the Younger Saalian (Warthe) westward advance from the Baltic region. Folding of the two diamicts occurred due to lateral compression near the Late Saalian ice margin. The section was finally overridden by the Late Weichselian Young Baltic advance, eroding the folded LT and MT and depositing the UT.  相似文献   

10.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

11.
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.  相似文献   

12.
Finnish Lapland is known as an area where numerous sites with sediments from Pleistocene glacial and interglacial periods occur. Recent sedimentological observations and dating call for reinterpretation of the record, which shows a complicated Mid‐Weichselian ice‐sheet evolution within the ice‐divide zone. Here, a large, previously unstudied section from a former Hannukainen iron mine was investigated sedimentologically and dated with optically stimulated luminescence (OSL). Ten sedimentary units were identified displaying a variety of depositional environments (glacial, glaciolacustrine, fluvial and aeolian). They are all – except for the lowermost, deeply weathered till – interpreted to be of Mid‐ or Late Weichselian/Holocene age. Five OSL samples from fluvial sediments give ages ranging from 55 to 35 ka, indicating two MIS 3 ice‐free intervals of unknown duration. The Mid‐Weichselian interstadial was interrupted by a re‐advance event, which occurred later than 35 ka and caused glaciotectonic deformation, folding and stacking of older sediments. This new evidence emphasizes the importance of the Kolari area when unravelling the complex Late Pleistocene glacial history of northern Finland and adjacent regions.  相似文献   

13.
Common basal moraines display diverse glaciodynamic structures inherited from the parental moraine-containing ice. Since these glacial diamictons are marked by instable structure and composition, they can resemble sediments of another origin and their identification is a difficult task. We cannot make substantiated genetic conclusions based on certain lithological properties typical of glacial diamictons. Only a set of specific features can provide sufficiently reliable determination of their glacial nature. Other methodical approaches applied in different regions, the Barents Sea included, for the identification of glacial diamictons based on the highly superficial analysis of some (usually secondary) features lead to a biased genetic interpretation of moraines.  相似文献   

14.
A fully integrated ice‐sheet and glacio‐isostatic numerical model was run in order to investigate the crustal response to ice loading during the Late Weichselian glaciation of the Barents Sea. The model was used to examine the hypothesis that relative reductions in water depth, caused by glacio‐isostatic uplift, may have aided ice growth from Scandinavia and High Arctic island archipelagos into the Barents Sea during the last glacial. Two experiments were designed in which the bedrock response to ice loading was examined: (i) complete and rapid glaciation of the Barents Sea when iceberg calving is curtailed except at the continental margin, and (ii) staged growth of ice in which ice sheets are allowed to ground at different water depths. Model results predict that glacially generated isostatic uplift, caused by an isostatic forebulge from loads on Scandinavia, Svalbard and other island archipelagos, affected the central Barents Sea during the early phase of glaciation. Isostatic uplift, combined with global sea‐level fall, is predicted to have reduced sea level in parts of the central Barents Sea by up to 200 m. This reduction would have been sufficient to raise the sea floor of the Central Bank into a subaerial position. Such sea‐floor emergence is conducive to the initiation of grounded ice growth in the central Barents Sea. The model indicates that, prior to its glaciation, the depth of the Central Deep would have been reduced from around 400 m to 200 m. Such uplift aided the migration of grounded ice from the central Barents Sea and Scandinavia into the Central Deep. We conclude that ice loading over Scandinavia and Arctic island archipelagos during the first stages of the Late Weichselian may have caused uplift within the central Barents Sea and aided the growth of ice across the entire Barents Shelf. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
On the basis of geomorphological and sedimentological data, we believe that the entire Barents Sea was covered by grounded ice during the last glacial maximum. 14C dates on shells embedded in tills suggest marine conditions in the Barents Sea as late as 22 ka BP; and models of the deglaciation history based on uplift data from the northern Norwegian coast suggest that significant parts of the Barents Sea Ice Sheet calved off as early as 15 ka BP. The growth of the ice sheet is related to glacioeustatic fall and the exposure of shallow banks in the central Barents Sea, where ice caps may develop and expand to finally coalesce with the expanding ice masses from Svalbard and Fennoscandia.The outlined model for growth and decay of the Barents Sea Ice Sheet suggests a system which developed and existed under periods of maximum climatic deterioration, and where its growth and decay were strongly related to the fall and rise of sea level.  相似文献   

16.
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6–2.4 Ma). (2) A transitional growth phase (2.4–1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic–Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.  相似文献   

17.
On the basis of field data, datings from both electron spin resonance – and optically stimulated luminescence, and micro- and macrofauna, in addition to presence of diatoms, three Late Pleistocene marine units have been identified in the coastal areas of the Kola Peninsula. The stratigraphically lowest sequence is correlated to the Ponoi Beds and the Boreal transgression, attributed to the marine isotope stages (MIS) 5e to 5d in the White Sea depression and to MIS 5e to 5c in the Barents Sea. Thermophilic fauna and diatoms indicate normal water salinity and a water temperature above zero. The second marine unit, referred as the Strel'na Beds, can be correlated with the Early Weischselian transgression, termed the Belomorian transgression. With low water salinity and a water temperature similar or colder than the present times, Belomorian transgressions are reliably detected in the White Sea and are not clearly found in the Barents Sea. The results obtained from the sediments of the Ponoi and Strel'na Beds indicate a continuously existing marine reservoir from 130 to 80–70 ka ago (entire MIS 5) in the White Sea depression. The early Middle Weichselian Barents–Kara ice-sheet invasion and its recession might have caused the glacioeustatic Middle Weichselian (MIS 3) transgression, and the third Late Pleistocene marine sequence has been deposited in the regressing shallow cold sea with less saline waters. The results help in the understanding of the history of Late Quaternary ice sheets in North Eurasia and provide evidence for the debatable Early and Middle Weichselian marine events.  相似文献   

18.
Sediment successions from the Kanin Peninsula and Chyoshskaya Bay in northwestern Russia contain information on the marginal behaviour of all major ice sheets centred in Scandinavia, the Barents Sea and the Kara Sea during the Eemian-Weichselian. Extensive luminescence dating of regional lithostratigraphical units, supported by biostratigraphical evidence, identifies four major ice advances at 100-90, 70-65, 55-45 and 20-18 kyr ago interbedded with lacustrine, glaciolacustrine and marine sediments. The widespread occurrence of marine tidal sediments deposited c. 65-60 kyr ago allows a stratigraphical division of the Middle Weichselian Barents Sea and Kara Sea ice sheets into two shelf-based glaciations separated by almost complete deglaciation. The first ice dispersal centre was in the Barents Sea and thereafter in the Kara Sea. It is possible to extract both flow patterns from ice marginal landforms inside the southward termination. Accordingly, it is proposed that the Markhida line and its western continuation are asynchronous and originate from two separate glaciations before and after the marine transgression. The marine sedimentation occurred during a eustatic sea-level rise of up to 20 m/1000 yr, i.e. the Mezen Transgression. We speculate that the rapid eustatic sea-level rise triggered a collapse of the Barents Sea Ice Sheet at the MIS (Marine Isotope Stage) 4 to 3 transition. This is motivated by lack of an early marine highstand, the timing of events, and the marginal position of Arkhangelsk relative to open marine conditions.  相似文献   

19.
Direct evidence for Late Weichselian grounded glacier ice over extensive areas of the Barents Sea is based largely on indirect observations, including elevations of old shorelines on Svalbard and arguments of isostatic rebound. Such isostatic models are discussed here for two cases representing maximum and minimum ice-sheet reconstructions. In the former model the ice extends over the Kara Sea, whereas in the latter the ice is limited to the Barents Sea and island archipelagos. Comparisons of predictions with observations from a number of areas, including Spitsbergen, Nordaustlandet, Edgeøya, Kong Karls Land, Franz Josef Land, Novaya Zemlya and Finnmark, support arguments for the existence of a large ice sheet over the region at the time of the last glacial maximum. This ice sheet is likely to have had the following characteristics, conclusions that are independent of assumptions made about the Earth's rheological parameters. (i) The maximum thickness of this ice was about 1500–2000 m with the centre of the load occurring to the south and east of Kong Karls Land. (ii) The ice sheet extended out to the western edge of the continental shelf and its maximum thickness over western Spitsbergen was about 800 m. (iii) To the north of Svalberg and Frans Josef Land the ice sheet extended out to the northern shelf edge. (iv) Retreat of the grounded ice across the southern Barents Sea occurred relatively early such that this region was largely ice free by about 15,000 BP. (v) By 12,000 BP the grounded ice had retreated to the northern archipelagos and was largely gone by 10,000 BP. (vi) The ice sheet may have extended to the Kara Sea but ice thicknesses were only a fraction of those proposed in those reconstructions where the maximum ice thickness is centered on Novaya Zemlya. Models for the palaeobathymetry for the Barents Sea at the time of the last glacial maximum indicate that large parts of the Barents Sea were either very shallow or above sea level, providing the opportunity for ice growth on the emerged plateaux, as well as on the islands, but only towards the end of the period of Fennoscandian ice sheet build-up.  相似文献   

20.
The retreat of the Barents Sea Ice Sheet on the western Svalbard margin   总被引:1,自引:0,他引:1  
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden. is discussed based on sub-bottom seismic records and scdirncnt cores. The sea lloor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjordcn up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from thc glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front rctrcatcd from the outermost shelf around 14. 8 ka A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was intcrruptcd by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscundian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isljorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice liont terminated far out in the main fjord. The remnants of the Harcnts Sea Ice Shcet melted quickly away as a response to the Holocene warming around 10 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号