首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
High-resolution seismic reflection profiles and multibeam bathymetry data collected in 2006 and 2008 around Pantelleria Island show the widespread occurrence of contourite drifts and erosional elements ~30?km from the narrowest part (~145?km) of the Sicily Channel, where water masses from the Eastern Mediterranean flow towards the Western Mediterranean. The contourite drifts are rather small (up to 10?km long and 3.3?km wide), at water depths of ~250?C750?m. Most are elongated separated drifts with quite well-developed moats and crests, aligned roughly parallel to the regional bathymetric contours. Erosional elements include abraded surfaces, moats, scours and sub-circular depressions. In addition, a wide sector of the seafloor adjacent to a seamount located SW of Pantelleria Island is characterized by numerous biogenic build-ups colonized by deep-water corals (Madrepora oculata). The spatial distribution of sediment drifts, erosional features and biogenic build-ups suggests an origin from a north-westward-flowing bottom current, in this case the outflow of Levantine Intermediate Water and transitional Eastern Mediterranean Deep Water via the Sicily Channel. These findings for the Pantelleria offshore sector demonstrate that contourite processes are able to concentrate a high variety of closely spaced depositional and erosional features even in small areas (in this case, about 2,000?km2). This Pantelleria focusing can plausibly be related to a particular configuration of the prevailing bottom-current regime in complex interaction with an uneven bathymetry shaped mainly by tectonic and volcanic activity. The distribution of bottom currents seems to be strongly influenced by morphological features ranging from major seabed obstacles, such as the Pantelleria volcanic complex and the so-called southwest seamount, to smaller-scale escarpments and banks. This is consistent with previous findings for Mediterranean and other settings characterized by neotectonics and large topographic features.  相似文献   

2.
A brief review of the published evidence of current deposits around Italy is the occasion to test the robustness of matching bottom current velocity models and seafloor morphologies to identify contourite drifts not yet documented. We present the result of the regional hydrodynamic model MARS3D in the Northern Tyrrhenian and Ligurian Sea with horizontal resolution of 1.2 km and 60 levels with focus on bottom current: data are integrated over summer and winter 2013 as representative of low and high intensity current conditions.The Eastern Ligurian margin is impacted by the Levantine Intermediate Water (LIW) with modeled mean velocity of bottom current up to 20 cm s−1 in winter 2013 and calculated bottom shear stress exceeding 0.2 N m−2 in water depth of 400–800 m. By crossing this information with seafloor morphology and geometry of seismic reflections, we identify a sediment drift formerly overlooked at ca 1000 m water depth. The Portofino separated mounded drift has a maximum thickness of at least 150 m and occurs in an area of mean current velocity minimum. Independent evidence to support the interpretation include bottom current modelling, seafloor morphology, seismic reflection geometry and sediment core facies. The adjacent areas impacted by stronger bottom currents present features likely resulted from bottom current erosion such as a marine terrace and elongated pockmarks.Compared to former interpretation of seafloor morphology in the study area, our results have an impact on the assessment of marine geohazards: submarine landslides offshore Portofino are small in size and coexist with sediment erosion and preferential accumulation features (sediment drifts) originated by current-dominated sedimentary processes. Furthermore, our results propel a more general discussion about contourite identification in the Italian seas and possible implications.  相似文献   

3.
The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.  相似文献   

4.
Multibeam bathymetry, high resolution multi-channel, and very high resolution single-channel (3.5 kHz) seismic records were used to depict the complex geomorphology that defines the Galicia Bank region (Atlantic, NW Iberian Peninsula). This region (≈620–5,000 m water depth) is characterized by a great variety of features: structural features (scarps, highs, valleys, fold bulges), fluid dynamics-related features (structural undulations and collapse craters), mass-movement features (gullies, channels, mass-flow deposits, slope-lobe complexes, and mass-transport deposits), bottom-current features (moats, furrows, abraded surface, sediment waves, and drifts), (hemi)pelagic features, mixed features (abraded surfaces associated to mixed sediments) and bioconstructions. These features represent architectural elements of four sedimentary systems: slope apron, contouritic, current-controlled (hemi)pelagic, and (hemi)pelagic. These systems are a reflection of different sedimentary processes: downslope (mass transport, mass flows, turbidity flows), alongslope (bottom currents of Mediterranean Outflow Water, Labrador Sea Water, North Atlantic Deep Water, and Lower Deep Water), vertical settling, and the interplay between them. The architectural and sediment dynamic complexities, for their part, are conditioned by the morphostructural complexity of the region, whose structures (exposed scarps and highs) favor multiple submarine sediment sources, affect the type and evolution of the mass-movement processes, and interact with different water masses. This region and similar sedimentary environments far from the continental sediment sources, as seamounts, are ideal zones for carrying out submarine source-to-sink studies, and can represent areas subject to hazards, both geologic and oceanographic in origin.  相似文献   

5.
High resolution, single-channel seismic sparker profiles across the Akademichesky Ridge, an intra-basin structural high in Lake Baikal (Russia), reveal the presence of small sediment mounds and intervening moats in the upper part of the sedimentary cover. Such features interrupt the generally uniform and even acoustic facies and are not consistent with the hemipelagic sedimentation, which is expected on such an isolated high and which would produce a uniform sediment drape over bottom irregularities. The influence of turbidity currents is excluded since the ridge is an isolated high elevated more than 600-1000 m above adjacent basins. The mounded seismic facies, including migrating sediment waves and non-depositional/erosional incisions, strongly suggest that sediment accumulation was controlled by bottom-current activity. We interpret the mounds as small-scale (< few tens of km2 in area) lacustrine drifts. Four basic types of geometry are identified: 1) slope-plastered patch sheets; 2) patch drifts; 3) confined drifts; 4) fault-controlled drifts. The general asymmetry in the sedimentary cover of the ridge, showing thicker deposits on the NW flank, and the common location of patch drifts on the northeast side of small basement knolls indicate that deposition took preferentially place at the lee sides of obstacles in a current flowing northward or sub-parallel to the main contours. Deep-water circulation in the ridge area is not known in detail, but there are indications that relatively cold saline water masses are presently flowing out of the Central Basin and plunging into the deep parts of the North Basin across the ridge, a process that appears to be driven mainly by small differences in salinity. We infer that the process responsible for the observed bottom-current-controlled sedimentary features has to be sought in these large-scale water-mass movements and their past equivalents. The age of the onset of the bottom-current-controlled sedimentation, based on an average sedimentation rate of 4.0 cm/ky, is roughly estimated to be as least as old as 3.5 Ma, which is generally regarded as the age of the onset of the last major tectonic pulse of rift basin development in the Baikal region.  相似文献   

6.
Sediment thickness was evaluated on the western flank of the East Pacific Rise (EPR) at 45°S, based on high-resolution seismic data gathered during cruise 213/2 of R/V Sonne in 2011. Two zones with distinctly different sediment thickness were identified, separated by a transitional zone bordering a pseudo-fault. Sediment in the more distal zone 2 is almost twice as thick (~120 m) as in zone 1 close to the EPR. This is in contrast to the expected progressive sedimentary column thickening with seafloor age and distance from the spreading axis. The younger of two seismic units detected within the sedimentary column (EPR-2) occurs mainly in the distal zone on crust older than 9 Ma, whereas on younger crust it is present only in small isolated bodies. Both sedimentary units drape the basement. The drape is interpreted to represent particle settling from suspension and a generally low regional primary productivity. The spatial variation in sediment thickness cannot be explained by existing models, and other processes considered in the present case are (1) higher productivity in the western sector of the survey area, where thicker sediments were observed (zone 2), (2) the formation of sediment drifts near basement highs (‘seamount effect’), due to flow of Lower Circumpolar Deep Water affecting sediment deposition, and (3) erosion and/or non-deposition of the younger EPR-2 unit, due to elevated bed shear stresses associated with eddies transferring kinetic energy to the seafloor  相似文献   

7.
The Mozambique Channel plays a key role in the exchange of surface water masses between the Indian and Atlantic Oceans and forms a topographic barrier for meridional deep and bottom water circulation due to its northward shoaling water depths. New high-resolution bathymetry and sub-bottom profiler data show that due to these topographic constraints a peculiar seafloor morphology has evolved, which exhibits a large variety of current-controlled bedforms. The most spectacular bedforms are giant erosional scours in the southwest, where northward spreading Antarctic Bottom Water is topographically blocked to the north and deflected to the east forming furrows, channels and steep sediment waves along its flow path. Farther north, in the water depth range of North Atlantic Deep Water, the seafloor is strongly shaped by deep-reaching eddies. Steep, upslope migrating sediment waves in the west have formed beneath the southward flow of anticyclonic Mozambique Channel eddies (MCEs). Arcuate bedforms in the middle evolved through an interaction of the northward flow of MCEs with crevasse splays from a breach in the western Zambezi Channel levee. Hummocky bedforms in the east result from an interplay of East Madagascar Current eddies with overspill deposits of the crevasse and Zambezi Channel. All bedforms are draped with sediments indicating that the present-day current velocities are not strong enough to erode sediments. Hence, it can be concluded that the seafloor morphology developed during earlier times, when bottom-current velocities were stronger. Assuming a sedimentation rate of 20 m/Ma and a drape of at least 50 m thickness the bedforms may have developed during the Pliocene Epoch or earlier.  相似文献   

8.
9.
A set of multi-channel seismic profiles (∼15,000 km) is used to study the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge, below the upper parts of the continental rise, herein termed the Cosmonaut Sea Wedge. The wedge is situated stratigraphically below the inferred glaciomarine section and extends for at least 1,200 km along the continental margin with a width that ranges from 80 to about 250 km. The morphology of the wedge and its associated depositional features indicate a complex depositional history, where the deep marine depositional sites were influenced by both downslope and alongslope processes. This interaction resulted in the formation of several proximal depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits indicates that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems. The wide spectrum of depositional geometries in the stratigraphic column reflects dramatic variations in sediment supply from the continental margin as well as varying interaction between downslope and alongslope processes.  相似文献   

10.
Sediment drifts provide information on the palaeoceanographic development of a region. Additionally, they may represent hydrocarbon reservoirs. Because of this, sediment drift investigation has increased over the last few years. Nevertheless, a number of problems remain regarding the processes controlling their shape, the characteristic lithological and seismic patterns and the diagnostic criteria. As an example, sediment drifts from the Agulhas Plateau, southwest Indian Ocean, are presented here. They show a variety of seismic features and facies including an asymmetric mounded geometry, changes in internal reflection pattern, truncation of internal reflectors at the seafloor and discontinuities. This collection of observations in combination with the local oceanography appears to comprise a diagnostic tool for sediment drifts.  相似文献   

11.
Contourite deposits in the central sector of the middle slope of the Gulf of Cadiz have been studied using a comprehensive acoustic, seismic and core database. Buried, mounded, elongated and separated drifts developed under the influence of the lower core of the Mediterranean Outflow Water are preserved in the sedimentary record. These are characterised by depositional features in an area where strong tectonic and erosive processes are now dominant. The general stacking pattern of the depositional system is mainly influenced by climatic changes through the Quaternary, whereas changes in the depositional style observed in two, buried, mounded drifts, the Guadalquivir and Huelva Drifts, are evidence of a tectonic control. In the western Guadalquivir Drift, the onset of the sheeted drift construction (aggrading QII unit) above a mounded drift (prograding QI unit) resulted from a new Lower Mediterranean Core Water hydrodynamic regime. This change is correlated with a tectonic event coeval with the Mid Pleistocene Revolution (MPR) discontinuity that produced new irregularities of the seafloor during the Mid- to Late-Pleistocene. Changes in the Huelva Drift from a mounded to a sheeted drift geometry during the Late-Pleistocene, and from a prograding drift (QI and most part of QII) to an aggrading one (upper seismic unit of QII), highlight a new change in oceanographic conditions. This depositional and then oceanographic change is associated with a tectonic event, coeval with the Marine Isotope Stage (MIS) 6 discontinuity, in which a redistribution of the diapiric ridges led to the development of new local gateways, three principal branches of the Mediterranean Lower Core Water, and associated contourite channels. As a result, these buried contourite drifts hold a key palaeoceanographic record of the evolution of Mediterranean Lower Core Water, influenced by both neotectonic activity and climatic changes during the Quaternary. This study is an example of how contourite deposits and erosive elements in the marine environment can provide evidence for the reconstruction of palaeoceanographic and recent tectonic changes.  相似文献   

12.
Using an integrated multi-beam bathymetry, high-resolution seismic profile, piston core, and AMS 14C dating data set, the current study identified two sediment wave fields, fields 1 and 2, on the South China Sea Slope off southwestern Taiwan. Field 1 is located in the lower slope, and sediment waves within it are overall oriented perpendicular to the direction of down-slope gravity flows and canyon axis. Geometries, morphology, and internal seismic reflection configurations suggest that the sediment waves in field 1 underwent significant up-slope migration. Field 2, in contrast, is located more basinward, on the continental rise. Instead of having asymmetrical morphology and discontinuous reflections as observed in field 1, the sediment waves in field 2 show more symmetrical morphology and continuous reflections that can be traced from one wave to another, suggesting that vertical aggradation is more active and predominant than up-slope migration.Three sediment wave evolution stages, stage 1 through stage 3, are identified in both field 1 and field 2. During stage 1, the sediment waves are built upon a regional unconformity that separates the underlying mass-transport complexes from the overlying sediment waves. In both of these two fields, there is progressive development of the sediment waves and increase in wave dimensions from the oldest stage 1 to the youngest stage 3, even though up-slope migration is dominant in field 1 whereas vertical aggradation is predominant in field 2 throughout these three stages.The integrated data and the depositional model show that the upper slope of the study area is strongly dissected and eroded by down-slope gravity flows. The net result of strong erosion is that significant amounts of sediment are transported further basinward into the lower slope by gravity flows and/or turbidity currents. The interactions of these currents with bottom (contour) currents induced by the intrusion of the Northern Pacific Deep Water into the South China Sea and preexisting wavy topography in the lower slope result in the up-slope migrating sediment waves in field 1 and the contourites as observed from cores TS01 and TS02. Further basinward on the continental rise, turbidity currents are waned and diluted, whereas along-slope bottom (contour) currents are vigorous and most likely dominate over the diluted turbidity currents, resulting in the vertically aggraded sediment waves in field 2.The results from this study also provide the further evidence for the intrusion of the Northern Pacific Deep Water into the South China Sea and suggest that this intrusion has probably existed and been capable of affecting sedimentation in South China Sea at least since Quaternary.  相似文献   

13.
We present new evidence of shallow-water muddy contourite drifts at two distinct locations in the central Mediterranean characterized by a relatively deep shelf edge (between 170 and 300 m below sea level): the south-eastern Adriatic margin and the north-western Sicily Channel. The growth of these shelf-edge contourite drifts is ascribed to the long-term impact of the Mediterranean themohaline circulation. The Levantine Intermediate Water flows continuously, with annual or inter-annual variations, and affects the shelf edge and the upper slope in both study areas. In addition, the SW Adriatic margin is impinged by the seasonally modulated off-shelf cascading of North Adriatic Dense Water. This water mass has formed ever since the large Adriatic continental shelf was drowned by the post-glacial sea-level rise. It energetically sweeps the entire slope from the shelf edge to the deep basin. These bottom currents flow parallel or oblique to the depth contours, and are laterally constricted along markedly erosional moats aligned parallel to the shelf edge where they increase in flow velocity. The internal geometry and growth patterns of the shelf-edge contourites reflect changes in oceanographic setting affecting the whole Mediterranean Sea. In particular, seismic correlation with published sediment cores documents that these deposits are actively growing and migrating during the present interglacial, implying an enhancement in bottom-water formation during intervals of relative sea-level rise and highstand. Regardless of the specific mechanisms of formation, sediment drifts in both study areas have been affected by widespread thin-skinned mass-wasting events during post-glacial times. Repeated mass-transport processes have affected in particular the downslope flank of the shelf-edge contourite drifts, indicating that these muddy deposits are prone to failure during, or soon after, their deposition.  相似文献   

14.
Four drift accumulations have been identified on the continental margin of northern Norway; the Lofoten Drift, the Vesterålen Drift, the Nyk Drift and the Sklinnadjupet Drift. Based on seismic character these drifts were found to belong to two main groups; (1) mounded, elongated, upslope accretion drifts (Lofoten Drift, Vesterålen Drift and Nyk Drift), and (2) infilling drifts (Sklinnadjupet Drift). The drifts are located on the continental slope. Mainly surface and intermediate water circulation, contrary to many North Atlantic and Antarctic drifts that are related to bottom water circulation, and sediment availability have controlled their growth. Sediments were derived both from winnowing of the shelf and upper slope and from ice sheets when present on the shelf. The main source area was the Vøring margin. This explains the high maximum average sedimentation rate of the nearby Nyk (1.2 m/ka) and Sklinnadjupet (0.5 m/ka) Drifts compared with the distal Lofoten (0.036 m/ka) and Vesterålen (0.060 m/ka) Drifts. The high sedimentation rate of the Nyk Drift, deposited during the period between the late Saalian and the late Weichselian is of the same order of magnitude as previously reported for glacigenic slope sediments deposited during glacial maximum periods only. The Sklinnadjupet Drift is infilling a paleo-slide scar. The development of the infilling drift was possible due to the available accommodation space, a slide scar acting as a sediment trap. Based on the formation of diapirs originating from the Sklinnadjupet Drift sediments we infer these sediments to have a muddy composition with relatively high water content and low density, more easily liquefied and mobilised compared with the glacigenic diamictons.  相似文献   

15.
The canyon system, including 17 small slope-confined canyons in the Shenhu area, northern South China Sea, is significantly characterized by mounded or undulating features on the canyon flanks and canyon heads. However, the mechanism underlying the formation of these features has yet to be elucidated. In previous studies, most of them were interpreted as sediment deformation on the exploration seismic profiles. In this paper, we collected high-resolution bathymetric data, chirp profiles and geotechnical test data to investigate their detailed morphology, internal structures, and origin. The bathymetric data indicated that most mounded seismic units have smooth seafloors and are separated by grooves or depressions. The distance between two adjacent mounded units is only hundreds of meters. On chirp profiles, mounded seismic units usually exhibit chaotic reflections and wavy reflections, of which the crests migrate upslope. The slope stability analysis results revealed that the critical angle of the soil layers in the study area tends to be 9°, indicating that most mounded seismic units on the canyon flanks and heads are stable at present. The terrain characteristics and seismic configurations combined with the slope stability analysis results indicated that most mounded seismic units are not sediment deformation but depositional structures or mixed systems composed of deformation and depositional structures.  相似文献   

16.
Based upon 2D seismic data, this study confirms the presence of a complex deep-water sedimentary system within the Pliocene-Quaternary strata on the northwestern lower slope of the Northwest Sub-Basin, South China Sea. It consists of submarine canyons, mass-wasting deposits, contourite channels and sheeted drifts. Alongslope aligned erosive features are observed on the eastern upper gentle slopes (<1.2° above 1,500 m), where a V-shaped downslope canyon presents an apparent ENE migration, indicating a related bottom current within the eastward South China Sea Intermediate Water Circulation. Contourite sheeted drifts are also generated on the eastern gentle slopes (~1.5° in average), below 2,100 m water depth though, referring to a wide unfocused bottom current, which might be related to the South China Sea Deep Water Circulation. Mass wasting deposits (predominantly slides and slumps) and submarine canyons developed on steeper slopes (>2°), where weaker alongslope currents are probably dominated by downslope depositional processes on these unstable slopes. The NNW–SSE oriented slope morphology changes from a three-stepped terraced outline (I–II–III) east of the investigated area, into a two-stepped terraced (I–II) outline in the middle, and into a unitary steep slope (II) in the west, which is consistent with the slope steepening towards the west. Such morphological changes may have possibly led to a westward simplification of composite deep-water sedimentary systems, from a depositional complex of contourite depositional systems, mass-wasting deposits and canyons, on the one hand, to only sliding and canyon deposits on the other hand.  相似文献   

17.
Seismic expression of contourites and related deposits: a preface   总被引:1,自引:0,他引:1  
Contourites are widespread throughout the deep sea, ranging from those that build up individually distinct bodies (mounded drifts) to those that occur closely interbedded with other deep-water facies. Although seismic data should not be used to make a firm identification of contourites without supporting evidence, much progress has been made in determining the combination of seismic criteria that best represent contourite deposits. With some modifications and additions, these criteria are in broad agreement with those recently proposed by Faugères and colleagues (1999). The papers in this special issue are mainly drawn from those presented at an IGCP workshop held in Trieste, Italy (October 2000), together with selected additions. Some of the new and important topics covered include: discussion of bottom-current controlled deposits on continental shelves and in large lakes (shallow-water and lacustrine `contourites'); the unique characteristics of high-latitude contourite systems that show interaction with turbidity current, debris flow and glacigenic processes; and the importance of local slope topography, developed as a result of synsedimentary tectonics and downslope mass movement, in focussing and shaping drift deposits (infill and fault-related drifts). An introduction to the powerful use of 3D seismic data in understanding contourite systems points the way towards important future research.  相似文献   

18.
利用2014–2017年在台湾海峡西部采集的多波束、单道地震剖面、沉积物粒度样品及海流监测资料,在厦门湾近岸陆架区识别出一系列海底沙波,并对沙波的形态特征、分布规律和沉积物组成特征进行分析,探讨水动力条件及其对沙波发育的影响。结果表明沙波发育区水深一般为10~60 m,地形较平缓开阔,坡度一般为0°~1°;平面上沙波区呈一系列NW-SE向条带状坡地,波脊呈线性或新月形,波脊轴线为SW-NE方向,沙波波长为120~800 m,波高2~12 m,沙波指数较大(>30)。地震剖面显示,波形形态主要分为三类:近对称性沙波、非对称性沙波及叠合沙波。近对称性沙纹的波高较大,沙波指数小;非对称性沙波的波长较长,沙波指数大;稳定沙波经后期水流“改造、激活”形成叠合沙波。砂含量较高,沉积物类型以砂、粉砂质砂及砂质粉砂为主,多为细砂—中砂。厦门湾口外的近岸陆架区水动力较强,流系复杂,总体受浙闽沿岸流、南海表层流和黑潮分支的影响。本区为不正规半日潮,流速为0.3~0.7 m/s,落潮流以S向为主,涨潮流向以NNE向为主,潮流作用对沙波的发育和改造起重要影响。  相似文献   

19.
A multibeam bathymetric and high- (airgun and sparker) to very high-resolution (Topas) seismic study of the western slope of Hatton Bank (NE Atlantic), located between 600 m and 2,000 m water depth, has revealed a highly variable range of current-controlled morphological features. Two major seabed areas can be distinguished: (1) a non-depositional area corresponding to the top of the bank and (2) a depositional area in which the Hatton Drift has developed. Both areas are characterised by distinct morphologies associated either with rock outcrops and rocky ridges or with smooth surfaces, slides and bedforms controlled mainly by bottom currents interacting with the topography of the bank. The water depth separating the morphological areas probably coincides with the boundary of the Labrador Sea Water and the Lower Deep Water. Morphological features identified in the study area include contourite channels (moats, furrows and scours), fields of sediment waves, edges of contourite deposits, ponded deposits, scarps, gullies, ridges, depressions, slides and slide scars. These morphological features do not necessarily reflect present-day conditions but may have been associated with past current events, consistent with earlier interpretations.  相似文献   

20.
This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号