首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
魏厚振  周家作  韦昌富  陈盼 《岩土力学》2016,37(9):2547-2552
改变边界温度和土样高度,对饱和粉土进行了冻结试验,研究其水分迁移、水分重分布、冻胀和冰透镜体的发展规律。试验结果表明:当温度稳定时,水分持续迁移到冻结锋面附近,含水率急剧增大,易形成冰透镜体。饱和粉土冰透镜体几何形态较为规则,无枝状交叉结构,已冻土为整体状且无网状裂隙。冻结过程中存在起始冻胀时间,在起始冻胀时间之前,土中水分被排出,冻胀发生之后水分补给到冻土中,且补给水分产生的冻胀量和总冻胀量数值接近。土样高度影响水分迁移量和冻胀量,土样越高,冻胀量越小,冻土含水率增量越小,但水分增量分布区域越分散,且起始冻胀时间越长。  相似文献   

2.
用1.2MPa外载固结并冻结的高岭粘土与2mol浓度的氯化钠低温溶液相接触,由于冻土与盐溶液间的水势梯度,引起等温条件下,水分和盐分从溶液向冻土中迁移。冻土中部分区段由于含盐浓度增高,冰点下降、冻土融化并产生吸热效应。融化界面以上的冻土中,由于水分积聚,冰分凝,形成条带状构造并产生放热效应。冻土出现以冻胀为主的变形。水、盐迁移通量及变形量随时间按指数规律衰减并随外载增大和温度降低而减小。  相似文献   

3.
利用自主研发的水分迁移和冻胀试验装备,研究了不同初始含水率、冷端温度、干密度对砂土水分迁移规律的影响,分析了三因素作用下砂土水平冻胀力和冻胀量的变化规律,确定了冻结锋面位置。研究表明:初始含水率和冷端温度对砂土的水分迁移和冻胀效果影响明显;初始含水率从0%增加至10%,试样含水率峰值增大了5.00倍,水平冻胀力和冻胀量不断增大,冻结锋面位置上移至2.5 cm高度处。冷端温度从?5 ℃降低至?15 ℃,试样含水率峰值增大了4.38倍,水平冻胀力和冻胀量不断增大,冻结锋面位置上移至2.6 cm高度处。干密度对试样水分迁移和冻胀特性影响相对不明显,整体呈现出在较小干密度下,试样含水率、水平冻胀力和冻胀量增幅稍大的趋势,冻结锋面集中在2.2~2.5 cm高度处。针对不同影响因素提出了水平冻胀力和冻胀量预测公式,为认识水汽补给下砂土水分迁移规律及合理预防冻胀提供参考。  相似文献   

4.
高含水率饱和淤泥质软黏土在封闭系统中由冻结引起的土体内部水分迁移是影响其冻胀速率的重要因素。为揭示冷端温度对沿海软黏土水分迁移特性的影响,采用上海第四系滨海-浅海相淤泥质黏土,在-5~-20 ℃冷端温度条件下开展了封闭系统单向冻结试验,测定了试样冻胀量及沿着温度梯度方向的试样温度,得到了冻结锋面高度随冻结时间的发展规律、引起水分迁移的临界温度梯度、水分迁移入流通量及入流速率。结果表明:试样冻结锋面高度是关于冻结时间的函数,其拟合公式形如X(t)=t(at+b)-1;冻结区内温度梯度降低至临界温度梯度是水分迁移起始的判据,随着冷端温度的降低,临界温度梯度线性增大;水分入流速率随冻结时间的延长先增大后减小,水分入流通量-冻结时间曲线随冷端温度的降低由“S型”逐渐趋于线性;结合临界温度梯度-冷端温度关系式和冻结锋面高度-冻结时间拟合公式,可预测某一冷端温度条件下封闭系统单向冻结过程中试样内部水分迁移的起始时刻。以上试验结果有助于推进封闭系统单向冻结过程中高含水率软土水分迁移特性的定量研究,为沿海软土地区冻结法施工中冻胀量预警提供重要参考依据。  相似文献   

5.
季冻区盐渍土冻胀病害影响工程质量。水分、密度及盐分的变化影响季冻土冻胀特性。以吉林省农安县旱地盐渍土为研究对象,通过室内冻胀实验讨论了含水率、压实度、含盐量对盐渍土冻胀规律的影响,分析起始冻胀含水率随盐分和压实度的变化规律。试验研究表明:较大的压实度和较高的含水率有利于冻胀。土体在较低含水率和较低压实度时发生冻缩,随着含水率和压实度的增大,冻缩量减小至零,随后发生冻胀,冻胀(缩)量与含水率基本呈线性关系。因此,存在起始冻胀含水率,该值随着压实度的增大而线性减小,随含盐量的增加而整体呈增大趋势。塑限与压实度对盐渍土起始冻胀含水率的影响可以拟合出相应线性公式,随着含盐量增加,该公式的系数整体呈增大趋势。在前人总结出的公式基础上增加压实度这一参数,为后续季冻区盐渍土的冻胀特性研究提供参考与理论依据。  相似文献   

6.
温度对季节性冻土水分迁移的影响研究   总被引:2,自引:0,他引:2  
寒区季节性冻土冻胀性质对工程实际影响很大。为了了解温度对水分迁移现象的影响,本文通过地温测试仪对野外不同深度处的土层温度进行测量,并在不同时间相应深度取土样,测其含水率,通过比较不同时间不同深度处的含水率的变化情况来分析温度变化对水分迁移现象的影响。在气温回升之前,当地表温度降低时,温度随深度的降低而升高;随着地表温度不断降低,各深度处的温度也不断下降,温度梯度增加,各深度处地层的含水率变化大,即温度梯度的增加促进了季节性冻土区水分迁移现象的发生。  相似文献   

7.
李瑛  龚晓南 《岩土力学》2012,33(1):89-95
通过室内1:5的模型试验进行了等电势梯度下2 m×1 m和1 m×0.5 m两种工程常见矩形布置电极间距下的软黏土电渗性状的研究。利用监测排水量、排水速率、电流、电势、含水率和pH值等指标,对不同电极间距试样的电渗处理效果、能量效率和电极腐蚀等方面进行了分析。结果表明:保持电势梯度不变而减半电极间距能够加快电渗排水,降低土体含水率,减小能量消耗和电极界面电阻,但也会导致土体pH值变化和阳极腐蚀量的增大。此外,采用较小的电极间距可使损失在电极和土接触面上的电势降减小,但损失的电势降占电源电压的比例增大。  相似文献   

8.
一维饱和冻土融化固结分析   总被引:3,自引:2,他引:1  
明锋  李东庆  张宇 《冰川冻土》2016,38(4):1067-1073
冻土的融化固结是在融化的基础上进行的,是温度与变形耦合作用的结果.根据考虑冰水相变的热传导方程和水分迁移方程,建立以孔隙比为变量的融化变形固结理论.利用有限元软件对冻土一维融化固结进行数值模拟,分析了融化过程中孔隙比、孔隙水压力、变形等随时间的变化规律,并与实验结果进行对比.研究表明:含水率的增大会阻碍融化锋面的推进速率,进而降低土体固结速率,而且冻土的固结过程滞后于冻土的融化过程.随着融化锋面的移动,固结区域不断增大.冻土的融化固结过程也是孔隙水的消散过程,随着孔压的不断消散,变形量逐渐增加.最大位移出现在土体表面,最大沉降量随时间增长而增大,最后趋于一个稳定值.  相似文献   

9.
电渗固结是促进低渗透性软土排水固结的有效方法。为了揭示不同电势梯度影响高岭土电渗固结的基本规律,在自制电渗试验装置上对高岭土进行电渗试验。试验过程中测量电流、排水量、沉降量以及有效电压随时间的变化,并进行单位排水能耗分析。基于电渗固结多场耦合控制方程,实现土体电渗固结全耦合分析的有限元数值方法,计算结果与解析解吻合良好,验证了程序的有效性。为预测不同电势梯度下土体沉降量随时间的变化关系,分别对0.5,1.0,1.5 V/cm 3种电势梯度电渗固结试验进行数值模拟分析,获得模型表面沉降量分布、阳极超静孔隙水压力时空发展规律、阳极位置固结度等曲线,计算结果和试验结果吻合良好,可为实际电渗试验提供理论指导。  相似文献   

10.
线性温度梯度下非饱和冻结莫玲粘土中的水分迁移   总被引:1,自引:0,他引:1  
温度梯度影响下冻土中的水分迁移不但改变了冻土的结构构造和冰水比例,而且造成冻土物理力学性质的改变,导致冰分凝和冻胀。该课题的研究无论对于多年冻土区冷生现象的解释还是寒区工程设计都有重要意义。 为了定量评价和预报冻土中的水分迁移量,许多学者曾从理论和试验方面做了大量的工作。  相似文献   

11.
通过室内大尺寸非饱和黄土冻结作用下水分迁移试验,开展了土体密度、含水量、冻结温度、冻结方式对非饱和黄土水分迁移影响的研究.试验结果表明:冻结过程中土样温度变化分为3个阶段:急剧降温阶段,缓慢降温阶段,稳定阶段; 干密度越大,稳定冻结锋面的水分迁移量越大,但冻结区的整体水分增量越小; 初始含水量越大,水分迁移量越大,并且在冻结锋面处含水量增幅越大; 在未冻结区,从邻近冻结锋面到暖端,含水量先增大后减小,初始含水量越小,这种现象越明显.此现象是冻结界面抽吸力、温度梯度和基质吸力梯度共同作用的结果.冻结方式直接影响已冻结区的含水量分布和水分迁移总量.  相似文献   

12.
盐渍化冻土-混凝土衬砌接触面直剪试验研究   总被引:2,自引:2,他引:0  
土与结构接触面的研究一直以来是岩土工程研究的热点之一。为研究位山灌区渠系工程冻害破坏问题,开展了不同盐类型、不同含盐量、不同含水率条件下渠道下卧盐渍土-混凝土衬砌冻结接触面直剪试验研究。结果表明:冻结状态下接触面的应力-位移破坏性状呈脆性破坏,存在明显的峰值应力;剪切变形包括线性变形和非线性变形,线性变形随含水率和含盐量的增大而减小,非线性变形随含盐量的增大而增加;剪切模量随含水率的增加而提高;随含盐量的增加而降低;抗剪强度随含水率的增加而增大,随NaCl含盐量增加而降低,随Na2SO4含盐量增加先降低后升高;通过对变形能的分析发现,含水率w=14.7%和w=16.7%时具有相似特征,即NaCl含量为0.5%时,曲线存在极(最)小值。  相似文献   

13.
为了研究西北干旱地区盐渍土在自然气候条件下的水-热场变化特征与盐胀变形规律,在4.5 m深试验坑内埋设了若干套竖向变形观测设备、含水率和温度传感器,对坑内不同深度土层的温度场、水分场和盐胀变形随季节性变化状况进行了为期1 a的动态监测和分析研究。结果表明:0.6 m以上土层相较于其他土层对气候温度变化的响应更加积极、温差变化幅值也更大,且土层间的温差幅值随降温期的不断深入而增大;土体含水率变化主要受降水、蒸发和温度梯度的耦合影响, 0.4 m以上土层水分的变化幅度较其他土层而言更为显著,土层水分迁移沿深度方向表现出分带现象;盐胀变形主要受温度和水分迁移的影响,盐胀变形主要发生在距地表1.0 m土层深度内,主要发展时间在当年11月至次年2月之间。  相似文献   

14.
双向冻结-单向融化土压缩性及水分迁移试验研究   总被引:2,自引:0,他引:2  
通过室内冻融试验,研究双向冻结-单向融化作用下不同冻前含水率和干密度对青藏粉黏土压缩特性的影响及水分迁移的变化规律。试验结果表明:(1)大梯度冻融作用使低密度土压缩性减小,使高密度土压缩性增大;而小梯度冻融作用使低、高密度土的压缩性均减小;(2)随着冻前含水率的增加,大梯度冻融作用使土体压缩性增大,但变化幅度逐渐减小,小梯度冻融作用的土体压缩性变化并不明显;(3)随着冻结梯度的增加,不同干密度融土相对压缩系数均呈现先减小后增加的变化趋势,不同冻前含水率融土相对压缩系数总体呈增大趋势;(4)温度梯度冻结后,试样含水率分布从上冷端到下冷端呈增大-减小-增大的变化规律,随着冻结温度梯度的减小,试样中部含水率先增大后减小。  相似文献   

15.
冻融协同淋洗修复污染土壤的过程中,为了提高淋洗效率,须使土体在冻结过程中吸收更多的水分或淋洗液。因此,通过室内大尺寸单向冻结水分迁移试验,开展了开放系统下温度梯度、冻结速率及补水方式对水分迁移的影响研究。试验结果表明:冻结过程中土中水分迁移与温度梯度的变化速率有关,变化速率越大水分迁移量越大;可以通过边界温度控制冻结锋面推移速度进而影响土中水分的迁移,当冻结锋面推移速度为0.5 cm·d-1左右时,补水速率最大;距离冻结锋面越近水分迁移量越大,当距离冻结锋面10 cm左右时,水分迁移量开始增大,可通过在土体中添加多层补水层的方式让土体吸收更多的水分;有外界水源的补给下土体含水量整体增加,但上层土体含水量增加较多,下层土体含水量增加较少。  相似文献   

16.
李彦龙  王俊  王铁行 《岩土力学》2016,37(10):2839-2844
为了探明非饱和土中的水分在温度梯度作用下的迁移规律,开展了非饱和土在不同温度梯度作用下的气态水迁移试验和混合态水迁移试验。试验结果表明土样内部的温度场在24 h内均能达到稳态且稳定后的温度场沿土样长度方向线性变化。气态水迁移量和液态水迁移量均随着温度梯度的增加而增加,气态水迁移量的增幅显著大于液态水迁移量的增幅。在气态水迁移中,温度效应随着土样初始含水率的增加而显著增加;在液态水迁移中,温度效应与土样初始含水率的关系不大。最后建立了非饱和土在不同温度梯度作用下,当其水分场接近稳态时,土样内部含水率梯度的表达式,该表达式包含温度梯度和初始含水率两个影响因素。  相似文献   

17.
In order to understand the hydrothermal activity mechanism of active layers to rainfall in permafrost regions caused by humidification of climate, the differences of ground surface energy balance and hydrothermal activity in different types of shallow soil with the consideration of rainfall were discussed. Based on the meteorological data in 2013 observed at Beiluhe observation station of Tibet Plateau, three types of shallow ground soil (i.e., sandy soil, sandy loam and silty clay) were selected to compare the differences in the water content and energy balance at the ground surface, dynamic processes of water and energy transport in active layers and coupling mechanism under rainfall condition in the plateau using a coupled water-vapor-heat transport model. The results show that the increase of soil particle size leads to the increase of surface net radiation and latent heat of evaporation, but the decrease of soil heat flux. The difference of surface energy balance, especially the sensible heat flux and latent heat of evaporation, are larger in the warm season but smaller in the cold season. The liquid water transport under hydraulic gradient and the water-vapor transport under thermal gradient are obvious as the particle size in soil increases. However, the water-vapor flux under thermal gradient increases but the liquid water flux under hydraulic potential gradient decreases. As a result, the water content in shallow soil decreases accordingly but it increases slightly at the depth of 25 ~75 cm. Moreover, with the increase of soil particle size, the thermal conductivity of soil, convective heat transfer under rainfall and surface evaporation increase, but the soil heat conduction flux and soil temperature gradient decrease. Thus, soil temperature in sandy soil is much higher than that of sandy loam and silty clay at the same depth. The permafrost table declines with the increase of the thickness of active layer, which is unfavourable to permafrost stability. The results can provide theoretical reference for stability prediction and protection of permafrost caused by humidification of climate.  相似文献   

18.
季节冻土区水盐迁移及土体变形特性模型试验研究   总被引:1,自引:0,他引:1  
为研究盐渍化冻土水分、盐分迁移规律以及变形特性,探索寒区旱区土壤盐渍化机制,配制了不同含盐量的粉质黏土进行模型试验。试验结果表明,温度、水分、盐分和土体变形之间相互耦合。温度降低有利于盐晶体析出和未冻水结冰;反之,温度升高易于晶体溶解和冰融化。水盐相变过程中伴随能量的释放或吸收,影响土体温度。盐分改变了流体的动力黏度和土体冻结温度,并且盐分结晶使土体产生较大的吸力,加剧了未冻水含量的变化。水分是盐分迁移的介质,盐分以离子形式随未冻水迁移。降温期水分盐分向上迁移,升温期迁移方向相反。迁移速率与吸力有关,冻结缘附近吸力最大,速率最快。盐渍化冻土的变形是盐分和水分共同作用的结果,含盐量较低时冻胀和融沉是土体变形的主要因素;当含盐量较高时盐胀和溶陷占主导作用。  相似文献   

19.
冻结层的存在使得寒区有着与非寒区差别明显的水文循环过程,土壤冻融规律、水热盐运移、融雪水入渗等已成为众多学者的研究对象. 寒区低温条件下冻融土壤持水性质与非冻融土壤不同,其包气带冻结层往往具有弱透水性、蓄水保墒和隔热减渗的作用,使得寒区春季冻结层土壤的墒情较高. 以冻融土壤和非冻融土壤墒情对比监测为基础,选取地表以下100 cm的土壤为研究对象,在黑龙江大学呼兰校区设置冻融和非冻融对比监测试验场,同时段、同频率、同埋深(间隔 20 cm土层)进行土壤结构、水热及环境参数监测. 通过对比分析了不同埋深不同冻融阶段的墒情参数,量化了低温冻融条件下土壤墒情较非冻融土壤的高出部分,最后对冻土保墒的机理进行探讨与分析. 结果表明:冻结条件下土壤水分重新分布,在土水势的作用下由非冻结区向冻结区迁移. 初冻期地表土壤墒情达到最大,冻结期土壤最大墒情值随冻结锋面迁移分别在20、40、60 cm处达到最大,稳定冻结期和融化初期在80 cm处达到最大;土壤最大墒情值一般在冻结锋面前沿的10~20 cm处,较好地保持了土壤水分. 无论是从空间(不同埋深)还是时间(不同冻融阶段)角度分析,冻融土壤含水率均大于非冻融土壤,二者含水率的差值随埋深和冻融阶段的推移而加大,在稳定冻结期80 cm处达到最大,差值量可达6.4%~7.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号