首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Lunar meteorite Northwest Africa 773 (herein referred to as NWA773) is a breccia composed predominantly of mafic volcanic components, including a prominent igneous clast lithology. The clast lithology is an olivine-gabbro cumulate, which, on the basis of mineral and bulk compositions, is a hypabyssal igneous rock related compositionally to volcanic components in the meteorite. The olivine-gabbro lithology exhibits cumulus textures and, in our largest section of it, includes some 48% olivine (Fo64 to Fo70, average Fo67), 27% pigeonite (En60Fs24Wo16 to En67Fs27Wo6), 11% augite (En50Fs17Wo33 to En47Fs13Wo40), 2% orthopyroxene (En70Fs26Wo4), 11% plagioclase (An80 to An94), and trace barian K-feldspar, ilmenite, Cr-spinel, RE-merrillite, troilite, and Fe-Ni metal. The Mg/Fe ratios of the mafic silicates indicate equilibration of Fe and Mg; however, the silicates retain compositional variations in minor and trace elements that are consistent with intercumulus crystallization. Accessory mineralogy reflects crystallization of late-stage residual melt. Both lithologies (breccia and olivine cumulate) of the meteorite have very-low-Ti (VLT) major-element compositions, but with an unusual trace-element signature compared to most lunar VLT volcanic compositions, i.e., relative enrichment in light REE and large-ion-lithophile elements, and greater depletion in Eu than almost all other known lunar volcanic rocks. The calculated composition of the melt that was in equilibrium with pyroxene and plagioclase of the cumulate lithology exhibits a KREEP-like REE pattern, but at lower concentrations. Melt of a composition calculated to have been in equilibrium with the cumulate assemblage, plus excess olivine, yields a major-element composition that is similar to known green volcanic glasses. One volcanic glass type from Apollo 14 in particular, green glass B, type 1, has a very low Ti concentration and REE characteristics, including extremely low Eu concentration, that make it a candidate parent melt for the olivine-gabbro cumulate. We infer an origin for the parent melt of NWA773 volcanic components by assimilation of a trace-element-rich partial or residual melt by a magnesian, VLT magma deep in the lunar crust or in the mantle prior to transportation to the near-surface, accumulation of olivine and pyroxene in a shallow chamber, eruption onto a volcanic surface, and incorporation of components into local, predominantly volcanic regolith, prior to impact mixing of the volcanic terrain and related hypabyssal setting, and ejection from the surface of the Moon. Volcanic components such as these probably occur in the Oceanus Procellarum region near the site of origin of the green volcanic glasses found in the Apollo 14 regolith.  相似文献   

2.
Orthopyroxene-magnetite intergrowths (symplectites), partly or completely surrounding olivine, are described from the Wateranga layered mafic intrusion, Queensland, Australia. The texture occurs in unmetamorphosed plagioclase-rich norites, olivine gabbros and troctolites in which the primary minerals are olivine (Fo63–69) orthopyroxene (En66–72), clinopyroxene (Wo42En42Fs16), plagioclase (An49–65), hornblende, ilmenite, magnetite and sulphides. Symplectites range from incipient fine grained developments around corroded olivine grains to intricately formed pseudomorphs after olivine and slow a consistent orthopyroxene/magnetite ratio. Orthopyroxene in symplectites is commonly in optical continuity with surrounding magnetite-free orthopyroxene rims. Later intercumulus hornblended has replaced orthopyroxene. There is marked chemical similarity between primary and simplectite, orthopyroxenes and magnetites. Textures similar to those described here are considered elsewhere to have formed at a late magmatic stage or by solid state reactions involving subsolidus oxidation of olivine. In the Wateranga intrusion textural relations, the chemical similarity between primary and symplectite phases, and the consistent volume proportions of magnetite and orthopyroxene in the intergrowths suggest that they developed during late magmatic crystallization.  相似文献   

3.
Portions of the Gunflint Iron Formation, originally a ferruginoussediment, were metamorphosed by the intrusion of the DuluthComplex to assemblages containing: pigeonite (Wo10En24Fs66)+olivine(Fo13Fa37)+Fe-Ti oxide (Mt62Usp34Hc4)+plagioclase (An94Ab6)+vapor+augite (Wo40En20Fs40) or cummingtonite Fe/(Fe+Mg) {smalltilde} 0.69; quartz was present but probably was not in equilibriumwith olivine. Comparison with synthetic phase-equilibrium studiesindicate conditions of initial recrystallization of T 800 °C,Ptotal 2kb, fo2 slightly below that of the pure fayalite-magnetite-quartzassemblage, and PH2O < Ptotal. During the slow cooling process following initial recrystallization,the phases present underwent a complex series of exsolution,inversion, oxidation, and hydration reactions. Pigeonite initiallyexsolved augite along (001), then inverted to orthopyroxene,which then exsolved augite along (100). The augite exsolvedonly pigeonite on (001) during its cooling history. The Fe-Tioxide for the most part oxidized to an intergrowth of magnetiteand ilmenite, although unoxidized portions later exsolved ulvöspinel.Cummingtonite exsolved actinolite, forming irregular patchesof the latter. Olivine, orthopyroxene, and augite reacted withplagioclase to form retrograde amphiboles. Orthopyroxene had difficulty nucleating during this slow coolingprocess, forming only at widely spaced points in mosaics ofprimary pigeonite grains, and never nucleating within primaryaugite grains. The resulting orthopyroxene grains are much largerthan the original pigeonite grains.  相似文献   

4.
The Larkman Nunatak (LAR) 06319 olivine-phyric shergottite is composed of zoned megacrysts of olivine (Fo76-55 from core to rim), pyroxene (from core to rim En70Fs25Wo5, En50Fs25Wo25, and En45Fs45Wo10), and Cr-rich spinel in a matrix of maskelynite (An52Ab45), pyroxene (En30-40Fs40-55Wo10-25,), olivine (Fo50), Fe-Ti oxides, sulfides, phosphates, Si-rich glass, and baddeleyite. LAR 06319 experienced equilibration shock pressures of 30-35 GPa based on the presence of localized shock melts, mechanical deformation of olivine and pyroxene, and complete transformation of plagioclase to maskelynite with no relict birefringence. The various phases and textures of this picritic basalt can be explained by closed system differentiation of a shergottitic melt. Recalculated parent melt compositions obtained from melt inclusions located in the core of the olivine megacrysts (Fo>72) resemble those of other shergottite parent melts and whole-rock compositions, albeit with a lower Ca content. These compositions were used in the MELTS software to reproduce the crystallization sequence. Four types of spinel and two types of ilmenite reflect changes in oxygen fugacity during igneous differentiation. Detailed oxybarometry using olivine-pyroxene-spinel and ilmenite-titanomagnetite assemblages indicates initial crystallization of the megacrysts at 2 log units below the Fayalite-Magnetite-Quartz buffer (FMQ - 2), followed by crystallization of the groundmass over a range of FMQ - 1 to FMQ + 0.3. Variation is nearly continuous throughout the differentiation sequence.LAR 06319 is the first member of the enriched shergottite subgroup whose bulk composition, and that of melt inclusions in its most primitive olivines, approximates that of the parental melt. The study of this picritic basalt indicates that oxidation of more than two log units of FMQ can occur during magmatic fractional crystallization and ascent. Some part of the wide range of oxygen fugacities recorded in shergottites may consequently be due to this process. The relatively reduced conditions at the beginning of the crystallization sequence of LAR 06319 may imply that the enriched shergottite mantle reservoir is slightly more reduced than previously thought. As a result, the total range of Martian mantle oxygen fugacities is probably limited to FMQ − 4 to − 2. This narrow range could have been generated during the slow crystallization of a magma ocean, a process favored to explain the origin of shergottite mantle reservoirs.  相似文献   

5.
Ultramafic-mafic rocks from Makrirrakhi, Central Greece exhibit features of an original ophiolite sequence which contains depleted mantle material, ultramafic containing partial melt textures and possibly the mafic pluton which resulted from the coalescing of these partial melt segregations. Considerable mineralogical variation exists: unzoned olivine crystals range in composition from Fo78–84 (mafics) to Fo88–92 (ultramafics), plagioclases An64–79 (mafics) to An80–90 (ultramafics) and spinel varies from a chromian spinel (ultramafics) to a more aluminous-titaniferous spinel (mafics). Pyroxenes from the ultramafics display a limited range: En89–92 Fs9–8 Wo0–2 (orthopyroxene) and En48–54 Fs1–10 Wo38–50 (clinopyroxene). Mafic rocks display a greater range being richer in ferrosilite En36–65 Fs3–20 Wo33–51. Pyroxenes from within the partial melt segregations have chemical affinities with those from the gabbrotroctolite series. A model of partial melt within the upper mantle, and, a set of criteria to distinguish partial melt textures from cumulate textures, are developed from analytical data and textural evidence.  相似文献   

6.
Diffuse streaks in diffraction patterns of synthetic pyroxene single crystals at elevated temperatures are used to determine which reactions are initiated and how they proceed. The samples investigated are a) a host orthopyroxene (Wo4En83Fs13) containing oriented pigeonite (Wo6En78Fs16) parallel to (100) and b) a pigeonite (Wo8En75Fs17). The maximum temperatures were 820° C and 1,015° C, respectively. No partial melting occurs at these temperatures, all reactions are in the subsolidus. In case a) augite is formed parallel to the (001) plane of pigeonite, but the augite is not exsolved by the pigeonite. This is proved by the absence of the obligatory streaks between corresponding reflections in highly resolved precession photographs. Instead, there are streaks from augite to the corresponding reflections of the host orthopyroxene. Example b) demonstrates that the temperature of the high-low transformation of pigeonite is very sensitive to the Ca content and clearly depends on the exsolution of augite. This augite is oriented parallel to (100) of pigeonite, not to (001). Both the high and the low pigeonite are present over a range of ~150° C, while the exsolution of augite continues. Simultaneously, orthopyroxene is also formed sharing (100) of pigeonite. There seems to be an indication that only low pigeonite inverts to orthopyroxene.  相似文献   

7.
The 160 km2 Caledonian Fongen-Hyllingen complex is an extremelydifferentiated, layered, basic intrusion, synorogenically emplacedat 5–6 kb in the allochthonous Trondheim nappe complex,situated in the Trondheim region of Norway. A zone of gabbroic rocks without rythmic layering usually occursalong the margin and a supposed feeder to at least part of thecomplex is preserved. A wide variety of magmatic sedimentarystructures are present in the c. 10,000 m thick sequence ofrhythmically layered rocks which vary from olivine-picotitecumulates at the base to quartz-bearing ferrosyenites at thetop. Mineral compositions, fractionation trends, and the compositionof feeder rocks suggest a tholeiitic parent. Mineral compositions cover extreme ranges. Olivine varies fromFo86·2 to Fo0·2 with a hiatus between about Fo71and Fo61. Plagioclase ranges from An79·5 to An1·5,albite coexisting with orthoclase microperthite in the finaldifferentiates. Cumulus Ca-poor pyroxene (Wo2.4En66.8Fs30.8-Wo2·0En17·0Fs81·0)first shows sporadic inversion from pigeonite at the Fe-richcomposition of Fs67 and the final Ca-poor pyroxenes are replacedby magmatic grunerite which reaches an Mg: Fe ratio of 12:88.Ca-rich pyroxenes (Wo44·7En43·8Fs11·5-Wo47·0En0Fs53·0)are highly calcic and have a slight Ca-minimum in the earlystages, unrelated to the disappearance of Ca-poor pyroxene.Calcic amphibole, a constant intercumulus phase in most of thecomplex, becomes a cumulus phase in the later stages and variesfrom titanian-pargasite to ferro-edenite. Magnetite and ilmenitejoin the cumulate assemblage at Fo55 and ilmenite persists intothe final quartz-bearing ferrosyenite where it shows replacementby sphene. Apatite, biotite, zircon, quartz, K-feldspar andallanite join the final extreme differentiates in the namedsequence. The fractionation trend is, in many respects, transitionalbetween those typical of the tholeiitic and calc-alkaline series,and is interpreted as reflecting crystallization under moderate,increasing PH2O. Cryptic layering shows several reversals to higher temperatureassemblages with increasing stratigraphic height. Successivereversals are to irregular compositions and measured in termsof olivine composition, can be up to about 30 mole per centFo. The minimum stratigraphic thickness to include the entirefractionation range is reduced to about 2200 m after ‘removal’of the compositional overlaps due to the reversals. Thus roughlythree-quarters of the present cumulate stratigraphic sequencerepresents magma replenishment. A mechanism involving the mixingof fresh magma batches with the residual, differentiated magmafrom the previous influx, is envisaged. The periodic influxof fresh magma took place into a chamber which was probablyclosed to the exit of material.  相似文献   

8.
WIEBE  R.A. 《Journal of Petrology》1986,27(6):1253-1275
Nodules and xenocrysts dominated by high-A1 orthopyroxene occurin Proterozoic basaltic dikes that cut the Nain anorthositecomplex, Labrador. This pyroxene (En73–68, Al2O3 = 6.5–4.5)lacks exsolution and occurs both as anhedral xenocrysts up to10 cm in diameter and with euhedral plagioclase (An55) in ophiticnodules. Rarely, olivine (Fo70) occurs with orthopyroxene andAl-spinel with plagioclase. Scarce, more Fe-rich nodules containtwo pyroxenes (orthopyroxene + pigeonite and pigeonite+augite)and coarse intergrowths of ilmenite and Ti-rich magnetite. Pyroxenepairs yield temperatures of 1250? to 1170 ?C; coexisting oxidelamellae yield temperatures between 1145? and 1120 ?C. The highsubsolidus temperatures of the nodules contrasts with the lowtemperature of the host anorthosite at the time of dike emplacementand indicates a deep source for the nodules. Coexisting olivine(Fo70) and plagioclase (An54) suggest a maximum pressure ofabout 11 kb.The dominant orthopyroxene in these nodules is nearlyidentical in composition to the high-Al orthopyroxene megacrystswith exsolved plagioclase (HAOM) found in most Proterozoic anorthosites,and the ophitic nodules have textures similar to ophitic occurrencesof HAOM in anorthosite. Rafting of cotectic nodules from thelower crust can explain occurrences of HAOM in shallow levelanorthosites.The nodules and xenocrysts have compositions consistentwith crystallization from magmas that were parental to the anorthosites.They lend support to models which derive anorthosites by fractionalcrystallization of basaltic magma near the base of the crust.  相似文献   

9.
We report on the petrology and geochemistry of the Northwest Africa 2737 (NWA 2737) meteorite that was recovered from the Morrocan Sahara in 2000. It is the second member of the chassignite subclass of the SNC (Shergotitte-Nakhlite-Chassignite) group of meteorites that are thought to have originated on Mars. It consists of black olivine- and spinel-cumulate crystals (89.7 and 4.6 wt%, respectively), with intercumulus pyroxenes (augite 3.1 wt% and pigeonite-orthopyroxene 1.0 wt%), analbite glass (1.6 wt%) and apatite (0.2 wt%). Unlike Chassigny, plagioclase has not been observed in NWA 2737. Olivine crystals are rich in Mg, and highly equilibrated (Fo = 78.7 ± 0.5 mol%). The black color of olivine grains may be related to the strong shock experienced by the meteorite as revealed by the deformation features observed on the macroscopic to the atomic scale. Chromite is zoned from core to rim from Cr83.4Uv3.6Sp13.0 to Cr72.0Uv6.9Sp21.1. Pyroxene compositional trends are similar to those described for Chassigny except that they are richer in Mg. Compositions range from En78.5Wo2.7Fs18.8 to En76.6Wo3.2Fs20.2 for the orthopyroxene, from En73.5Wo8.0Fs18.5 to En64.0Wo22.1Fs13.9for pigeonite, and from En54.6Wo32.8Fs12.6 to En46.7Wo44.1Fs9.2 for augite. Bulk rock oxygen isotope compositions confirm that NWA 2737 is a new member of the martian meteorite clan (Δ17O = 0.305 ± 0.02‰, n = 2). REE abundances measured in NWA 2737 mineral phases are similar to those in Chassigny and suggest a genetic relationship between these two rocks. However, the parent melt of NWA 2737 was less evolved and had a lower Al abundance.  相似文献   

10.
This paper considers the results of mineralogical, geochemical, and geochronological studies of leucogabbroids of the Karagai Massif located within the Lesser Khingan superterrane of the Central Asian fold belt. The main features of the rock-forming minerals of the gabbroids are the high calcium content of the clinopyroxene corresponding in composition to diopside-salite (Wo48–51En33–39Fs11–16) or augite (Wo22–35En46–47Fs18–33), the high basicity of the plagioclase (An90–92), and the presence of primary magmatic magnesian hornblende. The age of the massif was determined by U-Pb zircon dating as 257 ± 1 Ma. The compositional peculiarities of the gabbroids indicate that they were most probably formed in island-arc or active continental margin settings. With allowance for the existing geodynamic reconstructions and the data obtained in the present study, the formation of the Late Paleozoic gabbroids of the Karagai Massif was presumably related to the final stages of the subduction processes that preceded the collapse of the terranes of the eastern Central Asian fold belt.  相似文献   

11.
Tertiary volcanism in the İkizce region at the western edge of the eastern Pontides paleo-magmatic arc is represented by basaltic and andesitic rocks associated with sediments deposited in a shallow basin environment. The basaltic rocks contain plagioclase (An58–80), olivine (Fo82–84), clinopyroxene (Wo44–48En35–42Fs7–17), hornblende (Mg# = 0.68–0.76) phenocrysts, and magnetite microcrysts, whereas the andesitic rocks include plagioclase (An25–61), clinopyroxene (Wo46–49En38–43Fs11–13), hornblende (Mg# = 0.48–0.81), biotite (Mg# = 0.48–0.60) phenocrysts, titanomagnetite, apatite, and zircon microcrysts.Geochemical data indicate magmatic evolution from tholeiitic-alkaline transitional to calc-alkaline characteristics with medium-K contents. The geochemical variation in the rocks can be explained by fractionation of common mineral phases such as clinopyroxene, olivine, hornblende, plagioclase, magnetite, and apatite. The trace elements’ distributions of the volcanic rocks show similarities to those of E-Type MORB, have a shape that is typical of rocks from subduction-related tectonic setting with enrichment in LILE and to a lesser extent in LREE, but depletion in HFSE. The rocks evolved from a parental magma derived from an enriched source formed by subduction induced metasomatism of basaltic rocks, the latter formed through clinopyroxene ± olivine controlled fractionation in a high level magma chamber. The andesitic rocks developed through hornblende ± plagioclase controlled fractionation in shallow level magma chamber(s).  相似文献   

12.
Exsolved augite pyroxenes from the ferromonzonite border facies of the ferrosyenite in the Laramie Anorthosite Complex have been studied with the transmission electron microscope and the electron microprobe to determine their exsolution histories. The Lindsley and Andersen (1983) geothermometer gives initial crystallization temperatures of 1000° C for the bulk augite crystal (Wo32 En22 Fs46). Exsolved lamellae are predominantly pigeonites with very low calcium contents (Wo1–3 En23–24 Fs71–74) and have formation temperatures estimated to be in the range of 600 to 975° C. The uniform compositions of lamellae and hosts, despite the range in lamellar size and orientation, suggest that either 1) the ferromonzonite experienced an extended plateau in cooling or a reheating event at 600 to 650° C or 2) the pyroxenes recorded a blocking temperature. Two-feldspar geothermometry on exsolved feldspars also records 600° C and suggests that these low temperatures are not blocking temperatures.  相似文献   

13.
Ca-rich and Ca-poor pyroxenes present in the Bushveld rocksof the Bethal area display well developed exsolution texturestypical of slowly cooled mafic intrusions. This gave rise topoor reproducibility in electron microprobe analyses of thesame pyroxene grain, as well as results which departed fromthe bulk composition of the original homogeneous mineral. EMMA-4was used together with the electron microprobe to establishthe composition of the constituent phases in exsolved pyroxenes.The data showed that microprobe analyses carried out with adefocused beam were equivalent to the bulk composition of thepyroxenes. Microprobe analyses obtained using a focused beamwere found to approach closely the bulk composition of pyroxenesonly when the exsolution density reached 90 lamellae per millimetre. Transmission electron microscope examination of microstructuresin ion-thinned samples of pyroxenes at 100 kV and 1000 kV showedthat the exsolution mechanism in Ca-rich and Ca-poor pyroxeneswas one of heterogeneous nucleation. Subsequent growth tookplace by means of the migration of ledges along the (100) plane.Pigeonite inversion was also shown to occur in iron-rich Ca-poorpyroxene exsolution lamellae in augite. Fractionation trends established for the Bethal pyroxenes frommicroprobe analyses indicated an overall range from Fs14En84Wo2to Fs60En31Wo9 in the Ca-poor pyroxene and Fs7En50Wo43 to Fs36En27Wo37in the Ca-rich pyroxene. Comparison of pyroxene fractionationtrends from the western, eastern and Bethal areas of the Bushveldsuggests that crystallization took place under different conditionsof pressure and temperature.  相似文献   

14.
The Johnstown meteorite is a brecciated orthopyroxenite (diogenite) containing coarsegrained centimeter-sized clasts of cumulate origin that have undergone subsolidus recrystallization. The brecciated portion is dominated by subangular fragments of orthopyroxene (Wo2–3En72–74Fs23–25) in a variably comminuted matrix of the same material. Minor and accessory phases include plagioclase (An82–90Ab10–18Or0–1), diopside (Wo44–45En46–47Fs9–10), olivine (Fo71–72), tridymite, troilite, metallic Ni-Fe (~3% Ni), and chromite (Cm71–80Hc1–8Sp11–19Mt2–4Uv1–3).The clastic component is parental to the brecciated matrix which contains no foreign lithic or mineralogic components. Siderophile trace element studies, however, reveal the presence of meteoritic (chondritic) contamination in the brecciated portion using unbrecciated clasts for indigenous values. Rare earth element abundances show a wide range of values for the light REE in different samples, although all samples exhibit a strong negative Eu anomaly, indicative of earlier plagioclase fractionation. Two pairs of adjacent brecciated and unbrecciated samples from different portions of the meteorite show, respectively, the most enriched and the most depleted light REE patterns. The variability in La content is over a factor of 100. However, in each case the REE pattern for the brecciated portion is very similar to that of the unbrecciated portion. These differences are attributed to sampling of variable amounts of residual, REE-enriched, trapped liquid. The most representative REE pattern for the bulk meteorite has an intermediate composition and was obtained from the largest sample. The data presented here indicate that Johnstown is a monomict breccia, in contrast to several other diogenites which may be considered to be polymict on the basis of their mineral compositions and/or clast populations.  相似文献   

15.
A unique clinopyroxene (En19Fs78Wo3), clinoeulite, space group P21/c, $${\text{(Fe}}_{{\text{1}}{\text{.48}}} {\text{Mg}}_{{\text{0}}{\text{.37}}} {\text{Mn}}_{{\text{0}}{\text{.08}}}^{{\text{2 + }}} {\text{Ca}}_{{\text{0}}{\text{.05}}} {\text{Al}}_{{\text{0}}{\text{.01}}} {\text{)}}_{{\text{1}}{\text{.99}}} {\text{ [Si}}_{{\text{2}}{\text{.01}}} {\text{O6],}}$$ contains sharp exsolution lamellae of ferroaugite (En17Fs43Wo40) from which the former presence of a ferropigeonite near En17Fs70Wo13 can be calculated. This two-pyroxene intergrowth is the main component of a eulysite containing also magnetite, olivine (Fo9Fa86Te5), quartz, oligoclase-K feldspar inter-growth, and retrograde cummingtonite with about 76 % grunerite end member. The occurrence of this most unusual rock type in the center of the Vredefort structure is attributed to a period of high-temperature metamorphism (at least 800 °–850 °C) which was followed by hot deformation of the rock during the Vredefort event thus probably preventing the common formation of orthopyroxene through pigeonite exsolution and inversion upon cooling. After this tectonic deformation, the rock recrystallized within the low-temperature stability range of clinoeulite to yield fine annealing textures. Late-stage equilibria at temperatures well below 500 °C include the complete unmixing of a former high-temperature anorthoclase, a Mg/Fe redistribution in the clinoeulite and olivine and, with the introduction of water, the partial formation of cummingtonite through reaction of clinoeulite, olivine, and quartz. During weathering the olivine was transformed to a nearly opaque, anhydrous ferrisilicate which, except for the change of Fe2+ to Fe3+ and the oxygen introduction, largely retained its original chemistry.  相似文献   

16.
The Kenna ureilite was found in February, 1972 near the town of Kenna, Roosevelt County, New Mexico U.S.A., weighed 10.9 kg, and measured 26.7 × 14.7 × 14.2 cm; it is the seventh known ureilite. The meteorite is composed of xenoblastic olivine (Fo79.2), commonly rimmed by forsterite (Fo99), and pigeonite (En73Wo9Fs18), in a volumetric ratio of 3:1, set in a matrix of three carbon polymorphs (graphite, lonsdaleite, and diamond) plus nickel-iron metal and troilite. Some thin metalliferous veins penetrating silicate grains contain secondary inclusions of melt with high-calcium clinopyroxene (high-Ca, Mg-rich augite to augite), andesine, K-feldspar, chromite, and siliceous CaO- and alkali-rich glasses of variable compositions.Textural, mineralogical and fabric information suggest a complex history for Kenna, involving igneous, metamorphic and shock processes. The rock appears to have originated as an ultramafic cumulate whose texture and structure was modified by adcumulus processes and by solution and redeposition in a weak deviatoric stress field. A strong mineral elongation lineation was produced during this high-temperature phase accompanied by mild plastic deformation of olivine on the system 0kl[100]. Superimposed on this original texture and fabric are processes resulting from light to moderate (50–250 kbar) shock deformation, as manifested by fracturing of the silicates, slip parallel to (001) in olivine, and twin and translation gliding parallel to (100) in the clinopyroxene. Lonsdaleite and diamond probably formed during this shock phase, which may be associated with the break-up of the parent body, but the relative time of introduction of the carbon-rich matrix is still unresolved.  相似文献   

17.
Pyroxenes and olivines from the earlier stages of fractionation of the Skaergaard intrusion (Wager and Brown, 1968; Brown, 1957) have been studied using the electron microprobe. The subsolidus trend for both Ca-rich and Ca-poor pyroxenes has been established, from the Mg-rich portion of the quadrilateral to the Hed-Fs join, together with the orientations of the tie-lines joining coexisting pyroxenes. For the Mg-rich Ca-poor pyroxenes, Brown's (1957) solidus trend has been modified slightly. From a study of a previously undescribed drill core, reversals in the cryptic layering have been found in the Lower Zone. The reversals are attributed to existence within the convecting magma chamber of local temperature differences. The Skaergaard magma temperatures are postulated to have passed out of the orthopyroxene stability field into the pigeonite stability field at EnFs ratios of 7228, for Ca-free calculated compositions, and specimen 1849, a perpendicular-feldspar rock, is interpreted as straddling the orthopyroxene-pigeonite transition interval. The cessation of crystallisation of Ca-poor pyroxene and the increase in Wo content of the Ca-rich pyroxene trend have been reexamined, and Muir's (1954) peritectic reaction (pigeonite+liquid=augite) has been confirmed. The composition at which Ca-poor pyroxene starts reacting with the liquid is postulated as Wo10 En36.7Fs53 3. It is suggested that the cessation of crystallisation of Ca-poor pyroxene is sensitive to the amount of plagioclase crystallising from the liquid.A complete series of accurate olivine compositions for the whole Skaergaard sequence is presented for the first time, including the compositions of the Middle Zone olivine reaction rims.  相似文献   

18.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

19.
The Delakhari sill (maximum thickness cf. 200 m) is the most extensive Deccan Trap instrusion which occurs in central India, between longitutdes 78°3835 to 78°2240 and latitudes 22°26 and 22°2230. Based on petrographic examination, the sill is divided, from bottom to top, into (1) the Lower Chilled Zone (LCZ), up to 8 m thick, marked by abundant interstitial glass and an overall fine grain size, (2) the Olivine-Rich Zone (ORZ), 27 m thick, enriched in olivine (relative to the other zones in the sill), (3) the Central Zone (CZ), 70 m thick, marked by depletion in olivine and overall coarse grain size, (4) the Upper Zone (UZ), 55 m thick, marked by the presence of two chemically and morphologically distinct olivine types and abundant interstitial granophyre, and (5) the Upper Chilled Zone (UCZ), 10–25m thick, marked by abundant interstitial glass.Compositions of the pyroxenes and olivines show an overall increase in Fe/Mg with crystallization, but extensive interzonal and intrazonal variations and overlaps exist. Olivine ranges from Fa24 (ORZ) to Fa95 (UZ). In the UZ and inner UCZ, an equant (Fa44–50, called type-A olivine) and interstitial skeletal olivine (Fa70–95, called type-B olivine) occur together. Compositions of the Ca-rich and Ca-poor pyroxenes fall in the range Wo38En34Fs28 to Wo33En8Fs59 and Wo14En41Fs45 to Wo16En19Fs65, respectively. Overall, the two pyroxene trends converge with Fe-enrichment except for one anomalous sample from the UZ which contains a Ca-rich (Wo34En8Fs58) and a Ca-poor (Wo10En18Fs72) pyroxene well within the Forbidden Zone of Smith (1972).Compositions of coexisting oxide minerals indicate that the sill crystallized at oxygen fugacities from 10–10 atm (ORZ) to 10–13 (UZ). The magma prior to intrusion appears to have been derived from a more primitive melt from which a considerable amount of olivine and plagioclase have fractionated out. A model of open, interrupted fractional crystallization in the sill is proposed to explain the compositional variations exhibited by the major mineral phases.A previous study (Crookshank 1936) concluded that the sill is actually a multiple intrusion and has given rise to the lowermost (flow I) and the topmost (flow III) lava flows in the neighboring area around Tamia (78°4015, 22°2035). The olivines of flows I and III have compositions Fo87 and Fo88 respectively, and are much more Mg-rich than the maximum Mg-rich olivine (Fo76) of the Delakhari sill, refuting the possibility of the sill being the feeder of the lava flows I and III.Geosciences Department, University of Texas at Dallas Contribution No. 338  相似文献   

20.
This is the first account of volcanic rocks erupted from a northernextension of the MidAtlantic Ridge to a locality between Icelandand Jan Mayen. The islet of Kolbeinsey (67° 08' N., 18°36' W.) is being rapidly eroded and now measures 52x36 m, andreaches only to 7.5m above sea level. Two identical specimensof vesicular basalt were collected by the Icelandic Coastguardvessel Aegir in 1962, and have now been chemically analysed.The mineral compositions were determined by electron microprobeanalysis. The rock carries micro-phenocrysts of highly magnesianolivine (Fo98 8) and of plagioclase (An85 to An30). Brown andlemon-yellow grains of augite (Wo42 En45 Fs13) are accompaniedby pale-yellow, euhedral to subhedral, groundmass orthopyroxenesof highly magnesian composition (Wo4 En88 Fs8) and with a calciumcontent higher than found previously in enstatites. The chemistryof the basalt, also, is unusual in showing Fe2O3 = 8.98 percent and FeO = 0.38 per cent. The high state of oxidation isconsidered in relation to the production of forsterite and enstatitefrom basalt magma. Historic submarine volcanism in the regionis discussed in relation to bathymetric and geophysical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号