首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The fate and transport of contaminants in the vicinity of septic fields remains poorly understood in many hydrogeomorphological environments. We report hydrometric data from an intensive hillslope‐scale experiment conducted between 29 August and 11 November 1998 at a residential leach field in New York State. The objective of our study was to characterize water flux within the vadose zone, understand the physical controls on the flux, and predict how this ultimately will affect subsurface water quality. Soil‐water flux was calculated using matric potential measurements from a network of 25 tensiometer nests, each nest consisting of three tensiometers installed to depths of 10, 50 and 130 cm. Unsaturated hydraulic conductivity curves were derived at each depth from field‐determined time‐domain reflectometry–tensiometry moisture‐release curves and borehole permeametry measurements. Flownets indicated that a strong upward flux of soil water occurred between rainstorms. Following the onset of (typically convective) rainfall, low near‐surface matric potentials were rapidly converted to near‐saturated and saturated conditions, promoting steep vertical gradients through the near‐surface horizons of the hillslope. Lateral hydraulic gradients were typically 10 times smaller than the vertical gradients. Resultant flow vectors showed that the flux was predominantly vertical through the vadose zone, and that the flux response to precipitation was short‐lived. The flux response was controlled primarily by the shape of the unsaturated hydraulic conductivity curves, which indicated a rapid loss of conductivity below saturation. Thus, soil water had a very high residence time in the vadose zone. The absence of rapid wetting at 130 cm and the delayed and small phreatic zone response to rainfall indicated that water movement through macropores did not occur on this hillslope. These results are consistent with a Cl tracing experiment, which demonstrated that the tracer was retained in the vadose zone for several months after injection to the system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

3.
Silvia Tavernini   《Limnologica》2008,38(1):63-75
The results of a research carried out in 2001 on nine temporary mountain pools (Northern Apennines, Italy) underlined a major role of hydroperiod in shaping zooplankton communities of temporary habitats. In 2002, the same pools were studied to assess inter-annual differences in zooplankton seasonal patterns. Data on precipitations (both snow and rainfalls) were collected to evaluate the influence of precipitation regimes on hydroperiod and concurrently on hydrochemical features and zooplankton dynamics.Mean annual snow and rainfall abundances were highly similar in both years but precipitation patterns were different. Moreover, different air temperatures were measured in the 2 years of study. These factors influenced water persistence and dry and wet cycles in the pools: in 2001, three pools dried out in summer and remained dry until autumn rainfalls (type A pools), in five pools (type B pools) the summer dry period was interrupted by re-filling due to storms in July and only in one pool water did remain for the entire research period (C1). In 2002, type A and B pools underwent only one dry phase (June–July) while C1 showed a hydroperiod similar to the one that occurred in the previous year. Overall, type A and B pools can be classified as ‘seasonal’ and C1 as ‘near-permanent or permanent’.Principal component analysis and paired t-tests did not show significant differences between years in the hydrochemical features of the pools. However, the seasonal pools showed a wide range of variation in their hydrochemical parameters while water features of the permanent pool presented less variability.Within the pools, divergences in the number and in the type of zooplankton taxa between the 2 years were limited. Rotifer and copepod density of the seasonal pools were comparable over years and only cladocerans exhibited distinct density dynamics. Cladoceran appeared to be associated with ionic content and influenced by the occurrence of ice-melting and by the wet phase length of the pools.On the contrary, the permanent pool showed diverse zooplankton seasonal patterns in 2001 compared to 2002. Over years, different pH values were measured; pH and conductivity varied with changing water volume, which in turn explained a significant amount of the observed variation in zooplankton densities in 2002.  相似文献   

4.
On patterned peatlands, open water pools develop within a matrix of terrestrial vegetation (‘ridges’). Regional patterns in the distribution of ridge–pool complexes suggest that the relative cover of these two surface types is controlled in part by climate wetness, but landscape topography must also be an important controlling factor. In this paper, a functional model that relates relative cover of ridges and pools to climate and surface gradient was developed and tested. The model was formulated in terms of a water budget, based on the differential effects of ridges and pools on losses by evapotranspiration and subsurface flow. It predicts a positive relationship between surface gradient and ridge proportion, with a linear effect related to water supply and ridge hydraulic conductivity, modified at high ridge proportion by differences in evapotranspiration between ridges and pools. The limit to patterned peatland distribution occurs where the surface is completely covered by ridges. The model may be sensitive or insensitive to climate differences between localities, depending on whether hydraulic characteristics of ridge peat co‐vary with water supply. To distinguish between these alternative hypotheses, surface gradient and ridge proportion were surveyed along 20 transects in each of three localities in Scotland that differ threefold in net precipitation to pools. The results of the field survey served to reject the climate‐sensitive hypothesis, but were consistent with the climate‐insensitive hypothesis. Analysis of the residuals suggested that variation within localities was related more to topographic control of water supply than to ridge hydraulic conductivity or developmental stage. Hence, within this maritime climate region, the distribution of ridge–pool complexes and the relative abundance of pools are controlled mainly by topographic variables. Field surveys across both maritime and continental regions are required to confirm a subtle climatic effect that allows pools to occur on higher gradients in drier climates than in wetter climates. Further development and testing of the functional model will provide a stronger basis for assessing potential feedback between climate change, peatland surface structure and methane emission from pools. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The results of magnetotelluric and magnetovariational studies in the Uzon caldera are considered. An analysis of magnetotelluric parameters yielded the required method of interpretation. The MTS curves were interpreted in the framework of a 2D model using the REBOCC program. Geoelectric cross sections of the caldera were constructed along two orthogonal lines. Anomalies of high electrical conductivity were identified in the sediments and in the basement and were found to be confined to the locations of geothermal springs. The higher conductivity of these anomalies is here related to the presence of highly mineralized hydrothermal solutions. Electrical conductivity was used for an approximate estimation of porosity in the sediments and basement. A subvertical zone of higher porosity was identified at depths of 1.5–3.5 km in the caldera with a connection to the channelways of fluids rising into the sediments. It is hypothesized that highly mineralized solutions are diluted with vadose water in that zone and come through fissures onto the ground surface in the form of hot springs. The totality of these data suggested a conceptual model to characterize the main features in the generation of hydrothermal springs in the Uzon caldera.  相似文献   

6.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   

7.
The complex conductivity signatures of a hydrocarbon contaminated site, undergoing biodegradation, near Bemidji, Minnesota were investigated. This site is characterized by a biogeochemical process where iron reduction is coupled with the oxidation of hydrocarbon contaminants. The biogeochemical transformations have resulted in precipitation of different bio-metallic iron mineral precipitates such as magnetite, ferroan calcite, and siderite. Our main objective was to elucidate the major factors controlling the complex conductivity response at the site. We acquired laboratory complex conductivity measurements along four cores retrieved from the site in the frequency range between 0.001 and 1000 Hz. Our results show the following: (1) in general higher imaginary conductivity was observed for samples from contaminated locations compared to samples from the uncontaminated location, (2) the imaginary conductivity for samples contaminated with residual and free phase hydrocarbon (smear zone) was higher compared to samples with dissolved phase hydrocarbon, (3) vadose zone samples located above locations with free phase hydrocarbon show higher imaginary conductivity magnitude compared to vadose zone samples from the dissolved phase and uncontaminated locations, (4) the real conductivity was generally elevated for samples from the contaminated locations, but not as diagnostic to the presence of contamination as the imaginary conductivity; (5) for most of the contaminated samples the imaginary conductivity data show a well-defined peak between 0.001 and 0.01 Hz, and (6) sample locations exhibiting higher imaginary conductivity are concomitant with locations having higher magnetic susceptibility. Controlled experiments indicate that variations in electrolytic conductivity and water content across the site are unlikely to fully account for the higher imaginary conductivity observed within the smear zone of contaminated locations. Instead, using magnetite as an example of the bio-metallic minerals in the contaminated location at the site, we observe a clear increase in the imaginary conductivity response with increasing magnetite content. The presence of bio-metallic mineral phases (e.g., magnetite) within the contaminated location associated with hydrocarbon biodegradation may explain the high imaginary conductivity response. Thus, we postulate that the precipitation of bio-metallic minerals at hydrocarbon contaminated sites impacts their complex conductivity signatures and should be considered in the interpretation of complex conductivity data from oil contaminated sites undergoing intrinsic bioremediation.  相似文献   

8.
To investigate processes of water percolation, the drip response of stalactites in a karstic cave below a 143 m2 sprinkling plot was measured. The experiment was conducted in Mount Carmel, Israel, at the end of the dry season and intended to simulate a series of two high‐intensity storms on dry and wet soils. In addition to hydrometric measurements (soil moisture, surface runoff, stalactite dripping rates), two types of tracers (electrical conductivity and bromide) were used to study recharge processes, water origin and mixing inside a 28‐m vadose zone. Results suggested that slow, continuous percolation through the rock matrix is of minor importance and that percolating water follows a complicated pattern including vertical and horizontal flow directions. While bromide tracing allowed identification of quick direct flow paths at all drips with maximum flow velocities of 4·3 m/h, mixing analysis suggested that major water fractions were mobilized by piston flow, pushing out water stored in the unsaturated zone above the cave. Under dry preconditions, 80 mm of artificial rainfall applied in less than 7 h was not enough to initiate significant downward water percolation. Most water was required to fill uppermost soil and rock storages. Under wet preconditions during the second day sprinkling, higher water contents in soils and karst cavities facilitated piston flow effects and a more intense response of the cave drips. Results indicate that in Mediterranean karst regions, filling of the unsaturated zone, including soil and rock storages, is an important precondition for the onset of significant water percolation and recharge. This results in a higher seasonal threshold for water percolation than for the generation of surface runoff. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Abrupt changes of hydraulic properties in a vadose zone are modelled within a stochastic framework, which regards the saturated conductivity and parameters related to the distribution of soil pores as stationary, log‐normally distributed, random space functions. As a consequence, flow variables become random fields, and we aim at deriving an effective Richards equation. To obtain the latter, we adopt a perturbation expansion truncated at the first order (weakly heterogeneous media), which leads to the effective hydraulic conductivity and water retention curves. Overall, the effective properties are scale dependent. However, within the proposed framework, we demonstrate that the inflection point of the laboratory scale retention curve is not affected by the heterogeneity of the vadose zone. Finally, to illustrate the quantitative implications of our results, we consider a monitoring experiment at field scale, and we show how our approach leads to an effective water retention curve, which differs significantly from that which would be obtained without accounting for the above scale‐invariance property.  相似文献   

10.
One of the greatest challenges in critical zone studies is to document the moisture dynamics, water flux,and solute chemistry of the unsaturated, fractured and weathered bedrock that lies between the soil and groundwater table. The central impediment to quantifying this component of the subsurface is the difficulty associated with direct observations. Here, we report solute chemistry as a function of depth collected over a full year across the shale-derived vadose zone of the Eel River Critical Zone Observatory using a set of novel sub-horizontal wellbores,referred to as the vadose zone monitoring system. The results of this first geochemical glimpse into the deep vadose zone indicate a dynamic temporal and depth-resolved structure. Major cation concentrations reflect seasonal changes in precipitation and water saturation, and normalized ratios span the full range of values reported for the world's largest rivers.  相似文献   

11.
The native fish fauna commonly found in the drainage basins of rivers and reservoirs of Latin America, including those of the semi-arid Northeastern Brazil, are representatives of the Neotropical region. This work reports on the reproductive ecology of five commercially important and consumable native fish species, in relation to rainfall and hydrological variables of the semi-arid reservoirs in Brazil. Pluviometric precipitation, temperature, pH, dissolved oxygen and electrical conductivity of the water were registered, and maturation of fish gonads was assessed on a monthly basis. This region is characterized with short spells of rain interspersed with long dry season and rainfall seems to be the main environmental factor which modulates the timing of the spawning period of fish. Construction of reservoirs without adequate facilities for fish migration has an adverse impact on the migratory fish species which are of commercial and ecological importance to semi-arid Northeastern Brazil.  相似文献   

12.
Increasingly, regulations by federal, state and local agencies are being developed that require the installation of vadose zone monitoring systems for hazardous chemical facilities in addition to, or in lieu of, conventional ground water monitoring wells. Compared to a ground water monitoring approach, vadose zone monitoring systems may permit earlier detection of chemical leakage and less costly cleanup of contamination. The effective use of vadose zone monitoring systems in detecting contamination depends on many factors. Without proper consideration of these factors, a vadose zone monitoring system may not give as high a level of reliability as a ground water monitoring system.
Major factors to consider in installing a vadose zone monitoring system are: type of instrument to use, number of instruments, depth and location of instruments, and frequency of monitoring. Means to evaluate these factors in a comprehensive fashion have been lacking. Based on recent experience in installing and operating vadose zone monitoring systems, criteria and methods useful in resolving the preceding factors have been developed. Types of instruments can be classified as either direct (lysimeter, vapor probe) or indirect (tensiometer, conductivity probe). A combination of the two is needed for reliability. The depth, location and number of instruments depend on the geometry of the facility, the number and size of likely contaminant leakage points in engineered barriers, properties of the material being monitored, the effective radius of monitoring for each instrument, vadose zone properties, and types of remedial actions that are available. The freqency of monitoring largely depends on the rate of movement of the contaminant. Evaluating the preceding factors requires some level of modeling and preliminary field testing.  相似文献   

13.
Three controlled experiments were conducted at the Oregon Graduate Institute (OGI) with the purpose of evaluating electrical resistance tomography for imaging underground processes associated with in-situ site assessment and remediation. The OGI facilities are unique: a double-wall tank 10 m square and 5 m deep, filled with river bottom sediments and instrumented for geophysical and hydrological studies. At this facility, liquid contaminants could be released into the confined soil at a scale sufficiently large to represent real-world physical phenomena.In the first test, images of electrical resistivity were made before and during a controlled spill of gasoline into a sandy soil. The primary purpose was to determine if electrical resistivity images could detect the hydrocarbon in either the vadose or saturated zone. Definite changes in electrical resistivity were observed in both the vadose and saturated soils. The effects were an increase in resistivity of as much as 10% above pre-release values. A single resistive anomaly was imaged, directly below the release point, principally within the vadose zone but extending below the phreatic surface. The anomaly remained identifiable in tomograms taken two days after the release ended with clear indications of lateral spreading along the water table.The second test involved electrical resistance measurements before, during, and after air sparging in a saturated soil. The primary purpose was to determine if the electrical images could be used to detect and delineate the extent of the zone influenced by sparging. The images showed an increase of about 20% in resistivity over background values within the sparged zone and the extent of the imaged zone agreed with that inferred from other information.Electrical resistivity tomography measurements were made under a simulated oil storage tank in the third test. Comparison of images taken before and during separate releases of brine and water showed effects of changes induced by the water or brine. The simulated leak and its location were imaged as a conductive anomaly centered near the point of origin and were observed to spread with time during the release.  相似文献   

14.
Understanding the hydrological processes of colloids within the karst vadose zone is vital to the security of karst groundwater and providing appropriate paleohydrological explanations of colloid-facilitated metals in speleothem. This study addresses the mobilization mechanisms driving colloidal organic matter (COM) transport in the karst vadose zone using a 15-year long monthly monitoring dataset from a cave drip point (HS4) in Heshang Cave, Qingjiang Valley, China. Variations in COM concentrations were reported as the fluorescence difference values of raw and filtered (<0.22 μm) samples at an excitation wavelength of 320 nm and emission wavelength of ~400 nm. A fluorescence humification index (HIX) lower than 0.8 and an autochthonous index (BIX) higher than 1.2 indicated that the origin of COM was mainly from the karst vadose zone, rather than the soil zone. The COM concentration varied from 0.001 to 0.038 Raman Unit (RU), with evident seasonal fluctuations. Rising limbs for COM values occurred prior to rising limbs within a dripwater hydrograph; moreover, the COM peak values corresponding to the beginning of the increasing hydrograph generally suggested that the mobilization of COM reflected the movement of the air–water interface (AWI) in the karst vadose zone rather than rainfall intensity or flow velocity. COM peak values were positively correlated with the antecedent drying duration and negatively correlated with HIX values. These phenomena may be explained by the increased amount of organic matter that was aggregated and absorbed on the surface of carbonate in the karst vadose zone during a longer drying duration. Moreover, the longer drying duration was also beneficial to autochthonous biological activity, which subsequently decreased the HIX value of the organic matter in the karst vadose zone. The movement of AWI and the drying duration are both controlled by the outside weather conditions. This study is therefore conducive to evaluating the security of karst groundwater in response to climate change, and challenges prevailing paleoclimate interpretations of colloid-facilitated metal abundance timeseries reported from speleothems.  相似文献   

15.
Simultaneous measurement of coupled water, heat, and solute transport in unsaturated porous media is made possible with the multi-functional heat pulse probe (MFHPP). The probe combines a heat pulse technique for estimating soil heat properties, water flux, and water content with a Wenner array measurement of bulk soil electrical conductivity (ECbulk). To evaluate the MFHPP, we conducted controlled steady-state flow experiments in a sand column for a wide range of water saturations, flow velocities, and solute concentrations. Flow and transport processes were monitored continuously using the MFHPP. Experimental data were analyzed by inverse modeling of simultaneous water, heat, and solute transport using an adapted HYDRUS-2D model. Various optimization scenarios yielded simultaneous estimation of thermal, solute, and hydraulic parameters and variables, including thermal conductivity, volumetric water content, water flux, and thermal and solute dispersivities. We conclude that the MFHPP holds great promise as an excellent instrument for the continuous monitoring and characterization of the vadose zone.  相似文献   

16.
Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation.  相似文献   

17.
Recharge processes of karst aquifers are difficult to assess given their strong heterogeneity and the poorly known effect of vadose zone on infiltration. However, recharge assessment is crucial for the evaluation of groundwater resources. Moreover, the vulnerability of karst aquifers depends on vadose zone behaviour because it is the place where most contamination takes place. In this work, an in situ experimental approach was performed to identify and quantify flow and storage processes occurring in karst vadose zone. Cave percolation monitoring and dye tracing were used to investigate unsaturated zone hydrological processes. Two flow components (diffuse and quick) were identified and, respectively, account for 66% and 34% of the recharge. Quickflow was found to be the result of bypass phenomenon in vadose zone related to water saturation. We identify the role of epikarst as a shunting area, most of the storage in the vadose zone occurring via the diffuse flow component in low permeability zones. Relationship between rainfall intensity and transit velocity was demonstrated, with 5 times higher velocities for the quick recharge mode than the diffuse mode. Modelling approach with KarstMod software allowed to simulate the hybrid recharge through vadose zone and shows promising chances to properly assess the recharge processes in karst aquifer based on simple physical models.  相似文献   

18.
A study of drip water from a stalactite in the Cueva del Agua (Granada, southern Spain) over four hydrological years has enabled a detailed characterization of infiltration through the non‐saturated zone of this cave. The most significant aspects are: (1) The drip water regime is not seasonal, but is linked instead to slow infiltration. Sudden changes in the drip water regime are detected, due to infiltration along the preferential flow paths and the draining of water of supersaturated water reserves from the microfissure and pore system. (2) The accumulation of excess rain in the unsaturated zone dislodges the reserve of supersaturated water from the matrix of microfissures and pores, giving rise to an average increase in drip intensity of 2·2 ± 0·5 mm h?1 and 37 ± 13 µS cm?1 in the electrical conductivity of the water. (3) Time‐series analysis of the drip water demonstrates a lack of linearity over time of the drip rate, indicating a chaotic regime. (4) When the dripping is constant, barometric oscillation of the air is the principal factor that causes the lack of linearity in the drip flow. In this way, over an average of 2–3 days, a mean variation of the air pressure inside the cave of 10 ± 3·7 mbar causes a mean oscillation in the drip rate of 0·5 ± 0·2 mm h?1. This increase in air pressure is translated as an increase in the relative thickness of the gaseous phase of the drip water at the cost of the aqueous phase, so reducing the drip intensity of the stalactite. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Cover of the main reef benthic groups, and abundances and taxonomic richness of octocorals were surveyed in the reefs of Hong Kong, and related to spatial and water quality gradients. Nutrient and particle concentrations are high throughout the area, with concentrations declining from the south towards the north-eastern region. Regression tree analyses showed that hard coral cover was most strongly related to water clarity, that macroalgal cover was highest in areas with high wave action and high water clarity, and that crustose coralline algae were negatively related to sedimentation. Octocoral communities (42 species in 23 genera) were dominated by zooxanthellae-free taxa; those few species with zooxanthellae were restricted to reefs with low wave action and high water clarity in the north-eastern region. The water quality gradient spans from conditions that are marginal for zooxanthellate octocorals while still supporting diverse scleractinian communities, towards an estuarine endpoint where zooxanthellate octocorals cease to exist and hard coral communities are reduced to a few resilient colonies. The data suggest that the types, abundances and richness of zooxanthellate octocorals, and the shift from zooxanthellate to azooxanthellate octocoral communities, may act as useful indicators of water clarity in regions where long-term water quality data are unavailable.  相似文献   

20.
The vadose zone and ground water environments are a sink for atmospheric O(2). The pathways and rates of O(2) consumption are primarily related to the availability and rate of oxidation of key reductants (e.g., organics, sulfides), through a combination of biological or abiotic reactions. The range in delta(18)O of O(2) in the subsurface is large, from +20 per thousand to +39 per thousand (Vienna Standard Mean Ocean Water) in the vadose zone and from +12 per thousand to +46 per thousand in ground water. The aggregated O(2) isotope fractionation by consumption (alpha(k)) was found to range from 0.970 to 1.300 and 0.980 to 1.030 in vadose zones and aquifers, respectively. These data suggest the delta(18)O patterns in both unsaturated zones and aquifers can be attributed to microbially mediated reactions (alpha(k)= range from 0.975 to 1.000), but there are apparently other inverse isotope fractionating processes (alpha(k) > 1.000). Circumstantial evidence suggested O(2) processed during the sulfide oxidation and precipitation of Fe-oxyhydroxides process (or other unidentified processes) could be the cause of the significant (18)O depletions. Overall, delta(18)O data from vadose zones and ground water revealed that isotope fractionation by consumption of gaseous and dissolved O(2) in the subsurface and ground water environments is more complicated than what has classically been attributed solely to geomicrobial respiration. Given the questions and inexplicable data arising from this study, further detailed research on O(2) consuming processes in the Earth's subsurface and ground water is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号