首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Verdes  P.F.  Parodi  M.A.  Granitto  P.M.  Navone  H.D.  Piacentini  R.D.  Ceccatto  H.A. 《Solar physics》2000,191(2):419-425
Two nonlinear methods are employed for the prediction of the maximum amplitude for solar cycle 23 and its declining behavior. First, a new heuristic method based on the second derivative of the (conveniently smoothed) sunspot data is proposed. The curvature of the smoothed sunspot data at cycle minimum appears to correlate (R 0.92) with the cycle's later-occurring maximum amplitude. Secondly, in order to predict the near-maximum and declining activity of solar cycle 23, a neural network analysis of the annual mean sunspot time series is also performed. The results of the present study are then compared with some other recent predictions.  相似文献   

2.
我们对第12周至第22周的太阳黑子月平均面积数进行统计分析,并与相应的太阳黑子月平均数相比较,结果表明太阳黑子月平均面积数活动周与太阳黑子月平均数活动周有一定的关系。在多数情况下,太阳黑子出现最大值的时间与太阳黑子面积数出现最大值的时间上不一致;太阳黑子平滑月平均数活动周上升期与太阳黑子平滑月平均面积数上升期在大多数情况下不相同;太阳黑子平滑月平均数活动周平均效果的瓦德迈尔效应(Waldmeiereffect)一般要比太阳黑子平滑平均面积数的活动周明显;文中还对太阳黑子平滑月平均面积数活动周的特征进行了分析。  相似文献   

3.
Guiqing  Zhang  Huaning  Wang 《Solar physics》1999,188(2):397-400
Instantaneous predictions of the maximum monthly smoothed sunspot number in solar cycle 23 have been made with a linear regressive model, which gives the predicted maximum value as a function of the smoothed sunspot numbers corresponding to a given month from the minimum in all preceding cycles. These predictions indicate that the intensity of solar activity in the current cycle will be at an average level.  相似文献   

4.
In this paper, we used the same four-parameter function as Hathaway, Wilson, and Reichmann (1994) proposed and studied the temporal behavior of sunspot cycles 12–22. We used the monthly averages of sunspot areas and their 13-point smoothed data. Our results show the following. (1) The four-parameter function may reduce to a function of only two parameters. (2) As a cycle progresses, the two-parameter function can be accurately determined after 4–4.5 years from the start of the cycle. A good prediction can be made for the timing and size of the sunspot maximum and for the behavior of the remaining 5–10 years of the cycle. (3) The solar activity in the remaining and forthcoming years of cycle 23 is predicted. (4) The smoothed monthly sunspot areas are more suitable to be employed for prediction at the maximum and the descending period of a cycle, whereas at the early period of a cycle the (un-smoothed) monthly data are more suitable.  相似文献   

5.
Ramesh  K.B. 《Solar physics》2000,197(2):421-424
An improved correlation between maximum sunspot number (SSNM) and the preceding minimum (SSNm) is reported when the monthly mean sunspot numbers are smoothed with a 13-month running window. This relation allows prediction of the amplitude of a sunspot cycle by making use of the sunspot data alone. The estimated smoothed maximum sunspot number (126±26) and time of maximum epoch (second half of 2000) of cycle 23 are in good agreement with the predictions made by some of the precursor methods.  相似文献   

6.
Reviews of long-term predictions of solar cycles have shown that a precise prediction with a lead time of 2 years or more of a solar cycle remains an unsolved problem. We used a simple method, the method of similar cycles, to make long-term predictions of not only the maximum amplitude but also the smoothed monthly mean sunspot number for every month of Solar Cycle 23. We verify and compare our prediction with the latest available observational results.  相似文献   

7.
P. Lantos 《Solar physics》2006,236(2):399-413
Medium-term and long-term prediction of the magnitude of the maximum of smoothed sunspot numbers, and thus of the solar cycle time profile, is a basic input for many space environment predictions. The widely used statistical technique of McNish and Lincoln is systematically compared to predictions based on precursors, either related to the cycle time profile characteristics or to geomagnetic indices. It is shown that when cycles 13 – 23 are considered, all prediction methods give, at least for one of the cycles, an error much larger than 20%, an inadequate result. None of the methods is fully reliable. Thus, it is proposed to combine the predictions based on precursors and to improve McNish and Lincoln results with them in order to limit such rare but large errors and to improve significantly the reliability of the predictions performed in the course of the solar cycle ascending phase.  相似文献   

8.
During sunspot cycles 20 and 21, the maximum in smoothed 10.7-cm solar radio flux occurred about 1.5 yr after the maximum smoothed sunspot number, whereas during cycles 18 and 19 no lag was observed. Thus, although 10.7-cm radio flux and Zürich suspot number are highly correlated, they are not interchangeable, especially near solar maximum. The 10.7-cm flux more closely follows the number of sunspots visible on the solar disk, while the Zürich sunspot number more closely follows the number of sunspot groups. The number of sunspots in an active region is one measure of the complexity of the magnetic structure of the region, and the coincidence in the maxima of radio flux and number of sunspots apparently reflects higher radio emission from active regions of greater magnetic complexity. The presence of a lag between sunspot-number maximum and radio-flux maximum in some cycles but not in others argues that some aspect of the average magnetic complexity near solar maximum must vary from cycle to cycle. A speculative possibility is that the radio-flux lag discriminates between long-period and short-period cycles, being another indicator that the solar cycle switches between long-period and short-period modes.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

9.
In this paper we present a general framework for forecasting the smoothed maximum level of solar activity in a given cycle, based on a simple understanding of the solar dynamo. This type of forecasting requires knowledge of the Sun's polar magnetic field strength at the preceeding activity minimum. Because direct measurements of this quantity are difficult to obtain, we evaluate the quality of a number of proxy indicators already used by other authors which are physically related to the Sun's polar field. We subject these indicators to a rigorous statistical analysis, and specify in detail the analysis technique for each indicator in order to simplify and systematize reanalysis for future use. We find that several of these proxies are in fact poorly correlated or uncorrelated with solar activity, and thus are of little value for predicting activity maxima.We also present a scheme in which the predictions of the individual proxies are combined via an appropriately weighted mean to produce a compound prediction. We then apply the scheme to the current cycle 22, and estimate a maximum smoothed International sunspot number of 171 ± 26, which can be expressed alternatively as a smoothed 2800 MHz radio flux (F 10.7) of 211 ± 23 × (10–22 Wm–2Hz–1), or as a smoothed sunspot area of 2660 ± 430 millionths of a solar disk. Once the actual maximum for cycle 22 has been established, we will have both additional statistics for all the proxy indicators, and a clearer indication of how accurately the present scheme can predict solar activity levels.  相似文献   

10.
Shastri  S. 《Solar physics》1998,180(1-2):499-504
A new technique based on multivariate analysis is described which allows for the prediction of the size or maximum amplitude of cycle 23. The technique uses the number of geomagnetic disturbances at selected times during the decline of cycle 22 (as precursors) to predict a maximum of about 152 (in terms of smoothed monthly mean sunspot numbers) for cycle 23. On the basis of this technique, hindcasts for cycles 17–22 are shown to agree with observed values within 5%.  相似文献   

11.
The time of the minimum of the solar cycle is usually determined by the minimum of the average monthly sunspot number smoothed over 13 months, i.e., with a large time delay, not earlier than eight months after the event. A new optimal method which allows one to establish the time of the minimum of the cycle as early as four months after the event is proposed. In the new method, the indicator of the time of a cycle minimum is the time of reaching the minimum level of average monthly values of the solar constant after which four succeeding values of this constant are larger than the pre-ceding minimum level. It is shown that the minimum of the past 23rd solar cycle took place in July, and the new 24th cycle started in August 2008.  相似文献   

12.
利用压强改正莫斯科中子监测值,对第23太阳活动周的未来发展趋势作了预测,推测第 23周太阳活动和第 22周相当,约在 2001年达到 151± 16的极大月平均黑子相对数.  相似文献   

13.
We use a precursor technique based on the geomagneticaa index during the decline (last 30%) of solar cycle 22 to predict a peak sunspot number of 158 (± 18) for cycle 23, under the assumption that solar minimum occurred in May 1996. This method appears to be as reliable as those that require a year of data surrounding the geomagnetic minimum, which typically follows the smoothed sunspot minimum by about six months.  相似文献   

14.
Long-Term Sunspot Number Prediction based on EMD Analysis and AR Model   总被引:2,自引:0,他引:2  
The Empirical Mode Decomposition (EMD) and Auto-Regressive model (AR) are applied to a long-term prediction of sunspot numbers. With the sample data of sunspot numbers from 1848 to 1992, the method is evaluated by examining the measured data of the solar cycle 23 with the prediction: different time scale components are obtained by the EMD method and multi-step predicted values are combined to reconstruct the sunspot number time series. The result is remarkably good in comparison to the predictions made by the solar dynamo and precursor approaches for cycle 23. Sunspot numbers of the coming solar cycle 24 are obtained with the data from 1848 to 2007, the maximum amplitude of the next solar cycle is predicted to be about 112 in 2011-2012.  相似文献   

15.
本文给出了太阳23 周开始时间的确定、从开始到现在近两年间太阳活动的状况以及23周上升期间的一些特点。分析表明,1996 年10 月是23 周的第一个月,它的月平滑值是8 .8 ;23 周的太阳活动虽然可能是高活动周,例如,国际推荐值为2000 年3 月的160 ,但它可能不会超过前两周。根据上升期太阳活动的一些特征,还给出了在23 周峰年联测和空间灾害性扰动事件预报和预报方法研究中应注意的几个问题  相似文献   

16.
利用已知的22个完整太阳活动周平滑月平均黑子数的记录,对正在进行的太阳周发展趋势给出了预测方法,并应用于第23周,同时与其他预报方法的结果进行了比较。  相似文献   

17.
Precursor techniques, in particular those using geomagnetic indices, often are used in the prediction of the maximum amplitude for a sunspot cycle. Here, the year 2008 is taken as being the sunspot minimum year for cycle 24. Based on the average aa index value for the year of the sunspot minimum and the preceding four years, we estimate the expected annual maximum amplitude for cycle 24 to be about 92.8±19.6 (1-sigma accuracy), indicating a somewhat weaker cycle 24 as compared to cycles 21 – 23. Presuming a smoothed monthly mean sunspot number minimum in August 2008, a smoothed monthly mean sunspot number maximum is expected about October 2012±4 months (1-sigma accuracy).  相似文献   

18.
A few prediction methods have been developed based on the precursor technique which is found to be successful for forecasting the solar activity. Considering the geomagnetic activity aa indices during the descending phase of the preceding solar cycle as the precursor, we predict the maximum amplitude of annual mean sunspot number in cycle 24 to be 111 ± 21. This suggests that the maximum amplitude of the upcoming cycle 24 will be less than cycles 21–22. Further, we have estimated the annual mean geomagnetic activity aa index for the solar maximum year in cycle 24 to be 20.6 ± 4.7 and the average of the annual mean sunspot number during the descending phase of cycle 24 is estimated to be 48 ± 16.8.  相似文献   

19.
S. Bravo  G. Stewart 《Solar physics》1994,154(2):377-384
A very good correlation between the evolution of polar coronal hole size and sunspot number half a solar cycle later was found by Bravo and Otaola for solar cycle 21. In this paper we use a more complete set of data to reanalyse the relationship for solar cycle 21 and investigate the same relationship for solar cycle 22. We find that the complete set of data for cycle 21 yields a slightly different time shift for the best correlation between sunspots and holes and that the time shift for cycle 22 is different from that of cycle 21. However, because of limited availability of data of cycle 22, we consider it necessary to wait until the end of this cycle in order to decide if the difference is statistically significant or not. We also found that the time between successive peaks of smoothed polar hole area and smoothed sunspot number is the same in both cycles. This may provide a useful tool for the forecasting of future sunspot maxima. The constant of proportionality between polar coronal hole area and sunspot number can be seen to be different in both cycles. We discuss this difference and interpret it in terms of a different magnitude of the polar field strength in the two cycles.  相似文献   

20.
An Estimate for the Size of Sunspot Cycle 24   总被引:1,自引:0,他引:1  
R. P. Kane 《Solar physics》2013,282(1):87-90
For the sunspot cycles in the modern era (cycle?10 to the present), the ratio of R Z(max)/R Z(36th month) equals 1.26±0.22, where R Z(max) is the maximum amplitude of the sunspot cycle?using smoothed monthly mean sunspot number and R Z(36th month) is the smoothed monthly mean sunspot number 36 months after cycle?minimum. For the current sunspot cycle?24, the 36th month following the cycle?minimum occurred in November 2011, measuring?61.1. Hence, cycle?24 likely will have a maximum amplitude of about 77.0±13.4 (the one-sigma prediction interval), a value well below the average R Z(max) for the modern era sunspot cycles (about 119.7±39.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号