首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
全球范围内有植被定植的海岸带栖息地(红树林、盐沼和海草床)是巨大的沉积物有机碳碳库,同时也是自然生态系统中最密集的碳汇之一,在全球碳循环中发挥着重要作用。针对江苏盐城海岸盐沼湿地沉积物有机碳的研究,区域上的稀疏性和偏向性限制了其作为区域碳汇能力的可靠估计。本研究采用47个100 cm深沉积柱样的现场调查数据,探讨了江苏盐城海岸盐沼湿地沉积物有机碳含量、密度和储量特征。结果表明,0~100 cm深度沉积物有机碳平均含量和平均密度分别为1.68%和23.07 kg/m3,不同盐沼群落沉积物有机碳含量和密度存在一定的差异,其中有机碳平均含量大小排序依次为互花米草>芦苇>盐地碱蓬,有机碳密度排序为芦苇>互花米草>盐地碱蓬。总体而言,3种盐沼群落沉积物有机碳含量的垂向变化趋势与有机碳密度变化趋势具有一致性,芦苇和互花米草表聚性明显。沉积物有机碳含量与其理化性质有关,互花米草群落沉积物有机碳含量具有明显的粒度控制效应,而其他群落不显著。3种盐沼湿地类型0~100 cm深度沉积物总碳储量约为6195.27×103Mg C。研究成果揭...  相似文献   

2.
Tidal exchanges of nitrogen, phosphorus, and organic carbon by a high and a low elevation marsh in the Rhode River estuary were measured throughout the year. Both marshes tended to import particulate matter and export dissolved matter, although they differed in the fluxes of certain nutrients. Compared with tidal exchanges, bulk precipitation was a major source of ammonia and nitrate and a minor source of other nutrients. There was a net retention of nutrients by the portion of the Rhode River that included both marshes and a mudflat. However, the marshes accounted for only 10% of the phosphorus retention and 1% of the nitrogen retention while they released organic carbon amounting to 20% of the retention. This suggests that the mudflat acted as a sink for nutrients. The primary role of the marshes seems to be transformation of particulate to dissolved nutrients rather than nutrient retention or release.  相似文献   

3.
Direct measurements of CO2 fluxes were made in salt, brackish and freshwater marshes and parallel adjacent open water areas in Barataria Basin, Louisiana. Vertical flux density was determined by monitoring the accumulation of CO2 in aluminum chambers placed over the water or sediment surfaces. Annual CO2 fluxes were 418, 180 and 618 g Cm?2 from the salt, brackish and freshwater marsh, respectively. Water bodies adjacent to the marsh evolved 103, 54 and 242 g CO2-Cm?2yr?1 to the atmosphere from saline, brackish and freshwater lakes, respectively. The role these marshes play in serving as a major carbon sink was determined from the carbon content of the sediment, vertical accretion rates and the bulk density of the sediment. Accretion rates were calculated from the depth in the sediment of the 1963 horizon, the year of peak 137Cs fallout. Net carbon accumulation was essentially the same in all three marshes; 183, 296 and 224 g Cm?2yr?1 from the salt, brackish and fresh marsh, respectively. Data presented suggest a limited net export of carbon from these coastal marshes. A large percentage of fixed carbon remained on the marsh, being immobilized in accretionary processes or lost to the atmosphere as CO2.  相似文献   

4.
Salt marshes accrete both organic and inorganic sediments. Here we present analytical and numerical models of salt marsh sedimentation that, in addition to capturing inorganic processes, explicitly account for above- and belowground organic processes including root growth and decay of organic carbon. The analytical model is used to examine the bias introduced by organic processes into proxy records of sedimentation, namely 137Cs and 210Pb. We find that accretion rates estimated using 210Pb will be less than accretion rates estimated using the 137Cs peak in steadily accreting marshes if (1) carbon decay is significant and (2) data for 210Pb extend below the 137Cs peak. The numerical model expands upon the analytical model by including belowground processes such as compaction and root growth, and by explicitly tracking the evolution of aboveground biomass and its effect on sedimentation rates. Using the numerical model we explore how marsh stratigraphy responds to sediment supply and the rate of sea-level rise. It is calibrated and tested using an extensive data set of both marsh stratigraphy and measurements of vegetation dynamics in a Spartina alterniflora marsh in South Carolina, USA. We find that carbon accumulation in marshes is nonlinearly related to both the supply of inorganic sediment and the rate of sea-level rise; carbon accumulation increases with sea-level rise until sea-level rise reaches a critical rate that drowns the marsh vegetation and halts carbon accumulation. The model predicts that changes in carbon storage resulting from changing sediment supply or sea-level rise are strongly dependent on the background sediment supply: if inorganic sediment supply is reduced in an already sediment poor marsh the storage of organic carbon will increase to a far greater extent than in a sediment-rich marsh, provided that the rate of sea-level rise does not exceed a threshold. These results imply that altering sediment supply to estuaries (e.g., by damming upstream rivers or altering littoral sediment transport) could lead to significant changes in the carbon budgets of coastal salt marshes.  相似文献   

5.
选择长江口盐沼典型高程部位(高潮滩上部、中潮滩下部、光滩)柱状样,采用小间隔(1 cm)取样,通过粒度、颗粒有机碳(POC)含量与碳稳定同位素组成(δ13C)分析,研究盐沼滩面发育的沉积和地球化学特征,结果表明,盐沼沉积物的粒度参数、POC含量与δ13C值随深度变化明显;在盐沼典型高程部位沉积物的颗粒组成与地球化学特征差异显著,有明显的滩面趋势,这与滩面的规律性演化密切相关.柱样有限深度内有明显的相对淤积期与冲刷作用相对较强时期的交替,表明长江口盐沼滩面发育过程并不是线性的.盐沼沉积物黏粒含量对POC含量和δ13C值的垂向变化及滩面趋势影响显著,表明流域来水来沙明显制约河口盐沼的发育.对于沉积动力环境复杂、冲淤过程频繁、厚度为毫米级的砂质纹层和泥质纹层发育的河口盐沼,在沉积和地球化学研究中采用小间隔取样的效果明显,有助于揭示盐沼发育过程的更多信息,为年际滩面冲淤演变研究提供新途径.  相似文献   

6.
赵鹏  姜书  石建斌 《海洋科学》2021,45(2):137-143
国际社会普遍认识到蓝碳在减缓和适应气候变化方面的价值,联合国政府间气候变化委员会(IPCC)于2019年9月25日发布的《气候变化中的海洋与冰冻圈特别报告》(SROCC)将蓝碳作为海洋自然过程减缓的重要内容,指出易于管理的海洋系统所有生物驱动的碳通量及存量可以被认为是蓝碳,并将红树林、海草床和滨海盐沼、大型海藻列为第四类海岸带蓝碳,并评述了气候变化对蓝碳的影响,蓝碳减缓、适应气候变化等内容,指出蓝碳是大部分沿海国家当前“无悔的选择”,SROCC对蓝碳发展具有里程碑意义。建议我国应加强蓝碳基础调查和研究,将蓝碳纳入国家温室气体清单和国家自主贡献,以蓝碳为抓手推动滨海湿地保护和恢复。  相似文献   

7.
地表高程监测在滨海蓝碳碳收支评估中的应用   总被引:1,自引:0,他引:1  
陈鹭真 《海洋与湖沼》2022,53(2):261-268
红树林、盐沼和海草床等滨海湿地生态系统是滨海蓝碳的重要组成,其沉积物碳埋藏远高于陆地生态系统,是地球上重要的碳库.沉积物碳埋藏速率(carbon accumulation rate,CAR)是衡量滨海蓝碳生态系统固碳能力的关键指标,其定量测量方法是蓝碳研究的前沿科学问题.文章系统阐述了国内外常用的CAR测定方法,重点综...  相似文献   

8.
Salt marshes are widely studied due to the broad range of ecosystem services they provide including serving as crucial wildlife habitat and as hotspots for biogeochemical cycling. Nutrients such as nitrogen (N), phosphorus (P), and carbon (C) are well studied in these systems. However, salt marshes may also be important environments for the cycling of another key nutrient, silica (Si). Found at the land–sea interface, these systems are silica replete with large stocks in plant biomass, sediments, and porewater, and therefore, have the potential to play a substantial role in the transformation and export of silica to coastal waters. In an effort to better understand this role, we measured the fluxes of dissolved (DSi) and biogenic (BSi) silica into and out of two tidal creeks in a temperate, North American (Rowley, Massachusetts, USA) salt marsh. One of the creeks has been fertilized from May to September for six years allowing us to examine the impacts of nutrient addition on silica dynamics within the marsh. High-resolution sampling in July 2010 showed no significant differences in Si concentrations between the fertilized and reference creeks with dissolved silica ranging from 0.5 to 108 μM and biogenic from 2.0 to 56 μM. Net fluxes indicated that the marsh is a point source of dissolved silica to the estuary in the summer with a net flux of approximately 169 mol h−1, demonstrating that this system exports DSi on the same magnitude as some nearby, mid-sized rivers. If these findings hold true for all salt marshes, then these already valuable regions are contributing yet another ecosystem service that has been previously overlooked; by exporting DSi to coastal receiving waters, salt marshes are actively providing this important nutrient for coastal primary productivity.  相似文献   

9.
To test the effects of site and successional stage on nitrogen fixation rates in salt marshes of the Venice Lagoon, Italy, acetylene reduction assays were performed with Salicornia veneta‐ and Spartina townsendii‐vegetated sediments from three restored (6–14 years) and two natural marshes. Average nitrogen fixation (acetylene reduction) rates ranged from 31 to 343 μmol C2H4·m?2·h?1 among all marshes, with the greatest average rates being from one natural marsh (Tezze Fonde). These high rates are up to six times greater than those reported from Southern California Spartina marshes of similar Mediterranean climate, but substantially lower than those found in moister climates of the Atlantic US coast. Nitrogen fixation rates did not consistently vary between natural and restored marshes within a site (Fossei Est, Tezze Fonde, Cenesa) but were negatively related to assayed plant biomass within the acetylene reduction samples collected among all marshes. Highest nitrogen fixation rates were found at Tezze Fonde, the location closest to the city of Venice, in both natural and restored marshes, suggesting possible site‐specific impacts of anthropogenic stress on marsh succession.  相似文献   

10.
滨海盐沼作为重要的湿地生态系统,有极大的社会、经济和生态价值。文章采用多源国产高空间分辨率卫星数据,结合野外现场调查,对广东和广西滨海盐沼开展遥感调查与分析。2019年年底,广东和广西滨海盐沼分布面积分别为1 258.00 hm2和1 450.36 hm2。广东14个沿海市除茂名市外均有滨海盐沼分布,珠海市、江门市、湛江市的分布面积分别为438.89 hm2、331.83 hm2和162.36 hm2,占广东滨海盐沼总面积的34.89%、26.38%和12.91%。广西3个沿海市均有滨海盐沼分布,北海市、防城港市和钦州市的分布面积分别为1 354.87 hm2、49.73 hm2和45.76 hm2,占广西滨海盐沼总面积的93.41%、3.43%和3.16%。广东和广西互花米草分布面积分别为327.96 hm2和1 312.02 hm2。广东海岸带互花米草主要分布在江门市、阳江市、湛江市和潮州市,分布面积分别为179.07 hm2、73.64 hm2、69.72 hm2和5.52 hm2。广东近5年海岸带互花米草面积较为稳定,没有大范围暴发式扩散。广西海岸带互花米草主要分布在北海市和钦州市,分布面积分别为1 309.04 hm2和2.98 hm2。广西海岸带互花米草面积比最早引种时增加了1 311.08 hm2。互花米草在广西北海东海岸、铁山港、廉州湾和大风江口不断扩张,廉州湾的互花米草仍处于种群扩散的暴发期,需加强对互花米草的监测和防控工作。  相似文献   

11.
The Cumberland Basin, a 118 km2 estuary at the head of the Bay of Fundy which has an average tidal range of about 11m, contains large tracts of salt marsh (15% of the area below highest high water). Low marsh (below about 0·9 m above mean high water) is composed almost exclusively of Spartina alterniflora while the vegetation on high marsh is more diverse but dominated by Spartina patens. Because of its higher elevation, high marsh is flooded infrequently for short periods by only extreme high tides. Low marsh is inundated much more frequently by water as much as 4m deep for periods as long as 4 h per tide. Temporal variability in the occurrence of extreme tides influences the flooding frequency of high marsh for any given month and year. Using a modification of Smalley's method, the mean annual net aerial primary production (NAPP) of low and high marsh is estimated to be 272 and 172 g C m?2, respectively. Vegetation turnover times average 1·0 and 2·0 y for low and high marsh, respectively. Because of abundant tidal energy, much of the low marsh production appears to be exported and distributed widely about the estuary. Since high levels of turbidity suppress phytoplankton production, salt marshes produce approximately half of the carbon fixed photosynthetically in the Cumberland Basin. It is concluded that salt marshes play a major ecological role in the Cumberland Basin.  相似文献   

12.
The macrobenthos is important in benthic remineralization processes; it represents a trophic link and is also often used as a bio-indicator in monitoring programs. Variations of the environmental parameters strongly influence the structure of the macrobenthic communities in the marshes and since macrobenthos is the most important food item for marsh-visiting fish species in the Schelde, the variation in food resources can have a strong effect on the higher trophic level. The present study deals with the variation in macrobenthic communities in different habitats of intertidal marshes along the salinity gradient and the differences between the marsh creeks and the intertidal part of the estuary. The study measured density and species richness together with the biomass, and sampled a large intertidal channel and a smaller creek within five marshes along the salinity gradient of the Schelde estuary every six weeks between May and October in 2000.  相似文献   

13.
Water flows, concentrations of total (TOC), dissolved (DOC), and particulate (POC) organic carbon and seston were monitored for 52 diel periods in the single creek draining a 270-ha Spartina patens-Distichlis spicata marsh on the upper Texas coast. Rainfall, creek water flows, and water levels in the creek and on the marsh were measured by recording instruments.Rainfall accounted for most marsh flooding, and water outflow was significantly correlated with both rainfall and marsh water level. Creek flows were predominantly outward because microtopographic features and dense vegetation restricted overmarsh water flows and thereby reduced tidal flooding while extending the time of precipitation runoff. Concentrations of organic carbon in water leaving the marsh were highest in spring and summer and averaged 25·62, 21·41 and 3·35 mg l?1 of TOC, DOC and POC, respectively. These were 9·34, 9·93 and 0·04 mg l?1, respectively, higher than bay water. Most POC was 0·3–28 μm in diameter. Seston > 28μ leaving the marsh was 95% amorphous material; the rest was plankton, grass particles and fecal pellets. Loss of organic carbon was directly correlated with net water flux, and thus rainfall accounted for most carbon loss. Net carbon loss averaged 196 kg TOC, 150 kg DOC and 32 kg POC per day. Net annual loss was 2·4–5·5% of net aerial primary productivity (NAPP), or 21·55-30·09 g TOC m?2 year?1.Export from this marsh falls within the range found for other marshes and the data collectively indicate that coastal marshes are not losing as much organic carbon as has been suggested by indirect measurements. The discrepancy between potential and realized export is explained by the fact that export is not a simple removal of excess detritus by tidal action but is a more complicated process mediated by the interaction of additional factors such as rainfall, vegetation structure, microtopographic variation and decomposition, which can serve to reduce the amount and quality of NAPP exported.  相似文献   

14.
Spartina species are commonly used for salt marsh manipulative projects, where aboveground and belowground biomasses are functional traits that play important roles, showing high spatial and temporal variations. This work analyses variations in AGB and BGB of Spartina maritima and abiotic environmental parameters along a chronosequence of six marshes created from 1997 to 2003 with disparate sediment dynamics, and adjacent natural marshes and unvegetated tidal flats. S. maritima behaved as an autogenic engineer, as its colonization of bare sediments yielded abiotic environmental changes: specifically, bed level rise accompanied by higher oxygenation and salinity. These modifications of the environment were site-specific, depending mainly on sedimentary dynamics. At the same time, abiotic environmental changes determined biomass production rates of S. maritima that were higher in more-accreting marshes; however, AGB was kept constant from early in its development (2 years). The increase in BGB with elevation seemed to be related to the inhibition of subsurface tissue development in anoxic sediments. Biomass accumulation and production varied markedly, depending on the spatial scale, indicating the relevance of the plot size chosen for the analysis of biomass of cordgrasses. Our results show that managers of salt marshes should consider sedimentary dynamics carefully when setting realistic expectations for success criteria of created and restored wetlands.  相似文献   

15.
One of the main effects of urbanization on coastal areas is through the discharge of sewage, which increases nutrient concentrations in the receiving environment. Salt marshes, like other coastal marine environments, are limited by nutrients, mainly nitrogen, and thus increasing nutrient loadings to a marsh may have consequences on marsh characteristics. We evaluated how the effects of nutrient enrichment in the form of sewage input, affected the vegetation structure and bird assemblages in a Spartina alterniflora salt marsh system near Bahía Blanca, Argentina (39° 01' S - 56° 25' W). Surveys of nutrient concentration, vegetation and birds were made at three different distances from the sewage discharge source. The concentration of ammonium, phosphate, and nitrate and the percent organic matter was higher in marshes nearest to the sewage discharge source. Bird composition and abundance, and vegetation physiognomy changed along a gradient of nutrient concentration. The increased habitat complexity found near the areas of higher nutrient concentration was exploited by birds that use neighboring interior and coastal habitats, including Spartina densiflora marshes, freshwater marshes and upland shrubby habitats. Our results show that local increases of nutrient inputs directly changed the vegetation physiognomy, and indirectly the composition and abundance of bird assemblages.  相似文献   

16.
A comparison between open marshes (un-reclaimed) and breached reclaimed land is made for sites within the Medway estuary, UK, in order to determine the effectiveness of these natural retreat sites in protecting the hinterland, and to use these findings as an analogue for modern managed retreat schemes. Two sites, who’s defences were breached at the turn of the century are studied to show rates of erosion experienced by the post-breach marsh, and compared to open marshes in the same system. This has shown that the rates of loss are greater in the open marshes over the same period of time, and that as an analogue for contemporary managed retreat sites, the breached sites have provided significant coastal protection to the hinterland for over 71 years, and, it could be argued, have survived natural erosive processes more effectively than open marshes.  相似文献   

17.
调查了苏鲁两省芦荡养鱼的部分单位。采用科学的管理,灌水和施肥措施,在芦荡内养鱼,芦苇和鱼都获丰收。一、年年获得丰收。由于在芦苇荡内养鱼能充分利用土地、光、热资源、鱼、芦年年获得丰收。二、芦苇荡内养鱼增产原因。 1.有水的芦苇荡是鱼栖息的好场所。 2.芦苇叶是鱼的好饲料。 3.鱼类是芦苇的好肥料。 4.通过挖养鱼沟改善了芦苇荡内的光照、温度和通风条件。三、芦苇荡内养鱼的技术。 1.挖集鱼沟。 2.选择鱼种。选草鱼、鳊、鲤、鲫、鲻、鲢等。 4.科学挖水。春天湿、夏天浅、秋天满、冬天干。  相似文献   

18.
Vertical accretion in tidal marshes is necessary to prevent submergence due to rising sea levels. Mineral materials may be more important in driving vertical accretion in tidal freshwater marshes, which are found near the heads of estuaries, than has been reported for salt marshes. Accretion rates for tidal freshwater marshes in North America and Europe (n = 76 data points) were compiled from the literature. Simple and multiple linear regression analyses revealed that both organic and mineral accumulations played a role in driving tidal freshwater marsh vertical accretion rates, although a unit mass of organic material contributed ∼4 times more to marsh volume than the same mass input of mineral material. Despite the higher mineral content of tidal freshwater marsh soils, this ability of organic matter to effectively hold water and air in interstitial spaces suggests that organic matter is responsible for 62% of marsh accretion, with the remaining 38% from mineral contributions. The organic material that helps to build marsh elevation is likely a combination of in situ production and organic materials that are deposited in association with mineral sediment particles. Regional differences between tidal freshwater marshes in the importance of organic vs. mineral contributions may reflect differences in sediment availability, climate, tidal range, rates of sea level rise, and local-scale factors such as site elevation and distance to tidal creeks. Differences in the importance of organic and mineral accumulations between tidal freshwater and salt marshes are likely due to a combination of factors, including sediment availability (e.g., proximity to upland sources and estuarine turbidity maxima) and the lability of freshwater vs. salt marsh plant production.  相似文献   

19.
Marsh vertical accretion via vegetative growth   总被引:1,自引:0,他引:1  
Coastal marshes accrete vertically in response to sea-level rise and subsidence. Inadequate accretion and subsequent conversion of coastal marshes to open water generally is attributed to inadequate mineral sedimentation because mineral sedimentation is widely assumed to control accretion. Using 137Cs dating to determine vertical accretion, mineral sedimentation, and organic matter accumulation, we found that accretion varied with organic accumulation rather than mineral sedimentation across a wide range of conditions in coastal Louisiana, including stable marshes where soil was 80% mineral matter. These results agreed with previous research, but no mechanism had been proposed to explain accretion via vegetative growth. In an exploratory greenhouse experiment, we found that flooding stimulated root growth above the marsh surface. These results indicated the need for additional work to determine if flooding controls accretion in some marshes by stimulating root growth on the marsh surface, rather than by mineral accumulation on the marsh surface. Restoration or management that focus on mineral sedimentation may be ineffective where a relationship between accretion and mineral sedimentation is assumed rather than tested.  相似文献   

20.
The effects of the reed,Phragmites australis (Trin.), growing in a brackish water lagoon, were studied in relation to the grain-size distribution of the substratum. At the salt marshes near the lagoon, the upper soils from the surface to a depth of 20 cm contained much silt-clay. These fine particles were found to be transferred from the river and fish ponds near the lagoon, and to be deposited when the tidal rhythm changed, that is, when the water current stopped. In addition, the fine particles, which were deposited on the bottom of the lagoon adjacent to the marshes, became resuspended as a result of wind-caused wave action, and then were transported and redeposited in the salt marshes at the flood tide. Since the reeds further reduced the water current caused by the waves and tide, the reeds were thought to promote redeposition of the resuspended matter. In other words, the reeds were considered to protect deposited and redeposited particles such as silt and clay from resuspension as a result of wave action by reducing the effects of waves and wind. These processes suggested that silt-clay will become abundant in the substratum of the salt marsh adjacent to the lagoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号