首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
西秦岭地区是中国最重要的金矿矿集区之一,除产出少数夕卡岩型金矿床外,几乎所有的其他金矿床都可归并为造山型、卡林型和类卡林型3种类型。研究表明,西秦岭地区中生代花岗岩主要形成于中晚三叠世,而金矿成矿主要集中在晚三叠世,它们都是华北板块与华南板块碰撞导致的秦岭造山作用的产物。西秦岭地区造山型金矿床主要赋存在泥盆系和石炭系一套复杂的构造变形和区域变质的绿片岩相岩中,主要受北西西向脆韧性剪切带控制,成矿元素组合主要为Au-Ag。矿石中含有大量显微自然金、银金矿,明金可见。成矿流体主要为变质流体。由造山作用引起的强烈构造运动为成矿流体提供了运移通道,为矿质沉淀提供了有利的场所。虽然一些造山型金矿床与中酸性岩体相邻,但矿化与岩浆活动不具直接的成因关系。西秦岭地区卡林型金矿床主要产于轻微变质的寒武系至三叠系沉积岩中,明显受地层、岩性和构造控制。金矿床中的金以超显微金和存在于含砷黄铁矿与毒砂晶格中的固溶体金为主。成矿元素组合为Au-As-Hg-Sb-Ba。成矿流体由早期形成的地层水被后期大气降水补给活化形成,也有部分岩浆水或变质水的加入。在伸展背景下大气降水通过循环演化形成了较浅层次的流体系统,导致Au等成矿元素发生沉淀而形成浸染状矿石。西秦岭地区类卡林型金矿床主要产于浅变质沉积岩建造中,受脆韧性剪切带的控制,并形成于花岗岩岩体附近。与造山型、卡林型金矿床最大的不同之处在于,类卡林型金矿床的形成与同时期的岩浆活动有密切的成因关系。矿石中存在显微自然金,载金矿物主要为黄铁矿、含砷黄铁矿和碲化物。成矿热液主要是岩浆水与变质水、建造水的混合流体。与造山型金矿床类似,流体不混溶导致类卡林型金矿床的形成。  相似文献   

2.
The Mont-de-l’Aigle deposit is located in the northern part of Dome Lemieux, in the Connecticut Valley-Gaspé Synclinorium, Gaspé Peninsula, Québec. The Dome Lemieux is a subcircular antiform of Siluro–Devonian sedimentary rocks that is cut by numerous mafic and felsic sills and dikes of Silurian to Late Devonian age. Plutonism occurred in a continental within-plate extensional setting typical of orogenic collapse. The Cu−Fe (± Au) mineralization of Mont-de-l’Aigle occurs in veins, stockworks, and breccias. Mineralization is located near or within N−S and NW−SE faults cutting sedimentary rocks. IOCG mineralization postdates intrusions, skarns, hornfels, and epithermal mineralization typical of the southern part of the Dome Lemieux. The paragenetic sequence comprises: (1) pervasive sodic, potassic, chlorite, and silica alteration, (2) hematite, quartz, pyrite, magnetite, and chalcopyrite veins, stockworks and breccias and, (3) dolomite ± hematite veins and veinlets cutting the earlier mineralization. Intrusions display proximal sodic and potassic alteration, whereas sedimentary rocks have proximal decalcification, silicification, and potassic alteration. Both intrusive and sedimentary rocks are affected by a pervasive distal chlorite (± silica) alteration. The sulfur isotope composition of pyrite and chalcopyrite (δ34S=−1.5 to 4.8‰) suggests that sulfur was derived mainly from igneous rocks. Fluid δ18O (−0.4 to 2.65‰) indicates meteoric or seawater that reacted with the country rocks. Mixing of hot magmatic fluids with a cooler fluid, perhaps meteoric or seawater is suggested for mineral deposition and alteration of the Mont-de-l’Aigle deposit. The mineralogy, alteration, and sulfur isotope composition of the Mont-de-l’Aigle deposit compare well with IOCG deposits worldwide, making the Mont-de-l’Aigle deposit a rare example of Paleozoic IOCG mineralization, formed at shallow depth, within a low metamorphic grade sedimentary rock sequence.  相似文献   

3.
Arsenian pyrite in the Shuiyindong Carlin-type gold deposit in Guizhou, China, is the major host for gold with 300 to 4,000 ppm Au and 0.65 to 14.1 wt.% As. Electron miroprobe data show a negative correlation of As and S in arsenian pyrite, which is consistent with the substitution of As for S in the pyrite structure. The relatively homogeneous distribution of gold in arsenian pyrite and a positive correlation of As and Au, with Au/As ratios below the solubility limit of gold in arsenian pyrite, suggest that invisible gold is likely present as Au1+ in a structurally bound Au complex in arsenian pyrite. Geochemical modeling using the laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of fluid inclusions for the major ore forming stage shows that the dominant Au species were Au(HS)2 (77%) and AuHS(aq)0 (23%). Gold-hydroxyl and Gold-chloride complexes were negligible. The ore fluid was undersaturated with respect to native Au, with a saturation index of −3.8. The predominant As species was H3AsO30 (aq). Pyrite in the Shuiyindong deposit shows chemical zonation with rims richer in As and Au than cores, reflecting the chemical evolution of the ore-bearing fluids. The early ore fluids had relatively high activities of As and Au, to deposit unzoned and zoned arsenian pyrite that host most gold in the deposit. The ore fluids then became depleted in Au and As and formed As-poor pyrite overgrowth rims on gold-bearing arsenian pyrite. Arsenopyrite overgrowth aggregates on arsenian pyrite indicate a late fluid with relatively high activity of As. The lack of evidence of boiling and the low iron content of fluid inclusions in quartz, suggest that iron in arsenian pyrite was most likely derived from dissolution of ferroan minerals in the host rocks, with sulfidation of the dissolved iron by H2S-rich ore fluids being the most important mechanism of gold deposition in the Shuiyindong Carlin-type deposit.  相似文献   

4.
位于右江盆地南部的滇东南底圩金矿床是近年来新发现的一处金矿床,为理清其成因,对不同类型矿石和赋矿围岩进行了主、微量元素及硫化物的硫同位素分析.结果表明,相较于赋矿围岩,矿石中明显富集Au、As、Sb、Hg、Tl、S、K、C元素,应为热液带入;而Si、Mg、Fe、Zr 和Th在矿石和围岩中变化不大,Fe主要来源于赋矿围岩...  相似文献   

5.
The enrichment of gold in arsenian pyrite is usually associated closely with the enrichment of arsenic in the mineral, generally known as As1−-pyrite [Fe(As, S)2]. Direct analyses of the valence state of Au in pyrite are, however, difficult due to generally low (∼ppm level) Au concentrations. By means of X-ray photoelectron spectroscopy (XPS), this study obtained reliable valence states of As in pyrite from the Yang-shan gold deposit, a giant “Carlin-type” Au deposit in the western Qinling orogen, central China. The arsenian pyrite specimens were sputtered with Ar+ beam in the vacuum chamber of an XPS to obtain pristine surfaces and to avoid As oxidation during sample preparation. Analyses before and after sputtering show that the As3+ peak are only present on surface that was once exposed to the air. In contrast, the peak of As−1 was essentially unchanged during continuous sputtering. The results indicated that As is the predominant state on the pristine surface of arsenian pyrite; the peak of As3+ previously reported for Au-bearing arsenian pyrite was probably due to oxidation when exposed to air during sample preparation. It is unlikely that the coupled substitution of (Au+ + As3+) for 2Fe2+ takes place in the pyrite lattice. The so-called As3+-pyrite proposed by previous studies may occur in some special (oxidizing) geologic settings, but it is not observed in the Yang-shan gold deposit, and is unlikely to be important in typical orogenic or Carlin-type gold deposits, in which arsenian pyrite is a dominant Au carrier. Combining previous studies on Carlin-type Au deposits with our XPS experimental results, we suggest that the most likely state of Au in the Yang-shan Au deposit is lattice-bounded Au with or without nanoparticles (Au0).  相似文献   

6.
Carlin-type gold deposits are best known for the scarcity of visible gold in their ores. It has long been recognized that the majority of gold is “invisible”, such that it cannot be resolved by conventional microscopy, and resides in arsenian pyrite. Shuiyindong differs in that sub-μm to μm-sized native gold is present in arsenian pyrite veinlets and disseminations. It is also the largest (55 tonnes) and highest grade (7 to 18 ppm), stratabound, Carlin-type gold deposit in Guizhou, China and has produced 5 tonnes of gold from sulfide refractory ores extracted by underground mining methods. In this study, an electron microprobe analyzer (EMPA) was used to map the spatial distribution of “invisible” gold and sub-μm to μm-size visible gold particles in arsenian pyrite in high-grade ore samples from the Shuiyindong. The samples studied are hosted in Permian bioclastic ferroan limestone of the Longtan Formation and exhibit evidence of decarbonation, silicification and sulfidation. Arsenian pyrite with detectable Au (> 400 to 3800 ppm) is disseminated in altered limestone and was deposited in two stages separated by an episode of corrosion in a veinlet.The results show that there are two populations of native gold in arsenian pyrite. One is comprised of sub-μm size gold particles (0.1 to 0.2 μm) that are occasionally present in the gold-bearing arsenian pyrite disseminated in the host rocks. This arsenian pyrite is interpreted to have been formed by sulfidation of ferroan calcite and dolomite. Another is comprised of coarser (1 to 6 μm) native gold grains present in the arsenian pyrite veinlet, either on the first stage where it has been corroded or on the second stage. The lack of fluid inclusion or other evidence of boiling and the low iron content of fluid inclusions in quartz, suggest the veinlet formed by sulfidation of another fluid containing Fe. The Fe-bearing fluid may be a depleted ore fluid that gained Fe by dissolution of ferroan limestone after H2S had been consumed. The association of the largest visible gold grains with an episode of corrosion suggests that fluids episodically became undersaturated with arsenian pyrite while remaining saturated with gold (e.g., pH decrease or an increase in the oxidation state). This may have resulted from incursion of relatively acidic or oxidized fluids that were able to dissolve arsenian pyrite and remain saturated with gold. In this case, sulfidation of iron from the host rock, was the most important depositional mechanism for Au-bearing arsenian pyrite with, or without, grains of native gold.  相似文献   

7.
The Barite Hill gold deposit, at the southwestern end of the Carolina slate belt in the southeastern United States, is one of four gold deposits in the region that have a combined yield of 110 metric tons of gold over the past 10 years. At Barite Hill, production has dominantly come from oxidized ores. Sulfur isotope data from hypogene portions of the Barite Hill gold deposit vary systematically with pyrite–barite associations and provide insights into both the pre-metamorphic Late Proterozoic hydrothermal and the Paleozoic regional metamorphic histories of the deposit. The δ34S values of massive barite cluster tightly between 25.0 and 28.0‰, which closely match the published values for Late Proterozoic seawater and thus support a seafloor hydrothermal origin. The δ34S values of massive sulfide range from 1.0 to 5.3‰ and fall within the range of values observed for modern and ancient seafloor hydrothermal sulfide deposits. In contrast, δ34S values for finer-grained, intergrown pyrite (5.1–6.8‰) and barite (21.0–23.9‰) are higher and lower than their massive counterparts, respectively. Calculated sulfur isotope temperatures for the latter barite–pyrite pairs (Δ=15.9–17.1‰) range from 332–355 °C and probably reflect post-depositional equilibration at greenschist-facies regional metamorphic conditions. Thus, pyrite and barite occurring separately from one another provide pre-metamorphic information about the hydrothermal origin of the deposit, whereas pyrite and barite occurring together equilibrated to record the metamorphic conditions. Preliminary fluid inclusion data from sphalerite are consistent with a modified seawater source for the mineralizing fluids, but data from quartz and barite may reflect later metamorphic and (or) more recent meteoric water input. Lead isotope values from pyrites range for 206Pb/204Pb from 18.005–18.294, for 207Pb/204Pb from 15.567–15.645, and for 208Pb/204Pb from 37.555–38.015. The data indicate derivation of the ore leads from the country rocks, which themselves show evidence for contributions from relatively unradiogenic, mantle-like lead, and more evolved or crustal lead. Geological relationships, and stable and radiogenic isotopic data, suggest that the Barite Hill gold deposit formed on the Late Proterozoic seafloor through exhalative hydrothermal processes similar to those that were responsible for the massive sulfide deposits of the Kuroko district, Japan. On the basis of similarities with other gold-rich massive sulfide deposits and modern seafloor hydrothermal systems, the gold at Barite Hill was probably introduced as an integral part of the formation of the massive sulfide deposit. Received: 17 August 1998 / Accepted: 12 October 2000  相似文献   

8.
The strata-bound Cu−Pb−Zn polymetallic sulfide deposits occur in metamorphic rocks of greenschist phase of the middle-upper Proterozoic Langshan Group in central Inner Mongolia. δ34S values for sulfides range from −3.1‰ to +37.3‰, and an apparent difference is noticed between vein sulfides and those in bedded rocks. For example, δ34S values for bedded pyrite range from +10.6‰ to +20.0‰, while those for vein pyrite vary from −3.1‰ to +14.1‰. δ34S of bedded pyrrhotite is in the range +7.9‰–+23.5‰ in comparison with +6.5‰–+17.1‰ for vein pyrrhotite. The wide scatter of δ34S and the enrichment of heavier sulfur indicate that sulfur may have been derived from H2S as a result of bacterial reduction of sulfates in the sea water. Sulfur isotopic composition also differs from deposit to deposit in this area because of the difference in environment in which they were formed. The mobilization of bedded sulfides in response to regional metamorphism and magmatic intrusion led to the formation of vein sulfides. δ18O and δ13C of ore-bearing rocks and wall rocks are within the range typical of ordinary marine facies, with the exception of lower values for ore-bearing marble at Huogeqi probably due to diopsidization and tremalitization of carbonate rocks. Pb isotopic composition is relatively stable and characterized by lower radio-genetic lead. The age of basement rocks was calculated to be about 23.9 Ma and ore-forming age 7.8 Ma.207Pb/204Pb−206Pb/204Pb and208Pb/204Pb−206Pb/204Pb plots indicate that Pb may probably be derived from the lower crust or upper mantle. It is believed that the deposits in this region are related to submarine volcanic exhalation superimposed by later regional metamorphism and magmatic intrusion.  相似文献   

9.
http://www.sciencedirect.com/science/article/pii/S1674987111000430   总被引:8,自引:0,他引:8  
Mineral assemblages formed during hydrothermal alteration reflect the geochemical composition of ore-forming fluids. Gold is mainly transported in solution as AueCl and AueS complexes. The change of physicochemical conditions such as temperature, pressure, oxygen fugacity, and sulfur fugacity are effective mechanisms for gold precipitation. Gold tends to be concentrated in the vapor phase of fluids at high temperatures and pressures. AueAs and AueSb associations are common in gold deposit. Native antimony and/or arsenic e native gold assemblages may precipitate from hydrothermal fluids with low sulfur fugacity. Hydrothermal fluids forming epithermal gold deposits are Au-saturated in most cases, whereas fluids of Carlin-type are Au-undersaturated. Quasi-steady As-bearing pyrite extracts solid solution Au from hydrothermal fluids through absorption. The capability of As-bearing pyrite to absorb Au from under-saturated fluid is the key to the formation of large-scale Carlin-type deposits. With increasing new data, studies on the geochemistry of gold deposits can be used to trace the origin of ore-forming fluids, the source of gold, and the transporting form of Au and other ore-forming elements, such as Si, S, F, Cl, As and Ag.  相似文献   

10.
The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to >7000 t Ag reserves, the deposit possesses large-scale Pb, Zn, Sn reserves and a mass of dispersed elements (i.e., In, Cd, Ge, Ga, etc.). Based on systematic studies of sulfur isotopic composition, the authors conclude: The Bainiuchang deposit experienced two epochs of metallogenesis, i.e., the Middle-Cambrian sea-floor exhalative sedimentary metallogenic epoch and the Yanshanian magmatic hydrothermal superimposition metallogenic epoch. In the two metallogenic epochs, the δ34S values of sulfides were all near 0, showing a tendency of being enriched slightly in heavy sulfur. The δ34S values of sulfides in the early metallogenic epoch are within the range of 2‰–5‰ with a peak value range of 2‰–3‰ and an average of 3.0‰, and those of sulfides in the late metallogenic epoch are within the range of 2‰–6‰ with a peak value of 3‰–4‰ and an average of 3.9‰. For the single metallogenic epoch, sulfur in the ore-forming fluids in the early epoch already reached isotopic equilibrium and was derived mainly from underneath the magma chamber or basement metamorphic igneous rocks. Sulfur in the sulfides in the late epoch was derived mainly from magmatic hydrothermal fluids formed in the process of remelting of the basement metamorphic igneous rocks.  相似文献   

11.
Gold mineralisation at Zarshuran, northwestern Iran, is hosted by Precambrian carbonate and black shale formations which have been intruded by a weakly mineralised granitoid. Granitoid intrusion fractured the sedimentary rocks, thereby improving conditions for hydrothermal alteration and mineralisation. Silicification is the principal hydrothermal alteration along with decalcification and argillisation. Three hydrothermal sulphide mineral assemblages have been identified: an early assemblage of pyrrhotite, pyrite and chalcopyrite; then widespread base metal sulphides, lead-sulphosalts and zoned euhedral arsenical pyrite; and finally late network arsenical pyrite, massive and colloform arsenical pyrite, colloform sphalerite, coloradoite, and arsenic–antimony–mercury–thallium-bearing sulphides including orpiment, realgar, stibnite, getchellite, cinnabar, lorandite and a Tl-mineral, probably christite. Most of the gold at Zarshuran is detectable only by quantitative electron microprobe and bulk chemical analyses. Gold occurs mainly in arsenical pyrite and colloform sphalerite as solid solution or as nanometre-sized native gold. Metallic gold is found rarely in hydrothermal quartz and orpiment. Pure microcrystalline orpiment, carbon-rich shale, silicified shale with visible pyrite grains and arsenic minerals contain the highest concentrations of gold. In many ways Zarshuran appears to be similar to the classic Carlin-type sediment-hosted disseminated gold deposits. However, relatively high concentrations of tellurium at Zarshuran, evidenced by the occurrence of coloradoite (HgTe), imply a greater magmatic contribution in the mineralising hydrothermal solutions than is typical of Carlin-type gold deposits. Received: 13 May 1999 / Accepted: 2 February 2000  相似文献   

12.
丁坤  王瑞廷  刘凯  王智慧  申喜茂 《现代地质》2021,35(6):1622-1632
为了研究柞水—山阳矿集区夏家店金矿床成因,采用LA-ICP-MS和LA-MC-ICP-MS技术分析夏家店金矿床矿体及围岩样品中黄铁矿原位微量元素及氢、氧、硫同位素组成特征。结果表明,该矿床黄铁矿的Co/Ni 比值为0.11~0.76,说明其与沉积作用有关。矿石中黄铁矿的δ34S值(-9.40‰~7.16‰)与围岩碳质板岩的δ34S值(-8.84‰~10.64‰)接近,黄铁矿的δ34S均值(2.47‰)基本落在岩浆硫的范围内,指示矿石硫可能由地层硫和岩浆硫混合而成。氢、氧同位素测试结果表明,夏家店矿床成矿流体可能主要来自岩浆水,成矿后期有大气降水的加入。综合矿床地质特征、成矿温度、金赋存状态等特征和黄铁矿微量元素、硫同位素组成可知,夏家店金矿床属于卡林型金矿,其成矿流体主要来自岩浆水,成矿后期有大气降水加入;其成矿物质是由深部岩浆与地层混合而成。  相似文献   

13.
The Hatu, Qi-III, and Qi-V gold deposits in the Hatu–Baobei volcanic–sedimentary basin (west Junggar, Xinjiang) represent the proximal, middle, and distal parts of the Hatu gold district, respectively. Orebodies of these deposits mainly consist of Au-bearing quartz veins and altered host rocks with disseminated sulfide minerals. Six types of pyrite in these mines are studied here to illustrate ore-formation processes. Sedimentary pyrite, including framboidal and fine-grained pyrite, occurs in mudstone-bearing sedimentary rocks or altered volcanic–sedimentary rocks. Framboidal pyrite formed during redox changes in sedimentary layers. Hydrothermal pyrite contains five subgroups, from Py1 to Py5. Porous Py1 formed prior to gold mineralization, and is overgrown by Py2 that contains inclusions of sulfide minerals and native gold. Coarser Py3 coexists with arsenopyrite and native gold, and contains the greatest As concentrations. Gold and antimony are also preferentially concentrated in arsenian Py2 and Py3. The Au–As-deficient Py4 and Py5 formed during the post-ore process. There is a negative correlation between the As and S contents in Py1, Py2, and Py3, implying the substitution of sulfur by arsenic. Gold precipitated under relatively reducing condition in framboid- and graphite-bearing tuffaceous rocks. Cesium, Rb, Sr, La, Ce, Au, As, Sb, Cu, and Pb are concentrated in altered host rocks. The Au-bearing quartz veins and disseminated sulfide mineral orebodies were formed via a co-genetic hydrothermal fluid and formed during different stages. The variation of fO2 during fluid/rock interactions, and crystallization of arsenian pyrite were major factors that controlled gold precipitation.  相似文献   

14.
丘岭金矿床是西秦岭地区重要的卡林型金矿之一, 金矿化赋存于上泥盆统南阳山组和下石炭统袁家沟组地层中, 容矿岩石的岩性为钙质粉砂岩、粉砂质页岩和泥质灰岩.金矿石中主要金属矿物为黄铁矿和毒砂, 非金属矿物则以石英、方解石和绢云母为主.通过对矿石矿物黄铁矿和毒砂的扫描电镜-能谱分析、电子探针分析和激光剥蚀电感耦合等离子体质谱分析, 对丘岭金矿床金的赋存形式和富集机理进行了较为详细的研究.结果表明, 丘岭金矿床中金主要以次显微不可见金的形式存在, 其次为显微可见金.次显微金包括: (1)固溶体金(Au+), 主要存在于环带状细粒黄铁矿的含砷增生边区域和毒砂中, 少量存在于环带状黄铁矿的核部不含砷区域; (2)纳米级自然金颗粒(Au0), 存在于粗晶黄铁矿中.环带状细粒黄铁矿核部的次显微金可能主要以胶体吸附的形式存在, 暗示容矿岩石在沉积成岩过程中有金的初步富集, 而环带状黄铁矿幔部和毒砂中的Au则主要来源于成矿流体, 以S和As的络合物形式搬运.显微可见金主要分布在细粒黄铁矿的晶体边缘和热液蚀变绢云母、石英及方解石中, 粒径通常小于3~5 μm, 其形成可能与成矿流体中金的局部过饱和及成矿流体对细粒黄铁矿和毒砂中次显微金的活化和再次富集有关.   相似文献   

15.
Summary The Dachang Sn-polymetallic ore district is one of the largest tin producing districts in China. Its origin has long been in dispute between magmatic-hydrothermal replacement and submarine exhalative-hydrothermal origin. The Dachang ore district comprises several types of ore deposits, including the Lamo magmatogenic skarn deposit near a granite intrusion, the Changpo-Tongkeng bedded and vein-type sulfide deposit, and the Gaofeng massive sulfide deposit. Sulfide minerals from the Lamo skarn ores show δ34S values in the range between −3 and +4‰ with a mean close to zero, suggesting a major magmatic sulfur source that likely was the intrusive Longxianggai granite. Sulfide minerals from the Gaofeng massive ores show higher δ34S values between +5 and +12‰, whereas sulfide minerals from the Changpo-Tongkeng bedded ores display lighter δ34S values between −7 and −0.2‰. The difference in the sulfur isotope ranges in the two deposits can be interpreted by different degrees of inorganic thermochemcial reduction of marine sulfate using a one-step batch separation fractionation model. Sulfur isotopic compositions from the vein-type ores at Changpo-Tongkeng vary widely from −8 to +4‰, but most of the data cluster around −2.9‰, which is close to that of bedded ores (−3.6‰). The sulfur in vein-type ores might be derived from bedded ores or it represents a mixture of magmatic- and sedimentary-derived sulfur. Pb isotopic compositions of sulfide minerals in the Dachang ore district reveal a difference between massive and bedded ores, with the massive ores displaying more radiogenic Pb isotope ratios. Correlations of 206Pb/204Pb and 207Pb/204Pb or 208Pb/204Pb for the massive and bedded ores are interpreted as two-component mixing of Pb leached from sedimentary host rocks and from deep-seated Precambrian basement rocks composed of metamorphosed volcano-sedimentary rocks. Pb isotopic compositions of sulfide minerals from vein-type ores overlap with those of bedded sulfides. Similar to the sulfur, the lead in vein-type ores might be derived from bedded ores. Skarn ores at Lamo show very limited variations in Pb isotopic compositions, which may reflect a major magmatic-hydrothermal lead source. Helium isotope data of fluid inclusions trapped in sulfides indicate that He in the massive and bedded ores has a different origin than He in fluorite of granite-related veins. The 3He/4He ratios of 1.2–2.9 Ra of fluid inclusions from sulfides at Gaofeng and Changpo-Tongkeng imply a contribution of mantle-derived fluids. Overall our data support a submarine exhalative-hydrothermal origin for the massive and bedded ore types at Dachang. Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

16.
The sulfur isotope composition of sulfides (mainly pyrite and arsenopyrite) from gold deposits/prospects of the Dharwar Craton such as Hutti, Hira-Buddini, Uti, Kolar (Chigargunta), Ajjanahalli, and Jonnagiri has a narrow range (δ34S = +1.1 to +7.1‰). Such craton-scale uniformity of the above gold camps is noteworthy, in spite of the wide diversity in host rock compositions and their metamorphic conditions, and suggests a magmatic or average crustal source of sulfur for all deposits studied. In addition, our study points towards gold precipitation from reduced ore fluids, with near-homogeneous sulfur isotope compositions.  相似文献   

17.
Vein-type tin mineralization in the Dadoushan deposit, Laochang ore field, Gejiu district, SW China, is predominantly hosted in Triassic carbonate rocks (Gejiu Formation) over cupolas of the unexposed Laochang equigranular granite intrusion. The most common vein mineral is tourmaline, accompanied by skarn minerals (garnet, diopside, epidote, phlogopite) and beryl. The main ore mineral is cassiterite, accompanied by minor chalcopyrite, pyrrhotite, and pyrite, as well as scheelite. The tin ore grade varies with depth, with the highest grades (~1.2 % Sn) prevalent in the lower part of the vein zone. Muscovite 40Ar–39Ar dating yielded a plateau age of 82.7 ± 0.7 Ma which defines the age of the vein-type mineralization. Measured sulfur isotope compositions (δ 34S = −4.1 to 3.9 ‰) of the sulfides (arsenopyrite, chalcopyrite, pyrite, and pyrrhotite) indicate that the sulfur in veins is mainly derived from a magmatic source. The sulfur isotope values of the ores are consistent with those from the underlying granite (Laochang equigranular granite, −3.7 to 0.1 ‰) but are different from the carbonate wall rocks of the Gejiu Formation (7.1 to 11.1 ‰). The calculated and measured oxygen and hydrogen isotope compositions of the ore-forming fluids (δ 18OH2O = −2.4 to 5.5 ‰, δD = −86 to −77 ‰) suggest an initially magmatic fluid which gradually evolved towards meteoric water during tin mineralization.  相似文献   

18.
The Camagüey district, Cuba, is known for its epithermal precious metal deposits in a Cretaceous volcanic arc setting. Recently, the La Unión prospect was discovered in the southern part of the district, containing gold and minor copper mineralization interpreted as porphyry type. Mineralization is hosted in a 73.0 ± 1.5 Ma calc–alkaline I-type oxidized porphyry quartz diorite intrusive within volcanic and volcaniclastic rocks of the early Cretaceous Guáimaro Formation. The porphyry is affected by propylitic alteration and crosscut by a network of quartz and carbonate veinlets and veins. Chlorite, epidote, sericite, quartz, and pyrite are the main minerals in the early veins which are cut by late carbonate and zeolite veins. Late barite pseudomorphously replaces pyrite. Gold is associated with pyrite as disseminations in the altered quartz diorite and in the veins, occurring as inclusions or filling fractures in pyrite with 4 g/t Au in bulk samples, and up to 900 ppm Au in in pyrite. Fluid inclusion and oxygen isotope data are consistent with a H2O–NaCl–(KCl) mineralizing fluid, derived from the quartz diorite magma, and trapped at least at 425°C and 1.2 kbar. This primary fluid unmixed into two fluid phases, a hypersaline aqueous fluid and a low-salinity vapor-rich fluid. Boiling during cooling may have played an important role in metal precipitation. Pyrite δ34S values for the La Unión prospect range between 0.71‰ and 1.31‰, consistent with a homogeneous magmatic sulfur source. The fluids in equilibrium with the mineralized rocks have estimated δ18O values from 8‰ to 11.8‰, calculated for a temperature range of 480–505°C. The tectonic environment of the La Unión prospect, its high gold and low copper contents, the physical–chemical characteristics of the mineralizing fluids and the isotopic signature of the alteration minerals and fluids indicate that the La Unión gold mineralization is similar to the porphyry gold type, even though the ore-related epidote–chlorite alteration can be classified as propylitic and not the classic potassic and/or phyllic alteration. The low copper contents in the prospect could be due to a mineralizing fluid previously saturated in copper, which is indicated by trapped chalcopyrite crystals in high-temperature fluid inclusions. The low-temperature paragenesis, represented by carbonate, zeolite and barite, indicates epithermal overprint. The study shows the potential for other gold porphyry-type deposits in the Cretaceous volcanoplutonic arc of Cuba.  相似文献   

19.
Summary Telluride-bearing gold deposits of the Pingyi area, western Shandong, China, are located on the southeastern margin of the North China Craton. There are two main types of deposits: (i) mineralized cryptoexplosive breccia, e.g., Guilaizhuang; and (ii) stratified, finely-disseminated mineralization hosted in carbonate rocks, e.g., Lifanggou and Mofanggou deposits. In Guilaizhuang, the cryptoexplosive breccia is formed within rocks of the Tongshi complex and Ordovician dolomite. The mineralization is controlled by an E–W-trending listric fault. Stratified orebodies of the Lifanggou and Mofanggou deposits are placed along a NE-trending, secondary detachment zone. They are hosted within dolomitic limestone, micrite and dolomite of the Early-Middle Cambrian Changqing Group. The mineralization in the ore districts is considered to be related to the Early Jurassic Tongshi magmatic complex that formed in a continental arc setting on the margin of the North China Craton. The host rocks are porphyritic and consist predominantly of medium- to fine-grained diorite and pyroxene (hornblende)-bearing monzonite. SHRIMP U–Pb zircon dating of diorites give a 206Pb/238U weighted mean age of 175.7 ± 3.8 Ma. This is interpreted as representing the crystallization age of the Tongshi magmatic complex. Considering the contact relationships between the magmatic and host sedimentary rocks, as well as the genetic link with the deposits, we conclude that this age is relevant also for the formation of mineralization in the Pingyi area. We hence consider that the deposits formed in the Jurassic. The principal gold minerals are native gold, electrum and calaverite. Wall-rock alteration comprises pyritization, fluoritization, silicification, carbonatization and chloritization. Fluid inclusion studies indicate that all the analyzed inclusions are of two-phase vapor–liquid NaCl–H2O type. Homogenization temperatures of the fluid inclusions vary from 103 °C to 250 °C, and the ice melting temperatures range from −2.5 °C to −13.5 °C, corresponding to a salinity range of 4.65 to 17.26 wt.% NaCl equiv. The δ34S values of pyrite associated with gold mineralization exhibit a narrow range of −0.71 to + 2.99‰, implying that the sulfur was probably derived from the mantle and/or dioritic magma. The δ13CPDB values of the fluid inclusions in calcite range from −7.3 to 0.0‰. The δ18OSMOW values of vein quartz and calcite range from 11.5 to 21.5‰, corresponding to δ18Ofluid values of −1.1 to 10.9‰; δD values of the fluid inclusions vary between −70 and −48‰. The isotope data for all three deposits suggest mixing of ore-forming fluids derived from the mantle and/or magma with different types of fluids at shallow levels. Pressure release and boiling of the fluids, as well as fluid-rock interaction (Lifanggou and Mofanggou) and mixing of magmatically-derived fluids with meteoritic waters (Guilaizhuang) played an important role in the ore-forming processes.  相似文献   

20.
Shuiyindong is one of the largest and highest grade stratabound Carlin-type gold deposits in China. This paper reports on the results of petrographic studies, electron microprobe analyses (EMPA) of arsenian pyrite, and the mass transfer during mineralization and alteration, and it presents the deposit-scale distributions of Au, As, Sb, Hg, Tl, and trace elements in a representative cross section across the Shuiyindong Carlin-type gold deposit, Guizhou Province. The main objectives were to identify the precipitation mechanisms of minerals, or elements from fluids, and the migration paths of ore-forming fluids.Petrographic and EMPA studies indicate that gold in the primary ores is mainly hosted by arsenian pyrite. Mass transfer associated with alteration and mineralization shows that Au, As, Sb, Hg, Tl, and S were significantly added to all mineralized rocks, Fe2O3 and SiO2 were immobile in the main orebodies that are hosted in bioclastic limestone, and CaO, Na2O, Sr, and Li were removed from country rocks. The relations between Fe and S indicate that the sedimentary rocks at the Shuiyindong deposit contain more iron than is needed to combine with all of their contained sulfur to form pyrite. This suggests that sulfidation and decarbonation were the principal mechanism of gold precipitation at the Shuiyindong deposit. Hg, Sb, and As commonly formed sulfide minerals, such as stibnite, realgar, and orpiment, in late-stage quartz–calcite veins, or absorbed by organic matter in argillite. Fluid cooling presumably led to depositions of stibnite, realgar, and orpiment in late-stage quartz–calcite veins. Organic matter likely served as a reductant in argillite for the ore fluids, causing the precipitation of As, Sb, Hg, and S, as well as Au.Deposit-scale distributions of gold and other relevant elements reflect the passage of fluids through the rocks. Rock strata and structures allowed the ore-forming fluids to migrate horizontally along the unconformity surface of the Middle–Upper Permian, converge on the high position of an anticline, and then ascend into the overlying strata along the anticlinal axis. The distributions of the major and trace elements show that elements that accompanied the ore-forming fluids include Au, As, Sb, Hg, Tl, and S, and that Na2O and Li were exhausted in the Longtan Formation at the anticlinal core during gold mineralization. The enrichment of Co, Cr, and Ni in the Longtan Formation at the anticlinal core might be associated with deformation that formed the anticline, or with gold mineralization. Different host rocks were preferentially mineralized by different elements. The bioclastic limestone is commonly enriched in Au, whereas the argillite is preferentially enriched in As, Hg, Sb, and Tl. The zonation of ore-forming elements in the deposit appears to be Sb–Tl–As–Hg–Au–Hg–As (from bottom to top). Enrichment of Au, As, Sb, Hg, and Tl provides useful guidance for the exploration for Carlin-type gold deposits in Guizhou. Anomalies of As and Hg in soil or stream sediment might be an important clue and these elements can be used as indicator elements. Ore-forming fluids migrated along the unconformity surface of the Middle–Upper Permian and the anticlinal axis, so these are favorable sites for exploration for Carlin-type gold deposits in Guizhou.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号